Numerical study of the influence of quadrotor blade parameters on aerodynamic noise generation
Abstract
Keywords
Full Text:
PDFReferences
Environmental Protection Technical Specifications applicable to VTOL-capable aircraft powered by non-tilting rotors. EASA, 2023, iss. 1. 71 p. Available at: https://www.easa.europa.eu/en/downloads/139022/en. (accessed 12.01.2024).
Kevin Li, S. An Analytic Method to Predict Rotor Blade Wake Interaction. VFS' 79th Annual Forum & Technology Display, May 16-18, 2023 Palm Beach County Convention Center, West Palm Beach, Florida, pp. 1-12. DOI: 10.4050/F-0079-2023-17953.
Kevin Li, S., & Lee, S. Acoustic Analysis and Sound Quality Assessment of a Quiet Helicopter for Air Taxi Operations. Journal of the American Helicopter Society, 2022, vol. 67, iss. 3, pp. 1-15. DOI: 10.4050/JAHS.67.032001.
Froude, W. On the Elementary Relation between Pitch, Slip and Propulsive Efficiency. Transaction of the Institute of Naval Architects, 1878, vol. 19, pp. 22-33.
Farassat, F., & Myers, M. K. Extension of Kirchhoff’s Formula to Radiation from Moving Surfaces. Journal of Sound and Vibration, 1988, vol. 123, iss. 3, p. 451-461. DOI: 10.1016/S0022-460X(88)80162-7.
Romani, G., Grande, E., Avallone, F., Ragni, D., & Casalino, D. Perforence and noise prediction of low-Reynolds number propellers using the Lattice-Boltzmann method. Aerospace Science and Technology, 2022, vol. 125, article no. 107086. DOI: 10.1016/j.ast.2021.107086.
Jonson, W., & Silva, C. NASA concept vehicles and the advanced air mobility aircraft. The Aeronautical Journal, 2022, vol. 126, special iss. 1295, pp. 59-91. DOI: 10.1017/aer.2021.92.
Kostek, A. A., Lößle, F., Wickershein, R., Keßler, M., Boisaerd, R., Reboul, G., Visingardi, A., Bartarino, M., & Gardner, A. D. Experimental investigation of UAV rotor aeroacoustics and aerodynamics with computational cross-validation. CEAS Aeronautical Journal, September 2023. DOI: 10.1007/s13272-023-00680-z.
Yin, J., Rossignol, K.-S., Rottmann, L., & Schwarz, T. Numerical studies on small rotor confgurations with validation using acoustic wind tunnel data. CEAS Aeronautical Journal, June 2023. DOI: 10.1007/s13272-023-00671-0.
Lukianov, P. V. Nestatsionarnoye rasprostraneniye malykh vozmushcheniy ot tonkogo kryla: blizhneye i dal'neye pole [Nonstationary propagation of small disturbances from a thin wing: near and far field]. Akustychnyi visnyk – Acoustic Herald, 2009, vol.12, iss. 3, pp. 41-55. Available at: https://hydromech.org.ua/content/uk/av/av-12-3.html. (accessed 11.02.2024).
Škultéty, F., Bujna, E., Janovec, M., & Kandera, B. Noise Impact Assessment of UAS Operation in Urbanised Areas: Field Measurements and a Simulation. Drones, 2023, vol. 7, iss. 5, article no. 314. DOI: 10.3390/drones7050314.
Unmanned Aircraft Systems Consolidated version of Regulation (EU) 2019/947 as retained (and amended in UK domestic law) under the European Union (Withdrawal), Act 2018 CAP1789A. Available at: https://www.caa.co.uk/publication/download/17981 (accessed 12.11.2023).
Thurman, C. S., & Baeder, J. D. Blade-Wake Interaction Noise for Hovering sUAS Rotors, Part I: Characterization Study. AIAA Journal, 2023, vol. 61, no. 6. DOI: 10.2514/1.J062565.
Sinibaldi, G., & Marino, L. Experimental analysis on the noise of propellers for small UAV. Applied Acoustics. 2013, vol. 74, iss. 1, pp. 79-88. DOI: 10.1016/j.apacoust.2012.06.011.
Gur, O., & Rosen, A. Design of a Quiet Propeller for an Electric Mini Unmanned Air Vehicle. Journal of Propulsion and Power, 2009, vol. 25, iss. 3, pp.717-728. DOI: 10.2514/1.38814.
Cussen, K., Garruccio, S., & Kennedy, J. UAV Noise Emission—A Combined Experimental and Numerical Assessment. Acoustics, 2022, vol. 4, iss. 2, pp. 297-312. DOI: 10.3390/acoustics4020018.
Roger, M., & Moreau, S. Tonal-noise assessment of quadrotor-type UAV using source-mode expansions. Acoustics, 2020, vol. 2, iss. 3, pp. 674-690. DOI: 10.3390/acoustics2030036.
Gutin, L. On the Sound Field of a Rotating Propeller. NACA Technical Memorandum No. 1195, Washigton, 1948. 22 p. Available at: https://ntrs.nasa.gov/api/citations/20030068996/downloads/20030068996.pdf (accessed 12.1.2024).
Kim, D. H., Park, C. H., & Moon, Y. J. Aerodynamic analyses on the steady and unsteady loading-noise sources of drone propellers. Int. J. Aeronaut. Space Sci., 2019, vol. 20, pp. 611-619. DOI: 10.1007/s42405-019-00176-3.
Han, D., Gwak, D. Y., & Lee, S. Noise prediction of multi-rotor UAV by RPM fluctuation correction method. Journal of Mechanical Science and Technology, 2020, vol. 34, iss. 4, pp. 1429-1443. DOI: 10.1007/s12206-020-0305-2.
