Investigation of the existing methods for designing pre-combustion chambers in hybrid rocket engines

Maurício Sá Gontijo

Abstract


Hybrid propellant rocket engines (HPRE) have been under development and advancement since the beginning of rocket propulsion research, alongside liquid and solid propellant rocket motors. However, its pace was much slower than that of the other propulsion types. Several companies have proposed hybrid launch vehicles in the last few years, and research and publications on such technology have increased significantly. One of the most crucial parts of HPREs is the pre-combustion chamber. This device is positioned upstream of the combustion chamber and downstream of the injection head, and it greatly affects the engine’s performance, size, weight, and cost, and combustion stability. Therefore, propulsion engineers are intensely interested in understanding the processes occurring inside pre-combustion chambers. Unfortunately, there are few published works on the design of such systems. Additionally, many references only recommend empirical size relations, which may only serve as a design starting point. Observing this issue, this paper compiles all the methods for designing pre-combustion chambers and provides rich discussions on each. These methods are: 1) experiments, 2) empirical relations, 3) numerical simulations, 4) droplet vaporization models, 5) combustion instability models, 6) droplet collision outcome prediction, and 7) molecular dynamics. The positive and negative aspects of each method are also considered. Moreover, other components that affect the calculation are discussed, such as injectors and grain design. Finally, a development workflow recommendation was constructed by applying all the discussed methods to reduce related costs and obtain an optimized design.

Keywords


pre-combustion chamber; hybrid propellant rocket engine; design workflow; droplet vaporization

Full Text:

PDF

References


Koopman, G. Getting into the launch business: the AMROC story, 2021. 25 p. Available at https://forum.nasaspaceflight.com/index.php?action=dlattach;topic=6026.0;attach=17028. (accessed 12.03.2024).

Gontijo, M. S., Shynkarenko, O. Investigation of a dual-fuel hybrid rocket engine for missile and rocket applications. 72nd International Astronautical Congress (IAC), 2020. 10 p.

Young-won, K. Young and fearless: startups enter global race for space, robotics and AI, 2021. Available at http://www.koreaherald.com/view.php?ud=20210107000607. (accessed 12.03.2024).

Faenza, M. G., Boiron, A. J., Haemmerli, B., Lennart, S., Vesteras, T., & Verberne, O. Getting ready for space: Nammos’s development of a 30 kN hybrid rocket based technology demonstrator. 7th European Conference for Aeronautics and Space Sciences (EUCASS), 2017. 13 p. DOI: 10.13009/EUCASS2017-410.

Kobald, M., Schmierer, C., Fischer, U., Tomilin, K., & Karthikeyan, G. HyImpulse – hybrid propulsion based launch vehicles for small satellites. Small Satellite Conference, 2020. 1 p.

Glaser, C., Hijlkema, J., & Anthoine, J. Bridging the technology gap: strategies for hybrid rocket engines. Aerospace, 2023, vol. 10, no. 100. 27 p. DOI: 10.3390/aerospace10100901.

Costa, F. S., & Vieira, R. Preliminary analysis of hybrid rockets for launching nanosats into LEO. Journal of the Brazilian Society of Mechanical Sciences and Engineering (JBSMSE), 2010, vol. 32, no. 4. 8 p. DOI: 10.1590/S1678-58782010000400012.

Angeloni, F. Design and commissioning of a hybrid rocket engine with optical access. Masters’ dissertation, Politecnico Milano, 2021. 99 p.

Sutton, G. P., & Biblarz, O. Rocket propulsion elements, John Wiley & Sons, 8th Ed, 2010. 792 p.

Spalding, D. B. A. One-dimensional theory of liquid-fuel rocket combustion. Ministry of Supply Aeronautical Research Council, Imperial College of Science and Technology, London. 1959. 32p.

Gontijo, M. S., Fischer, G. A. A., & Costa, F. S. Evaluation of SMD effects on characteristic lengths of liquid rocket engines using ethanol/lox and rp-1/lox. 18th Brazilian Congress of Thermal Sciences and Engineering. 2020, pp. 1-10. DOI: 10.26678/ABCM.ENCIT2020.CIT20-0794.

Priem, R. J. Propellant vaporization as a criterion for rocket engine design: calculations of chamber length to vaporize a single n-heptane drop. NACA – National Advisory Committee for Aeronautics, Technical Note 3985, 1957. 41 p.

Lee, J., Bertoldi, A. E. M., Andrianov, A., Borges, R. A., Veras, C. A. G., Battistini, S., Morita, T., & Patrick, H. Role of precombustion chamber design in feed-system coupled instabilities of hybrid rockets, Journal of Propulsion and Power (JPP), 2020, vol. 36, pp. 796-805. DOI: 10.2514/1.B37706.

Bertoldi, A. E. M., Bouziane, M., Lee, J., Veras, C. A. G., Hendrick, P., & Simone, D. Theoretical and Experimental Study of Combustion Instability in Hybrid Rocket Motors. European conference for aeronautics and space sciences (EUCASS), 2022. 15 p. DOI: 10.13009/EUCASS2019-538.

