Analysis of the development of the thermopulse method for removing burrs

Aleksey Losev, Valeriy Sikulskyi, Hanna Seleznova, Igor Bychkov, Iurii Vorobiov

Abstract


The subject of study in this article is theoretical and experimental studies of the process of removing burrs in the details obtained by metalworking using the thermopulse method of combustion of detonating gas mixtures. The purpose of this article is to substantiate the use of the thermopulse method for finishing parts, which was developed at Kharkiv Aviation Institute in the early 70s of the 20th century for the flexible automation of cleaning the surfaces and edges of parts of hydraulic and fuel units of aviation and rocket-space equipment from burrs and technological contamination. The task was to determine the features of the thermal pulse method, the parameters of the technological process from the viewpoint of its application for processing the edges of parts with complex internal and external surfaces, and to reveal its potential for use in precision engineering. The research methods used are the modeling of processes using the finite element method and an experimental method for checking the adequacy of the proposed numerical models. The following results were obtained: processing of parts made of materials with different thermal conductivities, cleaning of rubber products, and rounding of the edges of threaded holes of aluminum alloy parts by melting. The scientific and practical novelty of the obtained results is as follows: the technological possibilities of thermopulse processing, justified control parameters, and optimization of processing modes are given; to consider the processes of heating the elements of the part and the combustion of detonating mixtures in the working chamber of the equipment; obtained regularities of changes in the temperature fields of liquids and structural elements of parts during pulsed, constant, and mixed heating, which make it possible to form regimes of thermopulse processing of parts considering their structural features in several thermophysical properties of materials; developed processes of thermal pulse removal of burrs, microparticles, and dimensional rounding of edges using the results of modeling and experimental refinement on T-15 installations.

Keywords


thermal pulse method; surface treatment; edge rounding; deburring; thermophysical properties of materials; liquids; modeling; detonating gas mixtures; quality; industrial purity

References


Niknam, S. A., Davoodi, B., Davim, J. P., & Songmene, V. Mechanical deburring and edge-finishing processes for aluminum parts – a review. International Journal of Manufacturing Technology, 2018, vol. 95, iss. 1-4, pp. 1101-1125. DOI: 10.1007/S00170-017-1288-8.

Jin, S. Y., Pramanik, A., Basak, A. K., Prakash, C., Shankar, S., & Debnath, S. Burr formation and its treatments – а review. International Journal of Advanced Manufacturing Technologies, 2020, vol. 107, iss. 5-6, pp. 2189-2210. DOI: 10.1007/s00170-020-05203-2.

Bychkov, I. V., Seleznʹova, A. S., Mayorova, K. V., Vorobyov, Yu. A., & Sikulʹsʹkyy, V. T. Formuvannya vymoh do informatsiynoho suprovodu vyrobnytstva aerokosmichnykh vyrobiv dlya zabezpechennya yikh yakosti [Requirements development for the information support manufacturing of aerospace products to ensure their quality]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2022, no. 4 (180), pp. 22-35. DOI: 10.32620/aktt.2022.4.03. (in Ukrainian).

Kumar, M., & Bajpai, V. Experimental investigation of top burr formation in highspeed micromilling of Ti6Al4V alloy – a review. Proceeding of the Inst. of Mechanical Engineering Part B: Journal of Engineering Manufacturing, 2019, vol. 234, iss. 4. pp. 730-738. DOI: 10.1177/0954405419883049.

del Castillo, V. R., Sánchez-González, L., Fernández-Robles, L., & Castejón-Limas, M. Burr Detection Using Image Processing in Milling Workpieces. 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020), Advances in Intelligent Systems and Computing. Springer, Cham, January 2021, vol. 1268, pp. 751-759. DOI: 10.1007/978-3-030-57802-2_72.

Abele, E., Schützer, K., Güth, S., & Meinhard, A. Deburring of cross-drilled holes with ball-end cutters – modeling the tool path. Production Engineering, 2018, vol. 12, pp. 25-33. DOI: 10.1007/s11740-017-0781-0.

Muzika, L., Švantner, M., Houdková, Š., & Šulcová, P. Application of flash-pulse thermography methods for quantitative thickness inspection of coatings made by different thermal spraying technologies. Surface and Coatings Technology, 2021, vol. 406, article no. 126748. 25 p. DOI: 10.1016/j.surfcoat.2020.

Gillespie, L. K. Deburring and Edge Finishing Handbook. Society of Manufacturing Engineers, 1999. 400 p.

Losev, A., Bychkov, I., Selezneva, A., Shendryk, V., & Shendryk, S. Cleaning of Parts with Detonating Gas Mixtures. Advanced Manufacturing Processes III. InterPartner 2021. Lecture Notes in Mechanical Engineering. Springer, Cham, 2022, pp. 602–612. DOI: 10.1007/978-3-030-91327-4_58.

