NEURAL NETWORK MODEL FOR EVALUATING THE INFLUENCE OF SURFACE LAYER QUALITY ON THE FATIGUE STRENGTH OF GTE DETAILS
Abstract
Keywords
Full Text:
PDF (Русский)References
Gorelov, V. A., Kudrov, A. S., Merkulova, N. S., Yakovlev, M. G. Issledovanie vliyaniya ostatochnykh napryazhenii na ustalostnuyu prochnost' obraztsov ikh titanovykh i nikelevykh splavov [Investigation of the effect of residual stresses on the fatigue strength of titanium and nickel alloys samples]. Problemy mashinostroeniya i nadezhnosti mashin, 2014, no. 5, pp. 47-51.
Sakhnyuk, N. V., Tsyganov, V. V. Vliyanie parametrov kachestva poverkhnostnogo sloya na vynoslivost' lopatok kompressorov GTD novogo pokoleniya [The influence of quality parameters of the surface layer on the endurance of a new generation GTE compressor blades]. Vіsnik SevNTU: zb. nauk. pr. [Bulletin of the SevSTU: col. scient. papers], 2011, vol. 117/2011, pp. 153-156.
Kachan, A. Ya., Ulanov, S. A. Matematicheskoe modelirovanie vliyaniya tekhnologicheskoi nasledstvennosti finishnykh metodov obrabotki na predel vynoslivosti detalei GTD [Mathematical modeling of the influence of technological heredity finishing methods of processing on the endurance limit of GTE parts]. Vestnik dvigatelestroeniya, 2015, no. 1, pp. 81-86.
Biblik, I. V. Prognozirovanie ustalostnoi prochnosti poverkhnostno uprochnennykh materialov na osnove neirosetevogo modelirovaniya [Prediction of fatigue strength of surface-hardened materials based on neural network modeling]. Vestnik dvigatelestroeniya, 2018, no. 2, pp. 82-86.
Petukhov, A. N. Soprotivlenie ustalosti detalei GTD [Fatigue Resistance of GTE Parts]. Moscow, Mashinostroenie Publ., 1993. 240 p.
DOI: https://doi.org/10.32620/aktt.2019.8.13