THE DIRICHLET PROBLEM FOR TRANSVERSELY ISOTROPIC RECTANGULAR PLATE

Сиявуш Ахмедович Халилов, Владимир Станиславович Кривцов, Виталий Борисович Минтюк, Денис Анатольевич Ткаченко, Виталий Николаевич Павленко, Виктор Владимирович Копычко

Abstract


The approach offered before to solve Dirichlet boundary value problems for bending of rectangular transversely isotropic plate which is described by system of three differential equations with partial derivatives and total order equal six is developed. The approach to solve totally heterogeneous boundary value problem is based on reducing to solving a set of basic boundary value problems. Several ways to extend the functions from boundary to area and comparative analysis of their efficiency are offered in order to implement the method. It is showed that polynomial functions are of the best approximative properties concerning convergence and accuracy of constructed analytical numerical solutions.


Keywords


basic boundary value problem; criterion solution; formal and informal function extension from boundary to area; convergence and accuracy

References


Reissner, E. The effect of transverse shear defor-mation on the bending of elastic plates. J. Appl. Mech., 1945, no. 12, pр. A-69 – A-77.

Reissner, E. On small finite deflections of shear-deformable elastic plates. Comp. Meth. Appl. Mech. Eng., 1986, no. 59, pр. 227 – 233.

Reissner, E. A note on finite twisting and transverse bending of shear deformable ortho-tropic plates. Int. J. Solids Structures, 1992, vol. 29, no. 17, pр. 2177 – 2180.

Whitney, J. M. The effect of transverse shear de formation in the bending of laminated plates. J. Comp. Mater., 1969, no. 3, pр. 534 – 547.

Reddy, J. N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition. USA: СRC Press, 2004. 831 p.

Lekhnitskii, S. G. Teoriya uprugosti anizotropnogo tela, 2-e izd [The elasticity theory of anisotropic body, 2nd ed.]. Moskow, «Nauka» Publ., 1977. 416 р.

Korolev, V. I. Sloistye anizotropnye plastinki i ob-olochki iz armirovannykh plastmass [Laminated anisotropic reinforced plastic plates and shells]. Moskow, «Mashinostroenie» Publ., 1965. 272 р.

Bolotin, V. V., Novichkov, Ju. N. Mekhanika mnogosloinykh konstruktsii [Mechanics of multilayer structures]. Moskow, «Mashi-nostroenie» Publ., 1980. 375 p.

Ambartsumyan, S. A. Obshchaya teoriya ani-zotropnykh obolochek [The general theory of anisotropic shells]. Moskow, «Nauka» Publ., 1974. 448 p.

Rasskazov, A. O., Sokolovskaya, I. I., Shul'-ga, N. A. Teoriya i raschet sloistykh ortotropnykh plastin i obolochek [Theory and calculation of lamellar orthotropic plates and shells]. Kiev, «Vysshaya shkola» Publ., 1986. 192 р.

Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A. Novye metody issledovaniya lineino i nelineino deformiruemykh tel iz kompozitsionnykh materialov. T. 2. Matematicheskie modeli, metody ikh analiza i chislennaya realizatsiya nelineinogo deformirovaniya tonkostennykh prostranstvennykh sistem; otchet o NIR. [New methods of research in linear and nonlinear deformable bodies made of composite materials. Vol. 2. Mathematical models, analysis techniques and numerical implementation of thin-walled spatial systems nonlinear deformation]. Kharkiv, «KhAI» Publ., 2014, no. GR 0112U002135. Inv. no. 0215U006163, 160 р.

Sobolev, S. L. Nekotorye primeneniya funktsion-al'nogo analiza v matematicheskoi fizike [Some applications of functional analysis in mathematical physics]. Moskow, «Nauka» Publ., 1988. 333 р.

Parton, V. Z., Perlin, P. I. Metody matematicheskoi teorii uprugosti [Methods of mathematical elasticity theory]. Moskow, «Nauka» Publ., 1981. 688 р.

Ladyzheskaya, O. A., Ural'tseva, N. N. Lineinye i kvazilineinye uravneniya ellipticheskogo tipa [Linear and quasi-linear elliptic equations]. Moskow, «Nauka» Publ., 1973. 576 р.

Prokhorov, Yu. V. Matematicheskii entsiklope-dicheskii slovar' [Mathematical encyclopedia]. Moskow, «Sovetskaya Entsiklopediya» Publ., 1988. 847 р.

