SYNTHESIS OF BOUNDARY CONDITIONS IDENTIFICATION METHOD AND FINITE ELEMENT METHOD. RECTANGULAR PLATES

Сиявуш Ахмедович Халилов, Виталий Борисович Минтюк, Денис Анатольевич Ткаченко, Виктор Владимирович Копычко

Abstract


The key problem in the use of previously proposed boundary conditions identification method is the solution of intermediate boundary-value problems. These are quite complex boundary-value problems of structural elements conjugation of branched thin-walled spatial systems, such as bearing surfaces and hulls of aircraft structure. In solving the boundary conditions identifying problem for selected block-element the industrial finite element method can substantially help. On the other hand, boundary conditions identification method as such can help the finite element method to choose the effective type of finite element typical for the considered class of solid mechanics problems. This idea “boundary conditions identification method ↔ finite element method” is the basis of the study. The fruitfulness of combining two essentially different methods is shown by carrying out numerous calculations on a particular example of a rather simple but not trivial problem.

Keywords


basic boundary-value problem; criterion solution; boundary conditions identification, boundary conditions identification method and finite element method interaction

References


Khalilov, S. A. Problema issledovaniya ustoychivosti nesushchey konstruktsii bol'shegruznykh samoletov [The problem of studying the heavy-duty aircraft load-bearing structure stability]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. Trudy khar'k. aviats. in-ta im. N. E. Zhukovskogo za 1993 g. [Aerospace Engineering and Technology. Proc. of the Zhukovsky Kharkiv Aviation Institute]. Kharkiv, «KhAI» Publ., 1994, pp. 358 – 369.

Khalilov, S. A. Razvitie al'ternativnogo podkhoda k resheniyu problemy ustoychivosti silovykh elementov konstruktsii samoleta [Development of an alternative approach to solving the airplane power components stability problem]. Aviatsionno-kosmicheskaya tekhnika i tekhnolo¬giya. Trudy khar'k. aviats. in-ta im. N. E. Zhukovskogo za 1994 g. [Aerospace Engineering and Technology. Proc. 1994 Zhukovsky Kharkiv Aviation Institute]. Kharkiv, «KhAI» Publ., 1995, pp. 223 – 227.

Khalilov, S. A. Metod identifikatsii kraevykh uslo-viy v zadachakh uprugoy ustoychivosti. Ideya metoda [The boundary conditions identification method in elastic stability problems. The idea of the method]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2003, no. 1, vol. 36, pp. 15 – 21.

Mintyuk, V. B. Ustoychivost' tipovoy nervyury s krivolineynymi poyasami. Opredelenie iskhodnogo sostoyaniya [Stability of a standard rib with curvilinear belts. The initial state determination]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. Trudy khar'k. aviats. in-ta im. N. E. Zhukovskogo za 1997 g. [Aerospace Engineering and Technology. Proc. 1997 Zhukovsky Khar¬kiv Aviation Institute]. Kharkiv, «KhAI» Publ., 1998, pp. 339 – 345.

Mintyuk, V. B. Issledovanie ustoychivosti nervyury s krivolineynymi poyasami pri proizvol'nykh nagruzkakh s uchetom vliyaniya paneley posredstvom kompensatorov [Investigation into the stability of a rib with curvilinear belts under arbitrary loads taking into account the panels impact through compensators]. Voprosy proektirovaniya i proizvodstva konstruktsiy letatel'nykh apparatov: Temat. sb. nauch. tr. [Aircraft structures design and production questions: Thematic sci. proc. coll.]. Kharkiv, «KhAI» Publ., 2000, no. 2, vol. 19, pp. 82 – 88.

Khalilov, S. A., Mintyuk, V. B. Issledovanie ustoychivosti otseka kryla metodom identifikatsii kraevykh usloviy na osnove uproshchennoy modeli [Investigation into the wing compartment stability by the boundary conditions identification method on the basis of a simplified model]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2003, no. 2, vol. 37, pp. 6 – 10.

