TURBOSHAFT ENGINE THERMOGASDYNAMIC PARAMETERS CALCULATION METHOD BLADE-TO BLADE DESCRIPTION TURBOMASHINES BASED. PART 1.MAIN EQUATIONS

Людмила Георгиевна Бойко, Олег Владимирович Кислов, Наталия Владимировна Пижанкова

Abstract


Gas turbine engines processes mathematic simulations are widely used in different steps of its living cycle. All engine simulations may be divided into different difficulty levels: higher simulation level allows doing a more pre­cise description of physical processes in main units of gas turbine engines and their elements. It gives the oppor­tunity for getting better arrangement of calculation results and experimental data, reduce the quality of factors, which are traditionally used in determine engine operational characteristics with 1-level models.
The purpose of the article is to describe the thermogasdynamic parameters and maintenance perfomances cal­culation method, which based on second level mathematic simulation. Its main feature is blade-to-blade turbomachines description (multistage compressor and multistage cooling gas turbine), which allows to take into account blade and flow path geometrical parameters. Their changing during the gas turbine engine design and de­velopment processes influence its performances: thrust, fuel consumption, efficiency as functions of values of flow rate, rotational speed, engine entrance conditions and so on. All these dependences could be defined by using proposed calculation method.
In distinction from methods which are noted, this method allows to concede compressor or turbine incidence angles, drag values, pressure ratio, surge margin in design and off-design  engine regimes. The opportunity to take into account by-passing and air bleeding from compressor blade channels and their engine parameters influence is very important also.
The article includes calculation method main points, block-scheme, equations system, which gives the opportunity of alignment the engine units and their elements in wide range of state working regimes. Set of equations consists of flow rate balance equations through the stages of multistage compressor and turbine, combustion chamber and connected channels. Also system includes power balance equations, by-passing, air bleeding from compressor stages channels, its admission into the cooling turbine stages and ac­counts their thermodynamic parameters. Compressors and turbines maps parameters are calculated with main turbomachinery theory lows and semi-empirical dependences.

This article is the first in series of articles, which considers this problem

Keywords


gas turbine engine; gas thermodynamic processes; turbomachines blade-to-blade geometry description; key assumptions; set of equations

References


Druzhinin, L. N. Matematicheskoe modelirovanie GTD na sovremennyh JeVM pri issledovanii parametrov i harakteristik aviacionnyh dvigatelej [GTE modern com¬puter mathematic simulation for aviation engine parameters and perfomances investigation]. Trudy CIAM – Proceedings CIAM, Moscow, CIAM Publ., 1979, vol. 832. 45 p.

Morozov, S. A., Osipov, B. M., Titov, A. V, Tunakov, A. P., Khamzin, A. S. Programmnyj kompleks GRAD – gazodinamicheskie raschety aviacionnyh dvigatelej [Program complex GRAD – aviation engines gasdynamic calculations]. Aviakosmicheskie tehnologii i oborudovanie: sb. Trudy Nauchn.-prakt. konf. Kazanskogo gosudarstvennogo tehnicheskogo un-ta. Kazan, 14-17 avgusta 2002 – Aerospace Technologies and Equipment: Sat. scientific-practical. Conf. Kazan state technical university. Kazan, August 14-17, 2002, pp. 190-196.

Ahmedzjanov, D. A., Krivosheev, I. A. Termogazodinamicheskij analiz rabochih processov GTD v komp'juternoj srede DVIGwp [GTE working processes thermogasdynamic analisys in computing program DVIGwp]. Ufa, UGATU Publ., 2003. 162 p.

Kulagin, V. V. Teorija, raschjot i proektirovanie aviacionnyh dvigatelej i jenergeticheskih ustanovok [Avia¬tion engines and powerplants theory, calculation, design]. Moscow, Mashinostroenie Publ., 2005. 464 p.

Hustochka, A. N. Identifikacija matematicheskoj modeli dvigatelja AI-25TL pri ego modernizacii [Mathematic simulation engine AI-225-TL identification for its modernization]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2004, no. 8(16), pp. 151-154.