Khalilov, S. A. Novye sistemy ortonormirovan-nykh mnogochlenov, nekotorye ikh svoistva i prilozheniya [New orthonormal polynomials systems, some of their properties and applications]. Prochnost' konstruktsii letatel'nykh apparatov: temat. sb. nauch. tr. [Strength of aircraft structures: thematic collection of scientific papers]. Kharkiv, «KhAI» Publ., 1978, vol 5, pp. 46 – 56.

Khalilov, S. A. Vychislenie nekotorykh opredelen-nykh integralov, soderzhashchikh prisoedinennye funktsii Lezhandra vtorogo i chetvertogo poryadkov [Calculation of some definite integrals containing attached second and fourth order Legendre functions]. Prochnost' konstruktsii letatel'nykh apparatov: temat. sb. nauch. tr. [Strength of aircraft structures: thematic collection of scientific papers]. Kharkiv, «KhAI» Publ., 1984, vol. 7, pp. 158 – 165.

Mikhlin, S. G. Variatsionnye metody v matematich-eskoi fizike [Variational methods in mathematical physics]. Moskow, «Gostekhizdat» Publ., 1957. 478 р.

Krasnosel'skii, M. A., Vainikko, G. M., Zab-

reiko, P. P., Rutitskii, Ya. B., Stetsenko, V. Ya. Priblizhennoe reshenie operatornykh uravnenii [Approximate solution of operator equations]. Moskow, «Nauka» Publ., 1969. 456 р.

Mikhlin, S. G. Chislennaya realizatsiya vari-atsionnykh metodov [Numerical realization of variational methods]. Moskow, «Nauka» Publ., 1966. 432 р.

Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A. Postroenie i issledovanie analitiko-chislennogo resheniya zadachi ob izgibe zhestko zashchemlennoi pryamougol'noi plastiny [Development and research of the analytic-numerical solution for the bending problem of stiffened rectangular plate]. Otkrytye in-formatsionnye i komp'yuternye integrirovannye tekhnologii : sb. nauch. tr. Nats. aerokosm. un-ta im. N. E. Zhukovskogo «KhAI» [Open information and computer integrated technologies : scientific papers collection of Zhukovsky National Aerospace university “KhAI”]. Kharkiv, «KhAI» Publ., 2011, vol. 49, pp. 81 – 94.

Tkachenko, D. A. Ortonormirovannyi v energeticheskom prostranstve bigarmonicheskogo operatora bazis v pryamougol'nike pri odnorodnykh glavnykh kraevykh usloviyakh po granitse [Orthonormal basis in the biharmonic operator energy space in the rectangle with homogeneous principal boundary conditions along the boundary]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2014, no. 3, vol. 110, pp. 41 – 51.

Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A., Kopychko, V. V. Sobstvennyi spektr bigarmonich-eskogo operatora v pryamougol'nike pri glavnykh kraevykh usloviyakh [Biharmonic operator own spectrum in a rectangle at the main boundary conditions]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2014, no. 5, vol. 112, pp. 70 – 78.

Khalilov, S. A., Krivtsov, V. S., Mintyuk, V. B., Tkachenko, D. A. Funktsiya Grina osnovnoi kraevoi zadachi dlya bigarmonicheskogo operatora v pryamougol'nike [Green function of basic boundary value problem for biharmonic operator in the rectangle]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2015, no. 6, vol. 123, pp. 12 – 22.

Vorob'ev, N. N. Teoriya ryadov, 4-e izd., ispr. i dop. [The theory of series, 4th ed.]. Moskow, «Nauka» Publ., 1979. 408 p.

Szego, G. Orthogonal Polynomials, 4th ed. Amer. Math. Soc., Colloquium Publications, 1939, vol. 23. 432 р.

Jackson, D. The theory of approximation. Amer. Math. Soc. Colloquium Publications, 1930, vol. 11. 178 р.

Khalilov, S. A., Mintyuk, V. B., Tkachenko, D. A. Priblizhennoe analiticheskoe reshenie bigarmonicheskoi problemy v pryamougol'nike pri odnorodnykh glavnykh kraevykh usloviyakh na dvukh protivopolozh-nykh storonakh i proizvol'nykh – na dvukh drugikh [An approximate analytical solution of biharmonic problem in the rectangle with homogeneous main boundary conditions on the two opposite sides and arbitrary boundary conditions on the other two sides]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Engineering and Technology]. Kharkiv, «KhAI» Publ., 2013, no. 5, vol. 102, pp. 40 – 49.

Besov, O. V., Il'in, V. P., Nikol'skii, S. M. Inte-gral'nye predstavleniya funktsii i teoremy vlozheniya [Integral representations of functions and embedding theorems]. Moskow, «Nauka» Publ., 1975. 480 p.




DOI: https://doi.org/10.32620/aktt.2017.2.01