Khalilov, S. A., Mintyuk, V. B. Issledovanie ustoy-chivosti otseka kryla metodom identifikatsii kraevykh usloviy na osnove dvumernoy uproshchennoy modeli [Study the wing compartment stability by the boundary conditions identification method on the basis of a simplified two-dimensional model]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2004, no. 1, vol. 9, pp. 24 – 28.

Khalilov, S. A., Yarovoy, M. A. Priblizhennoe zamknutoe reshenie ploskoy zadachi teorii uprugosti v trapetsievidnoy oblasti [Approximate closed solution to the plane elastic problem in the trapezoid domain]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2004, no. 2, vol. 10, pp. 33 – 38.

Krivtsov, V. S., Khalilov, S. A., Mintyuk, V. B. Is-sledovanie ustoychivosti silovogo kessona kryla metodom identifikatsii kraevykh usloviy [Study the wing caisson stability by the boundary conditions identification method]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya: Po materialam mezhdunar. nauch.-tekhn. konf. [Aerospace Engineering and Technology. Proc. Int. Sci.-Tech. Conf.]. Kharkiv, «KhAI» Publ., 2005, no. 7, vol. 23, pp. 151 – 161.

Krivtsov, V. S., Khalilov, S. A., Mintyuk, V. B. Ustoychivost' silovogo kessona kryla. Chislennyy analiz na osnove metoda identifikatsii kraevykh usloviy [The wing power caisson. Numerical analysis based on the boundary conditions identification method]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2007, no. 3, vol. 39, pp. 5 – 26.

Khalilov, S. A., Kravchenko, S. G. Reshenie osnovnoy bigarmonicheskoy problemy v trapetsievidnoy oblasti [The basic biharmonic problem solution in the trapezoidal region]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii : sb. nauch. tr. Nats. aerokosm. un-ta im. N. E. Zhukovskogo «KhAI» [Open information and computer integrated technologies: scientific papers collection of Zhukovsky National Aerospace university]. Kharkiv, «KhAI» Publ., 2009, vol. 43, pp. 213 – 223.

Khalilov, S. A., Makarov, O. V., Vesel'skiy, S. I. Issledovanie vliyaniya parametrov podkrepleniya na napryazhennoe sostoyanie paneli, vyzvannoe lokal'nymi nagruzkami. Soobshchenie 2 [Investigation into the reinforcement parameters impact on the panel stress state caused by local loads. Report 2]. Voprosy proektirovaniya i proizvodstva konstruktsiy letatel'nykh apparatov: sb. nauch. tr. Nats. aerokosm. un-ta im. N. E. Zhukovskogo «KhAI» [Aircraft structures design and production questions: Sci. Proc. Coll. Zhukovsky National Aerospace University «KhAI»]. Kharkiv, «KhAI» Publ., 2010, no. 1, vol. 61, pp. 15 – 22.

Mintyuk, V. B. Ustoychivost' podkreplennoy v oblasti i na krivolineynoy granitse plastiny kak elementa tonkostennoy prostranstvennoy sistemy. Diss. kand. tekhn. nauk [Stability of plate stiffened in its area and along curved boundary as element of thin-walled space structure. Cand. tech. sci. diss.]. Kharkiv, 2004. 147 p.

Yarovoy, M. O. Proektuvannya ratsional'nykh sylovykh konstruktsiy bahatostinkovykh kryl maloho podovzhennya bezpilotnykh lital'nykh aparativ. Diss. kand. tekhn. nauk [Rational Primary Structure’s Design of Unmanned Aircraft Multi-Web Low Aspect Ratio Wings. Cand. tech. sci. diss.]. Kharkiv, 2007. 142 p.

Kravchenko, S. G. Ustoychivost' prostranstvennykh tonkostennykh plastinchatykh sistem. Diss. kand. tekhn. nauk [Stability of space thin-walled plate systems. Cand. tech. sci. diss.]. Kharkiv, 2010. 160 p.