Losev, A. V., & Fadeev, V. A. Otdelochno-zachistnye tehnologii v proizvodstve letatel'nyh apparatov i v mashinostroenii [Finishing and cleaning technologies in the production of aircraft and mechanical engineering] Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2007, no. 4 (40), pp. 6-12. (in Russian).

Slominskaja, E. N., Losev, A. V., & Fadeev, A. V. Tehnologicheskaja sistema dlja obespechenija promyshlennoj chistoty precizionnyh izdelij [Technological system for ensuring industrial cleanliness of precision products]. Fundamental'nye i prikladnye problemy tehniki i tehnologii – Fundamental and applied problems of engineering and technology, 2014, no. 1, pp. 80-88. (in Russian).

Bozhko, V. P., Losev, A. V., Rodzin, S. A., & Turov, S. A. Termoimpul'snoye udaleniye zausentsev s reguliruyemym nagrevom detaley [Thermal pulse deburring with controlled heating of parts]. Aviatsionnaya promyshlennost' – Aviation industry, 1987, no. 12, pp. 15-17. (in Russian).

Pak, N. I., & Shikunov, S. A. Chislennoye modelirovaniye protsessa termicheskogo udaleniya zausentsev kontsentrirovannym potokom energii [Numerical modeling of the process of thermal deburring with a concentrated energy flow]. Obrabotka materialov impul'snymi nagruzkami – Processing of materials with pulsed loads, 1990, pp. 168-175. (in Russian).

Plankovskij, S. I., & Shipul', O. V. Matematicheskaja model' otdelki kromok pri termoimpul'snoj obrabotke [Mathematical model of edge finishing with thermal-pulse treatment]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, no. 9 (126), pp. 51-55. (in Russian).

Plankovs`ky`j, S. I., Shy`pul`, O. V., Cegel`ny`k, Ye. V. et al. Rozroblennya avtomatyzovanoho kompleksu dlya pretsyziynoho termoimpulʹsnoho obroblennya detonuvalʹnymy hazovymy sumishamy: naukovi materialy : monohrafiya [Development of an automated complex for precision thermal pulse processing with detonating gas mixtures: scientific materials: monograph]. Kharkiv, NAU im. M. Ye. Zhukovs`kogo «XAI», 2020. 318 p. (in Ukrainian).

Matveev, A. P., & Shpitankov, L. N. Snizheniye temperatury obrabatyvayemykh detaley pri ispol'zovanii termoenergeticheskogo metoda udaleniya zausentsev [Reducing the temperature of processed parts using the thermoenergetic deburring method]. Aviatsionnaya promyshlennost' – Aviation industry, 1988, no. 8, pp. 47-48. (in Russian).

Losev, A. V., Bychkov, I. V., Kollerov, V. V., & Selezneva, A. S. Osobennosti termoimpul'snoy ochistki poverkhnostey i kromok detaley ot zagryazneniy posle mekhanicheskoy obrabotki [Features of thermal pulse cleaning of surfaces and edges of parts from contamination after mechanical processing]. Otkrytyye informatsionnyye i komp'yuternyye integrirovannyye tekhnologii : sb. nauch. tr. – Open information and computer integrated technologies: collection scientific tr., 2018, no. 82, pp. 36-46. (in Russian).

Losev, A. V. Teoreticheskiy analiz termoimpul'snogo udaleniya zausentsev s detaley [Theoretical analysis of thermal pulse removal of burrs from parts]. Impul'snaya obrabotka metallov davleniyem – Pulse processing of metals by pressure. Kharkov, HAI Publ., 1997, pp. 43-49. (in Russian).

Shipul', O. V., Kuznecov, I. B., & Palazjuk, E. C. Metodika naznacheniya rezhimov termoimpul'snoy otdelki s uchetom trebovaniy k kachestvu kromki [Methodology for assigning thermal pulse finishing modes taking into account the requirements for edge quality]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, no. 5 (122), pp. 21-26. (in Russian).

Loseva, O. A., Losev, A. V., & Mayorova, Ye. V. Razrabotka fiziko-matematicheskikh modeley impul'sno-periodicheskikh protsessov nagreva elementov detali [Development of physical and mathematical models of pulse-periodic heating processes of part elements]. Public communication in science: philosophical, cultural, political, economic and IT context: Collection of scientific papers «ΛΌГOΣ» with Proceedings of the International Scientific and Practical Conference (May 15, 2020). Houston, USA, European Scientific Platform, 2020, vol. 2, pp. 97-104. (in Russian).

Loseva, O. A., Mayorova, Ye. V., & Losev, A. V. Perspektivy primeneniya termoimpul'snogo metoda [Prospects for the use of the thermal pulse method]. Proceedings of the 5 th International Scientific and Practical Conference «International Forum: Problems and Scientific Solutions» (August 6-8, 2020). Melbourne, Australia, CSIRO Publishing House, 2020, pp. 60-63. ISBN 978-0-643-12109-6. (in Russian).




DOI: https://doi.org/10.32620/aktt.2023.5.06