Bertoldi, A. E. M. Estudo de instabilidade de combustão em motor foguete a propelente híbrido (Study of combustion instability in hybrid propellant rocket motor – in Portuguese). Doctorate thesis, University of Brasília, 2018, 154 p.

Jiang, Y. J., Unemura, A., & Law, C. K. An experimental investigation on the collision behavior of hydrocarbon droplets. Journal of Fluid Mechanics, 1992, vol. 234, pp. 171-190. DOI: 10.1017/S0022112092000740.

Qian, J., & Law, C. K. Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 1997, vol. 331, pp. 59-80. DOI: 10.1017/S0022112096003722.

Dias, G. S. Atomization of Liquid and Gelled Simulant Propellants by Impinging Jets. Dissertation (Masters dissertation) in Space Engineering and Technologies/Combustion and Propulsion. National Institute for Space Research – INPE, São Paulo, Brazil, 2020. 148 p.

Humble, R. W., Henry, G. N., & Larson, W. J. Space propulsion analysis and design, McGraw-Hill, sep 1, 1995. 748 p.

Gontijo, M. S., Filho, R. B. N., & Domingos, C. H. F. L. Design of pre-combustion chambers for hybrid propellant rocket motors and related aspects. AIAA SciTech Forum, 2023, 16 p. DOI: 10.2514/6.2023-2183.

Zilliac, G., Waxman, B. S., Doran, E., Dyer, J., Karabeyoglu, M. A., & Cantwell, B. Peregrine Hybrid Rocket Motor Ground Test Results, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012. 20 p. DOI: 10.2514/6.2012-4017.

Gontijo, M. S., Fischer, G. A. A., & Costa, F. S. Characteristic lengths of liquid propellant rocket engines and the influence of chemical reactions. International Congress of Mechanical Engineering, 2021, pp. 1-10. DOI: 10.26678/ABCM.COBEM2021.COB2021-2105.

Gontijo, M. S., Fischer, G. A. A., & Costa, F. S. Influence of SMD on characteristic lengths of liquid propellant rocket engines. 8th Brazilian Combustion Institute – Summer School of Combustion, 2021. 10 p.

Invigorito, M., Cardillo, D., & Ranuzzi, G. Application of OpenFOAM for rocket design. 9th OpenFOAM Workshop, Croatia, 2014. 15 р.

Lee, J., Rhee, S., Kim, J., Moon, H., Shynkarenko, O., Simone, D., & Morita, T. Combustion instability for hybrid rocket motors with a diaphragm. 8th European Conference for Aeronautics and Space Sciences (EUCASS), 2019. 13 p. DOI: 10.13009/EUCASS2019-462.

Sporschill, G. Numerical approach of a hybrid rocket engine behaviour – modelling the liquid oxidizer injection using a lagragian solver. Master’s dissertation, ONERA – The French Aerospace Lab, 2017. 64 p.

Petrarolo, A., Kobald, M., & Schmierer, C. Characterization of advanced hybrid rocket engines. 6th European Conference for Aerospace Sciences (EUCASS), 2015. 17 p.

Carmicino, C., & Sorge, A. R. On the role of vortex shedding in hybrid rockets combustion instability, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, 2008. 19 p. DOI: 10.2514/6.2008-5016.

Karabeyoglu, M. A., Stevens, J., & Cantwell, B. Investigation of feed system coupled low frequency combustion instabilities in hybrid rockets. 43rd AIAA/ASME/SA/ASEE Joint Propulsion Conference & Exhibit, Ohio, 2007. 22 p. DOI: 10.2514/6.2007-5366.

Morita, T., Yuasa, S., Kitigawa, K. Shimada, T., & Yamaguchu, S. Low-frequency feed-system-coupled combustion instability in hybrid rocket motors. Journal of Thermal Science and Technology, 2013, vol. 8, no. 2, pp. 380-394. DOI: 10.1299/jtst.8.380.

Waxman, B. S. An investigation of injectors for use with high vapor pressure propellants with applications to hybrid rockets. Doctorate thesis, Stanford University, 2014. 274 р.

Ahmed, J. S. An investigation into hybrid rocket injectors. Master’s thesis, Norwegian University of Science and Technology – NTNU, 2020. 107 р.

Summerfield, M. A theory of unstable combustion in liquid propellant rocket systems. Journal of the American Rocket Society, 1951, vol. 21, no. 5., 6 p. DOI: 10.2514/8.4374.

Bouziane, M., Bertoldi, A. E. M., Milova, P., Hendrick, P., & Lefebvre, M. Performance comparison of oxidizer injectors in a 1-kN paraffin-fueled hybrid rocket motor. Aerospace Science and Technology, 2019, vol. 89, pp. 392-406. DOI: /10.1016/j.ast.2019.04.009.

Karabeyoglu, M. A., Zilwa, S., Cantwell, B., & Zilliac, G. Modeling of hybrid rocket low frequency instabilities. Journal of Propulsion and Power, 2005, vol. 21, no. 6. DOI: 10.2514/1.7792.