Noda, R., Ikeda, T., Nakata, T., & Liu, H. Characterization of the low-noise drone propeller with serrated Gurney flap. Frontiers in Aerospace Engineering, 2022, vol. 1, pp. 1-13. DOI: 10.3389/fpace.2022.1004828.
Intaratep, N., Alexander, W. N., Devenport, W. J., Grace, S., & Dropkin, M. A. Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions. 22nd AIAA/CEAS Aeroacoustics Conference, 2016, 30 May - 1 June, Lyon, France. Available at: https://www.bu.edu/ufmal/files/2016/07/aiaa-2016-2873.pdf. (accessed 12.01.2024).
Kelecy, Fr. J. An Examination of Quadcopter Drone Noise Using Computational Aeroacoustics. ANSYS Inc. Advanced Modeling & Simulation (AMS) Seminar Series NASA Ames Research Center, October 14, 2021. 47 p. Available at: https://www.nas.nasa.gov/assets/nas/pdf/ams/2021/AMS_20211014_Kelecy.pdf. (accessed 12.11.2023).
Massey, K., & Gaeta, R. Noise Measurements of Tactical UAVs. 16th AIAA/CEAS Aeroacoustics Conference. DOI: 10.2514/6.2010-3911.
Kloet, N., Watkins, S., & Clothier, R. Acoustic signature measurement of small multi-rotor unmanned aircraft systems. International Journal of Micro Air Vehicles, 2017, vol. 9, iss. 1, pp. 1-14. DOI: 10.1177/1756829316681868.
Heydari, M., Sadat, H., & Singh, R. A Computational Study on the Aeroacoustics of a Multi-Rotor Unmanned Aerial System. Appl. Sci., 2021, vol. 11, iss.20, article no. 9732. DOI: 10.3390/app11209732.
Lukianov, P. V. Vplyv formy, kryvyzny poperechnoho pererizu lopati rotora na parametry shumu obertannya [The influence of the shape and curvature of the cross section of the rotor blade on the parameters of rotation noise]. Naukovi visti NTUU «KPI» : mizhnarodnyy naukovo-tekhnichnyy zhurnal – Scientific news of NTUU "KPI": international scientific and technical journal, 2012, vol. 4(84), pp. 149-153. Available at: https://ela.kpi.ua/items/27584f07-8247-41ad-bbe0-d3300128ee95. (accessed 2.02.2024).
Lukianov, P., & Dusheba, O. Modeling of Aerodynamic Noise of Quadrotor Type Aerotaxis. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, vol. 4, pp. 38-49. DOI: 10.32620/aktt.2023.4.05.
Caradonna, F. X., & Isom, M. P. Subsonic and Transonic Potential Flow over Helicopter Rotor Blades. AIAA Journal, 1972, vol. 10, iss.12, pp. 1606-1612. DOI: 10.2514/3.50404.
Caradonna, F., X., & Isom, M., P. Numerical Calculation of Unsteady Transonic Potential Flow over Helicopter Rotor Blades. AIAA Journal, 1976, vol. 14, iss.4, pp. 482-488. DOI: 10.2514/3.61387.
Ballhaus, W. R., & Goorjian, P. M. Implicit finite-Difference Computations of Unsteady Transonic Flows about Airfoils. AIAA Journal, 1977, vol. 15, iss. 12, pp. 1728-1735. DOI: 10.2514/3.60838.
Lukianov, P. V. Ob odnom chislenno-analiticheskom podkhode k resheniyu zadachi generatsii zvuka tonkim krylom. Chast' I. Obshchaya skhema primeneniya dlya ploskoy statsionarnoy zadachi [About one numerical-analytical approach to solving the problem of sound generation by a thin wing. Part I. General scheme of application for a plane stationary problem]. Akustychnyi visnyk – Acoustic Herald, 2011, vol. 14, iss. 3, pp. 46-52. Available at: http://hydromech.org.ua/content/uk/av/av-14-3.html. (accessed 11.02.2024).
Lukianov, P. V. Ob odnom chislenno-analiticheskom podkhode k resheniyu zadachi generatsii zvuka tonkim krylom. Chast' II. Skhema primeneniya dlya nestatsionarnykh zadach [About one numerical-analytical approach to solving the problem of sound generation by a thin wing. Part II. Application diagram for non-stationary tasks]. Akustychnyi visnyk – Acoustic Herald, 2012, vol.15, iss. 3, pp. 45-52. Available at: http://hydromech.org.ua/content/ru/av/15-3_45-52.html. (accessed 11.02.2024).
Von Karman, T. The similarity low of transonic flow. Journal of Math. and Phisics, 1947, vol. 26, iss. 1-4, pp. 182-190. DOI: 10.1002/SAPM1947261182.
Courant, R., & Friedrichts, K. O. Supersonic Flow and Shock Waves, Interscience Publishers, 1948. 440 p. Available at: https://books.google.mw/books?id=Qsxec0QfYw8C&printsec=frontcover&source=gbs_vpt_read#v=onepage&q&f=false. (accessed 11.02.2024).
Lukianov, P. V. Vplyv formy, kryvyzny poperechnoho pererizu lopati rotora helikoptera na parametry shumu obertannya [The influence of the shape and curvature of the cross-section of the helicopter rotor blade on the parameters of rotation noise]. Naukovi visti NTUU «KPI» : mizhnarodnyy naukovo-tekhnichnyy zhurnal – Scientific news of NTUU "KPI": international scientific and technical journal, 2012, no. 4, pp. 149-153. Available at: https://ela.kpi.ua/bitstream/123456789/36878/1/2012-4-25.pdf. (accessed 11.02.2024).
DOI: https://doi.org/10.32620/aktt.2024.2.02