Marchukov, E. V., Leshhenko, A., Vovk, M. Ju., Iljushin, M. N. Opyt ispol'zovanija programm UNI MM dlja vypolnenija termodinamicheskih raschetov turboreaktivnyh dvuhkonturnyh dvigatelej [Experience of applying of program UNI MM for making thermodynamic calculations turbojet bypass engines ]. Nasosy. Turbiny. Sistemy – Pumps. Turbines. Systems, 2015,

no. 2 (15), pp. 45-52.

Kurzke, J. A. Physics Based Melholody for Building Accurate Gas Turbine Performance Models. Proc. International Society of Air Breathing Engines Cincinnati, October 25-30, 2015, No-2015-20220. 11 p.

Visser, W. P., Broomhead, M. J. GSP, A Generic Object-Oriented Gas Turbine Simulation Environment, Proc. of ASME TurboExpo 2000 May 8-11. Munich, Germany, 2000, ASME Paper No. GT2000-0002. 9 p.

NPSS Consortium. Available at: http://npssconsor-tium.org (аccessed 3.01.2018).

Jones, S. M. Steady-State Model of Gas Turbines using the Numerical Propulsion System Simulation Code. Proc. of ASME TurboExpo 2010, Glasgow, UK, June 14-18, 2010, ASME Paper No GT2010-22350. 5 p.

Tunakov, A. P. Metody optimizacii pri dovodke i proektirovanii gazoturbinnyh dvigatelej [Optimisation methods in gas turbine engines development and design]. Moscow, Mashinostroenie Publ., 1979. 186 p.

Gumerov, H. S., Gavrilov, A. S., Magadeev, A. Ja., Magadeeva, R. Sh., Mustakimova, N. B. Approksimacija harakteristik kompressora dvuhparametricheskimi polinomami i primenenie ih v matematicheskih modeljah GTD [Compressor perfomances two-parameters polinoms approximation and their using in mathematic models]. Nekotorye voprosy rascheta i jeksperimental'nogo issledovanija vysotno-skorostnyh harakteristik GTD - Some questions of calculation and experimental research of altitude-speed characteristics of gas turbine engine, Moscow, CIAM Publ., 1979, no. 839, iss. 6, pp. 183-192.

Grigor'ev, V. A., Kalabuhov, D. S., Rad'ko, V. M. Primenenie metodov nejrosetevoj approksimacii pri obobshhenii i predstavlenii lopatochnyh mashin aviacionnyh GTD [Network approximation technics using in generelisation and representation aviation engines blade mashines]. Izv. vuzov Aviac. Tehnika – Aviation News, 2015, no. 1, pp. 39-41.

.Kurzke, J. Correlations Hidden in compressor maps. Proc ASME Turbo Expo 2011, Vancouver, British Columbia, Canada, June 14-18, 2011, No GT2011-45519. 10 p.

Boyko, L. G., Karpenko, E. L. Razrabotka metoda rascheta harakteristik turboval'nogo dvigatelja s povencovym opisaniem mnogostupenchatogo osevogo kompressora [Design turboshaft engine perfomances calculation method which takes into account blade to blade description multistage axial compressor]. Vestnik dvigatelestroenija – Herald of aeroenginebuilding, 2007, no. 3, pp. 143-146.

Boyko, L. G., Karpenko, E. L. Vlijanie ugla ustanovki lopatok vhodnogo napravljajushhego apparata na jekspluatacionnye harakteristiki gazoturbinnogo dvigatelja [Inlet guide vanes blades incidence angle influence on gas turbine engine investigate – on perfomances]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2008, no. 4(51), pp. 43-50.

Boyko, L. G., Karpenko, E. L. Matematicheskaja model' gazoturbinnogo dvigatelja s povencovym opisaniem mnogo-stupenchatogo osevogo kompressora i ee prakticheskoe primenenie [Multistage axial compressor blade-to-blade describing in mathematic simulation gas turbine engine and its practice using]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2008, no. 6 (53), pp. 71-77.




DOI: https://doi.org/10.32620/aktt.2018.1.05