Dibir, A. G. Issledovanie napryazhenno-deformirovannogo sostoyaniya ploskikh tonkostennykh ore-brennykh konstruktsiy iz kompozitsionnykh materialov na osnove resheniya kontaktnykh zadach. Diss. kand. tekhn. nauk [Study the stress-strain state of flat thin-walled finned structures made of composite materials on the basis of solving contact problems. PhD diss.]. Kharkiv, 1985. 240 p.

Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A. Novye metody issledovaniya lineino i nelineino deformiruemykh tel iz kompozitsionnykh materialov. T. 2. Matematicheskie modeli, metody ikh analiza i chislennaya realizatsiya nelineinogo deformirovaniya tonkostennykh prostranstvennykh sistem; otchet o NIR. [New methods of research in linear and nonlinear deformable bodies made of composite materials. Vol. 2. Mathematical models, analysis techniques and numerical implementation of thin-walled spatial systems nonlinear deformation]. Kharkiv, «KhAI» Publ., 2014, no. GR 0112U002135. Inv. no. 0215U006163, 160 р.

Mikhlin, S. G. Variatsionnye metody v matematicheskoi fizike [Variational methods in mathematical physics]. Moskow, «Gostekhizdat» Publ., 1957. 478 р.

Mikhlin, S. G. Chislennaya realizatsiya variatsionnykh metodov [Numerical realization of variational methods]. Moskow, «Nauka» Publ., 1966. 432 р.

Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A. Postroenie i issledovanie analitikochislennogo resheniya zadachi ob izgibe zhestko zashchemlennoi pryamougol'noi plastiny [Development and research of the analytic-numerical solution for the bending problem of stiffened rectangular plate]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii : sb. nauch. tr. Nats. aerokosm. un-ta im. N. E. Zhukovskogo «KhAI» [Open information and computer integrated technologies : scientific papers collection of Zhukovsky National Aerospace university]. Kharkiv, «KhAI» Publ., 2011, vol. 49, pp. 81 – 94.

Khalilov, S. A. Novye sistemy ortonormirovannykh mnogochlenov, nekotorye ikh svoistva i prilozheniya [New orthonormal polynomials systems, some of their properties and applications]. Prochnost' konstruktsii letatel'nykh apparatov: temat. sb. nauch. tr. [Strength of aircraft structures: thematic collection of scientific papers]. Kharkiv, «KhAI» Publ., 1978, vol 5, pp. 46 – 56.

Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A. Priblizhennoe analiticheskoe reshenie bigarmonicheskoi problemy v pryamougol'nike pri odnorodnykh glavnykh kraevykh usloviyakh na dvukh protivopolozh-nykh storonakh i proizvol'nykh – na dvukh drugikh [An ap-proximate analytical solution of biharmonic problem in the rectangle with homogeneous main boundary conditions on the two opposite sides and arbitrary boundary conditions on the other two sides]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2013, no. 5, vol. 102, pp. 40 – 49.

Tkachenko, D. A. Ortonormirovannyi v energeticheskom prostranstve bigarmonicheskogo operatora bazis v pryamougol'nike pri odnorodnykh glavnykh kraevykh usloviyakh po granitse [Orthonormal basis in the biharmonic operator energy space in the rectangle with homogeneous principal boundary conditions along the boundary]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2014, no. 3, vol. 110, pp. 41 – 51.

Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A., Kopychko, V. V. Sobstvennyi spektr bigarmonicheskogo operatora v pryamougol'nike pri glavnykh kraevykh usloviyakh [Biharmonic operator own spectrum in a rectangle at the main boundary conditions]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2014, no. 5, vol. 112, pp. 70 – 78.

Khalilov, S. A., Krivtsov, V. S., Mintyuk, V. B., Tkachenko, D. A. Funktsiya Grina osnovnoi kraevoi zadachi dlya bigarmonicheskogo operatora v pryamougol'nike [Green function of basic boundary value problem for biharmonic operator in the rectangle]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2015, no. 6, vol. 123, pp. 12 – 22.