Hill, P., Peterson, C. Mechanics and thermodynamics of propulsion. Addison Wesley Longman, 2nd Ed., 1992. 753 p.

Clark, B. J., Hershc, M., & Priem, R. J. Propellant vaporization as a criterion for rocket engine design; calculations of chamber length to vaporize various propellants. National Advisory Committee for Aeronautics (NACA), Technical Note 3883, 1958. 37 p.

Priem, R. J., & Heidmann, M. F. Propellant vaporization as a design criterion for rocket-engine combustion chambers. NASA Technical Report R-67, 1960, pp. 1-37.

Abramzon, B., & Sirignano, W.A. Droplet vaporization for spray combustion calculations. International Journal of Heat and Mass Transfer, 1989, vol. 32, no. 9, pp. 1605-1618. DOI: 0017-9310(89)90043-4.

Belal, H. M., Vaporization-controlled simplified model for liquid propellant rocket engine combustion chamber design. IOP Conference Series Materials Science and Engineering, 2019, pp. 1-15. DOI: 10.1088/1757-899X/610/1/012088.

Khan, T., Qamar, I., Shah, F., Akhtar, K., & Akhtar, R. Model for fuel droplet evaporation in combustion chamber of liquid propellant rocket engines. Journal of Engineering and Applied Sciences, 2018, vol. 31, no. 1, pp. 1-10.

Senftle, T. P., Hong, S., Islam, M. M., Kylasa, S. B., Zheng, Y., Shin, Y. K., Junkermeier, C., Hebert, R. E., Janik, M. J., Aktulga, H. M., Verstraelen, T., Grama, A., & van Duin, A. C. T. The reaxff reactive force-field: development, application and future directions. NPJ Computational Materials, 2016, vol. 2, no. 1, pp. 1-14. DOI: 10.1038/npjcompumats.2015.11.

Van Duin, A. C. T., Dasgupta, S., Lorant, F., & Goddard, W. A. Reaxff: a reactive force field for hydrocarbons. The Journal of Physical Chemistry, 2001, vol. 105, no. 41, pp. 9396-9409. DOI: 10.1021/jp004368u.

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 2022, vol. 271, 34 p. DOI: 10.1016/j.cpc.2021.108171.

Consolini, L., Andrade, R., Birgin, E. G., & Martínez, J. M. A molecular dynamics simulation of droplet evaporation. International Journal of Heat and Mass Transfer, 2003, vol. 46, no. 17, pp. 3179-3188. DOI: 10.1016/S0017-9310(03)00101-7.

Xiao, G., Luo, K. H., Ma, X., & Shuai, S. A molecular dynamics study of fuel droplet evaporation in sub- and supercritical conditions. Proccedings of the Combustion Institute, vol. 37, no 3, 2019, pp. 3219-3227. DOI: 10.1016/j.proci.2018.09.020.

Long, L. N., Micci, M. M., & Wong, B. C. Molecular dynamics simulations of droplet evaporation. 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, 1994, 11 p. DOI: 10.2514/6.1994-2907.

Long, L. N., Micci, M. M., & Wong, B. C. Molecular dynamics simulations of droplet evaporation. Computer Physics Communications, vol. 96, nos. 2-3, 1994, pp. 167-172. DOI: 10.1016/0010-4655(96)00050-1.

Little, J. K., Simulation of droplet evaporation in supercritical environments using parallel molecular dynamics. Doctorate thesis, Pennsylvania State University, 1996, p. 167.

Turns, S. R. An introduction to combustion concepts. McGraw-Hill Publ., 3rd Ed., 2012. 752 p.

Kaltz, T. L., Long, L. N., Micci, M. M., & Little, J. K. Supercritical vaporization of liquid oxygen droplets using molecular dynamics. Combustion Science and Technology, 1998, vol. 136, no 1-6, pp. 279-301. DOI: 10.1080/00102209808924174.

Qian, J., & Law, C. K. Effects of liquid and ambient gas properties on droplet collision. 32nd Aerospace Sciences Meeting & Exhibit, Nevada, 1994. 14 p. DOI: 10.2514/6.1994-681.

Lefebvre, A. H., & McDonell, V. G. Atomization and sprays, CRC Press, 2nd Ed., 2017. 301 p.

Rabe, M. C. Etude de la coalescence dans les rampes de spray: application au système d’aspersion des Réacteurs à Eau Pressurisée (Study of coalescence in spray booms: application to the spraying system of Pressurized Water Reactors - In French). Doctorate thesis, Université Pierre et Marrie Currie, 2009. 229 p.

Merrington, A. C., & Richardson, E. G. The break-up of liquid jets, Proc. Phys. Soc. London, 1947, vol. 59, no. 33, pp. 1-13. DOI: 10.1088/0959-5309/59/1/302.

Solomon, B. J. Engineering model to calculate mass flow rate of a two-phase saturated fluid through an injector orifice. Masters’ dissertation, Utah State University, 2011. 86 р.

NIST. Chemistry webbook. National Institute of Standards and Technology, 2023. DOI:10.18434/T4D303.




DOI: https://doi.org/10.32620/aktt.2024.4sup1.07