THE DIRICHLET PROBLEM FOR TRANSVERSELY-ISOTROPIC PANEL
Abstract
This paper is a part of series of previous published papers which are devoted to obtaining analytically-numerical solutions of boundary value problems of the theory of shells and plates with arbitrary stresses and inhomogeneous boundary conditions of the Dirichlet type. Unlike other papers of the series, this paper considers shell from transversely isotropic material. The focus is, as ever, sustainability, convergence and accuracy of obtaining analytically-numerical solutions. A posteriori analysis is performed for cylindrical panel. The numerical results are displayed in detail in numerous charts and tables.
Keywords
Full Text:
PDF (Русский)References
Halilov, S. A., Mintjuk, V. B., Kopychko V. V., Tkachenko, D. A. Osnovnaja kraevaja zadacha obshhej klassicheskoj teorii otkrytoj cilindricheskoj obolochki. Reshenie bazovoj zadachi [Main boundary value problem of classical theory of general open cylindrical shell. Basic task solution]. Aviacionno-kosmicheskaja tehnika i tehnologija [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2015, no. 5, vol. 120, pp. 24 – 32.
Krivcov, V. S., Pavlenko, V. N., Kopychko, V. V. Osnovnaja kraevaja zadacha obshhej klassicheskoj teorii otkrytoj cilindricheskoj obolochki. Konstrukcija reshenija [Main boundary value problem of general classical theory of open cylindrical shell. Solution construction]. Aviacionno-kosmicheskaja tehnika i thenologija [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2015, no. 6, vol. 123, pp. 5 – 11.
Kopychko, V. V. Deformirovanie otkrytoj cilindricheskoj obolochki pri soglasovannyh obob-shhennyh peremeshhenijah uglovyh tochek granicy [Deformation of open cylindrical shells under agreed generalized displacements of the border corner points]. Otkrytye informacionnye i komp'juternye integrirovannye tehnologii [Open information and computer integrated technologies : scientific papers collection of Zhukovsky National Aerospace university “KhAI”]. Kharkiv, «KhAI» Publ., 2015, vol. 70, pp. 184 – 193.
Kopychko, V. V. Deformirovanie otkrytoj cilindricheskoj obolochki s nepodvizhnymi uglovymi tochkami granicy i proizvol'nymi peremeshheni-jami ejo granicy [Deformation of open cylindrical shell with fixed border corner points and arbitrary displacements of its sides]. Otkrytye infor-macionnye i komp'juternye integrirovannye tehnologii, [Open information and computer integrated technologies : scientific papers collection of Zhukovsky National Aerospace university “KhAI”]. Kharkiv, «KhAI» Publ., 2016, vol. 71, pp. 179 – 188.
Halilov, S. A., Kopychko, V. V., Krivcov, V. S., Pavlenko, V. N. Osnovnaja kraevaja zadacha obshhej klassicheskoj teorii otkrytoj cilindricheskoj obolochki. Osobennosti deformirovanija pri zhestkom zashhemlenii granichnogo kontura [Main boundary value problem of general classical theory of open cylindrical shell. Solution construction]. Aviacionno-kosmicheskaja tehnika i tehnologija [Aerospace Engineering and Technol-ogy]. Kharkiv, «KhAI» Publ., 2016, no. 1, vol. 128, pp. 5 – 17.
Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A. Novye metody issledovaniya lineino i nelineino deformiruemykh tel iz kompozitsionnykh materialov. T. 2. Matematicheskie modeli, metody ikh analiza i chislennaya realizatsiya nelineinogo deformirovaniya tonkostennykh prostranstvennykh sistem; otchet o NIR. [New methods of research in linear and nonlinear deformable bodies made of composite materials. Vol. 2. Mathematical models, analysis techniques and numerical implementation of thin-walled spatial systems nonlinear deformation]. Kharkiv, «KhAI» Publ., 2014, no. GR 0112U002135. Inv. no. 0215U006163, 160 р.
Novozhilov, V. V. Teorija tonkih obolochek [Thin shell theory]. Leningrad, «Sudpromgiz» Publ., 2005. 431 p.
Peleh, B. L. Teorija obolochek s konechnoj sdvigovoj zhestkost'ju [The theory of shells with finite shear stiffness]. Kiev, «Naukova dumka» Publ., 1973. 246 p.
Rasskazov, A. O., Sokolovskaya, I. I., Shul'ga, N. A. Teoriya i raschet sloistykh ortotropnykh plastin i obolochek [Theory and calculation of lamellar orthotropic plates and shells]. Kiev, «Vysshaya shkola» Publ., 1986. 192 р.
Parton, V. Z., Perlin, P. I. Metody matematicheskoi teorii uprugosti [Methods of mathematical elasticity theory]. Moskow, «Nauka» Publ., 1981. 688 р.
Khalilov, S. A. Novye sistemy ortonormirovannykh mnogochlenov, nekotorye ikh svoistva i prilozheniya [New orthonormal polynomials sys-tems, some of their properties and applications]. Prochnost' konstruktsii letatel'nykh apparatov: temat. sb. nauch. tr. [Strength of aircraft structures: thematic collection of scientific papers]. Kharkiv, «KhAI» Publ., 1978, vol 5, pp. 46 – 56.
Samarskij, A. A., Lazarov, R. D., Makarov, V. L. Raznostnye shemy dlja differencial'nyh uravnenij s obobshhennymi reshenijami [Difference schemes for differential equations with generalized solutions]. Moscow, «Vyssha shkola» Publ., 1987. 296 p.
S'jarle, F. Metod konechnyh jelementov dlja jellipticheskih zadach [Finite element method for elliptic problems]. Moskow, «Mir» Publ., 1980. 512 p.
Ladyzhenskaja, O. A., Ural'ceva N. N. Linejnye i kvazilinejnye uravnenija jellipticheskogo tipa [Linear and quasilinear elliptic equations]. Moskow, «Nauka» Publ., 1973. 576 p.
Cowper, G. R., Lindberg, G. M., Olson, M. D. A shallow shell finite element of triangular shape. Intern. J. Solid structures, 1970, vol. 6, pp. 1133 – 1156.
Arbosh, A. [i dr.]. Tonkostennye obolochechnye konstrukcii: teorija, jeksperiment i proektirovanie [Thinshell structures: theory, experiment and design]. Moskow, «Mashinostroenie» Publ., 1980. 607 p.
Khalilov, S. A. Vychislenie nekotorykh opredelennykh integralov, soderzhashchikh prisoedi-nennye funktsii Lezhandra vtorogo i chetvertogo poryadkov [Calculation of some definite integrals containing attached sec-ond and fourth order Legendre functions]. Prochnost' konstruktsii letatel'nykh apparatov: temat. sb. nauch. tr. [Strength of aircraft structures: thematic collection of scientific papers]. Kharkiv, «KhAI» Publ., 1984, vol. 7, pp. 158 – 165.
Matematicheskij jenciklopedicheskij slovar' [Mathematical encyclopedia]. Moskow, «Sovetskaja jenciklopedija» Publ., 1988. 847 p.
Kantorovich, L. V., Akilov, G. P. Funkcional'nyj analiz [Function analysis]. Moskow, «Nauka» Publ., 1977. 742 p.
Sobolev, S. L. Nekotorye primenenija funkcional'nogo analiza v matematicheskoj fizike [Some applications of functional analysis in mathematical physics]. Moskow, «Nauka» Publ., 1988. 336 p
DOI: https://doi.org/10.32620/aktt.2017.3.03