Khalilov, S. A., Mintyuk, V. B., Kopychko, V. V., Tkachenko, D. A. Osnovnaya kraevaya zadacha obshhey klassicheskoy teorii otkrytoy tsilindricheskoy obolochki. Reshenie bazovoy zadachi [Main boundary value problem of classical theory of general open cylindrical shell. Basic solution]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2015, no. 3, vol. 120, pp. 24 – 32.

Krivtsov, V. S., Pavlenko, V. N., Kopychko, V. V. Osnovnaya kraevaya zadacha obshchey klas-sicheskoy teorii otkrytoy tsilindricheskoy obolochki. Konstruktsiya resheniya [Main boundary value problem of general classical theory of open cylindrical shell. Solution construction]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2015, no. 6, vol. 123, pp. 5 – 11.

Khalilov, S. A., Krivtsov, V. S., Mintyuk, V. B., Tkachenko, D. A., Pavlenko, V. N., Kopychko, V. V. Zadacha Dirikhle dlya transversal'no-izotropnoy pryamougol'noy plastiny [The Dirichlet problem for transversely isotropic rectangular plate]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2017, no. 2, vol. 137,

pp. 4 – 21.

Khalilov, S. A., Krivtsov, V. S., Mintyuk, V. B., Kopychko, V. V., Tkachenko, D. A., Pavlenko, V. N. Zadacha Dirikhle dlya transversal'noizotropnoy paneli [The Dirichlet problem for transversely-isotropic panel]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2017, no. 3, vol. 138, pp. 50 – 63.

Ciarlet, P. G. Mathematical Elasticity. Vol. I. Three-dimensional elasticity. Elsevier Science Publishers, 1988. 451 p.

Prokhorov, Yu. V. Matematicheskii entsiklope-dicheskii slovar' [Mathematical encyclopedia]. Moskow, «Sovetskaya Entsiklopediya» Publ., 1988. 847 р.

Kondrat'ev, V. A. Kraevye zadachi dlya ellipticheskikh uravneniy v oblastyakh s konicheskimi i uglovymi tochkami [Boundary value problems for elliptic equations in domains with conical and angular points]. Trudy Moskovskogo matematicheskogo obshchestva [Proc. Moscow Mathematical Community]. Moscow, 1967, vol. 16, pp. 209 – 292.

Kalandiya, A. I. Zamechanie ob osobennostyakh uprugikh resheniy vblizi uglov [A remark on the elastic solutions features near angles]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. Moscow, 1969, no. 1, vol. 33, pp. 132 – 135.

Belonosov, S. M. Osnovnye ploskie stati-sticheskie zadachi teorii uprugosti dlya odnosvyaznykh i dvusvyaznykh oblastey [Basic statistical plane elastic problems for simply-connected and doubly-connected regions

Maz'ya, V. G., Nazarov, O. A., Plamenevskiy, B. A. Asimptotika resheniy ellipticheskikh kraevykh zadach pri singulyarnom vozmushchenii oblasti [Elliptic boundary value problems solutions asymptotics for a singular perturbation of the domain]. Tbilisi, Tbilis. un-ta Publ., 1981. 206 р.

Lur'e, A. I. O statiko-geometricheskoy analogii teorii obolochek [On the shells theory static-geometric analogy]. Problemy mekhaniki sploshnoy sredy [Continuum mechanics prob-lems]. Moscow, Gosstroyizdat Publ., 1961, pp. 233 – 240.

Parton, V. Z., Perlin, P. I. Metody matematicheskoi teorii uprugosti [Methods of mathematical elasticity theory]. Moskow, «Nauka» Publ., 1981. 688 р.

Kreyn, S. G. Funktsional'nyy analiz. Izd. 2-e [Functional analysis. Ed. 2]. Moskow, «Nauka» Publ., 1972. 544 р.




DOI: https://doi.org/10.32620/aktt.2017.4.01