EFFICIENCY OF THE ENERGY-TECHNOLOGICAL PLANT ON THE EXTRACTION OF HYDROGEN FROM THE BLACK SEA DEPTH

Михайло Романович Ткач, Борис Георгійович Тимошевський, Аркадій Юрійович Проскурін, Юрій Миколайович Галинкін

Abstract


The article discusses a promising energy-technology unit for the extraction of hydrogen sulfide from the deep waters of the Black Sea, which provides for raising the gas-liquid mixture from the depths by the gas-lift method using wave pulses to separate hydrogen sulfide in the gaseous state. The installation includes a supply line, which is lowered to the required depth, a supply pump, a coalescing separator, a seawater discharge line with a reduced concentration of hydrogen sulfide, a control valve, a hydrodynamic generator of mechanical vibrations, a lifting pipeline, a high pressure hydrogen sulfide separator, a hydraulic turbine, a low pressure hydrogen sulfide separator, seawater discharge pipe and hydrogen sulfide expander. This unit will improve the energy efficiency and operational reliability of the process of hydrogen sulfide production, as well as reduce the burden on the Black Sea environment. A mathematical model of this setup has been developed. The results obtained by the mathematical model adequately coincide with the known experimental ones. This suggests that it is possible to use the model to determine the parameters of the process for the extraction of hydrogen sulfide from the Black Sea. The parameters of the process for the extraction of hydrogen sulfide from the Black Sea in the depth range of the pipeline 0...1000 m at a temperature of 280...285 K. It has been established that increasing the gas content of seawater from 0 to 2.5 m3/m3 leads to a decrease in the pressure value by 2.2 MPa. A further increase in seawater gas content from 2.5 to 5.0 m3/m3 is accompanied by a decrease in pressure of another 1.6 MPa. Such a significant decrease in pressure at the inlet to the riser piping allows hydrogen sulfide and seawater to be obtained at a pressure that is substantially greater than atmospheric. The excess pressure at the outlet of the lifting pipeline is determined based on data obtained by the method of "equivalent length". When the seawater gas content is 2.5 m3/m3, the pipeline’s immersion depth is 250...1000 m, the value of the overpressure of substances at the exit of the lifting pipeline will be 0.2...0.45 MPa, and at 5 m3/m3 – 0.67...1.07 MPa, at 7.5 m3/m3 – 0.83...1.4 MPa and at 10 m3/m3 – 0.97...1.68 MPa.


Keywords


Black Sea; hydrogen sulfide; sea water; gas content; lifting pipe; oscillator

References


The state of the environment of the Black Sea. National Report 1996-2000. Ministry of Ecology and Natural Resources of Ukraine, 2002. 94 p.

Dimitrov, D. P. Geologiya i netraditsionni resursi na Cherno more [Geology and unconventional resources on the Black Sea]. Varna, Ong"l Publ., 2010. 269 p.

Neklyudov, I. M., Borts, B. V., Polevich, O. V., Tkachenko, V. I., Shilyaev B. A. Al'ternativnaya serovodorodnaya energetika chernogo morya, sostoyanie, problemy i perspektivy. Chast' I [Alternative hydrogen sulfide energy of the Black Sea, state, problems and prospects. Part I]. Vodorodnaya energetika i transport, 2006, no. 12 (44), pp. 23-30.

Council of Europe: The Black Sea, on the verge of an ecological disaster. Available at: http://www. ecomagazin.ro/consiliul-europei-marea-neagra-in-pragul. (In Romanian).

Mykhaylyuk, O. L. Perspektyvy vykorystannya enerhetychnoho potentsialu sirkovodnyu chornoho morya [Prospects for the use of the Black Sea hydrogen sulfide energy potential]. Naukovyy visnyk ONEU, 2012, no. 21 (173), pp. 91-100.

Bulgarian scientists are developing technology to reduce the hydrogen sulfide content in the Black Sea. Available at: http://bnr.bg/ru/post/100145256/bolgarskie -uchene-razrabatvaut-tehnologiu-umenasheniya-soderj aniya-serovodoroda-v-chernom-more. (In Russian).

Hatsan, V. A., Hatsan, O. A. , Lyeonov, V. Ye. Plavuchyy kompleks dlya hlybokovodnoho vydobutku sirkovodnyu iz mors'koyi vody i sposib zapusku plavuchoho kompleksu [Floating complex for deep-sea hydrogen sulfide mining from seawater and a method for launching a floating complex]. Patent UA, №. 36394, 2010.

Yurshyna, H. M. Prystriy dlya vydobutku sirkovodnyu z mors'koyi vody [Device for the extraction of hydrogen sulfide from sea water]. Patent UA, №. 54978, 2010.

Frolov, V. M., Mokrousov, S. D., Strohyy, V. I., Frolov, A. V., Novikov, V. V., Shcherbakov, V. P., Frolov, A. V., Sosnovenko S. S. Sposib vyluchennya sirkovodnyu z mors'kykh hlybyn [The method of extraction of hydrogen sulfide from the deep sea]. Patent UA, №. 76366, 2013.

Kunhurtsev, Yu. M. Ustanovka dlya dobuvannya sirkovodnyu z mors'koyi vod [Installation for producing hydrogen sulfide from sea water]. Patent UA, №. 76950, 2013.

Bartashov, V. M. Plavucha ustanovka dlya vydobuvannya ta pererobky sirkovodnyu, rozchynenoho u vodi [Floating installation for the extraction and processing of hydrogen sulfide dissolved in water]. Patent UA, №. 92615, 2010.

Pavlovs'kyy, M. A. Teoretychna mekhanika [Theoretical mechanics]. Kyyiv, Tekhnika Publ., 2002. 511 p.

Murin, V. I. Tekhnologiya pererabotki prirodnogo gaza i kondensata [Processing technology of natural gas and condensate]. Moscow, ООО "Nedra-Biznestsentr" Publ., 2002, P. 1. 517 p.

Hagedorn, A. R., Brown, K. E. Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits. Journal of Petroleum Technology, 1965, no. 17 (04) (SPE-940-PA), pp. 475-484.

Sorokin, Yu. I. Chernoe more: priroda, resursy [The Black Sea: nature, resources]. Moscow, Nauka Publ., 1982. 215 p.

Mukerdzhi, Kh. Proizvoditel'nost' skvazhin [Well Productivity]. Moscow, Yukos Publ., 2001. 184 p.




DOI: https://doi.org/10.32620/aktt.2019.7.06