Investigation of the parameters of the process of turning on the afterburner of GTE

Volodymyr Zhuravlyov, Yury Torba, Dmytro Pavlenko

Abstract


The subject of research in this article is the process of turning on the afterburner combustion chamber of a modern turbojet bypass engine. The parameters of switching in the afterburner were studied: pressure pulsations of the gas flow between the high- and low-pressure turbines, causing vibrations, parameters, and characteristics of the process of ignition of the fuel-air mixture in the afterburner. The goal is to establish the possibility of evaluating the inclusion of an afterburner in terms of vibration parameters as effective controlled parameters and determine rational ranges for their measurement. Tasks: the study of the function of the correlation coefficient in the spectral region and the deviation of the maximum amplitude of the power spectral density in different frequency ranges. The methods used are an experimental method for measuring vibration parameters, methods of spectral analysis, and mathematical statistics. The following results were obtained: the prospects for using the method for measuring the parameters of the casing vibration to assess the effectiveness of identifying the start of operation of the afterburner combustion chambers of the gas turbine engine were studied. The functions of the correlation coefficient in the spectral region and the deviation of the amplitude peaks of the power spectral density in different frequency ranges are studied. The optimal frequency ranges and the signal level of the deviation of the amplitude peaks of the power spectral density were established to identify the start of operation of the afterburner combustion chambers of the gas turbine engine by vibration parameters. The prospects for further research in the field of vibration diagnostics of combustion chambers are shown. Conclusions: the scientific novelty of the results obtained is as follows: it has been established that the signal of the vibration sensor in the spectral region reliably reflects the pressure pulsation of the gas flow in the afterburner. Thus, it can be used to adequately represent the process of pressure change in the engine flow path. Identification of the start of operation of the afterburner must be carried out by analyzing the deviation of the power spectral density amplitude maxima or analyzing the deviation of the power spectral density amplitude maxima at certain frequencies and levels.

Keywords


gas turbine engine; afterburner; vibration process parameters

References


Schulz, C., Dreizler, A., Ebert, V., Wolfrum, J. Combustion Diagnostics. Springer Handbook of Experimental Fluid Mechanics, Berlin, Heidelberg, 2007, pp. 1241-1315. DOI: 10.1007/978-3-540-30299-52_0.

Zyryanov, A. V. Senyushkin, N. S., Haritonov, V. F. Razrabotka metoda diagnostiki kamer sgoraniya GTD na osnove matematicheskogo modelirovaniya ih rabochego processa [Development of a method for diagnosing gas turbine engine combustion chambers based on mathematical modeling of their working process] Vestnik UGATU, 2012, vol. 16, no. 2 (47), pp. 98-105 (in Russian).

Khosravy el_Hossaini, M. Review of the New Combustion Technologies in Modern Gas Turbines. Progress in Gas Turbine Performance, Intech Open, 2013. 16 p. DOI: 10.5772/54403.

Wang, Z., Zhao, N., Wang, W., Tang, R., Li, S A fault diagnosis approach fot gas turbine exhaust gas temperature base on fuzzy c-means clustering and support vector machine. Mathematical Problems in Engineering, 2015, vol. 2015, article id 240267. 11 p. DOI: 10.1155/2015/240267.

Tretyakov, D. A Self-Learning Diagnosis Algorithm Based on Data Clustering. Intelligent Control and Automation, 2016, vol. 7, no. 3, pp. 84-92. DOI: 10.4236/ICA.2016.73009.

Matyugin, F. V., Staryh, M. N., Tretyakov, D. V. Tehnicheskie resheniya dlya kontrolya vibracionnogo goreniya v kamere sgoraniya gazovoj turbiny [Technical solutions for controlling vibration combustion in the combustion chamber of a gas turbine]. Gazoturbinnye tehnologii, 2016, no. 8, pp. 16–20 (in Russian).

Sazhenkov, A. N., Sazhenkov, A. N., Sipatov, A. M., Catiashvili, V. V., Abramchuk, T. V., Petrov, A. K., Kozlov, A. S., Panchenko, M. V. Apparatura dlya izmereniya frakcionnogo i himicheskogo sostava neletuchih chastic v produktah emissii gazoturbinnyh dvigatelej [Equipment for measuring the fractional and chemical composition of non-volatile particles in the emission products of gas turbine engines]. Vestnik Permskogo nacionalnogo issledovatelskogo politehnicheskogo universiteta. Aerokosmicheskaya tehnika, 2020, no. 62. pp. 20-30. DOI: 10.15593/2224-9982/2020.62.03 (in Russian).

Burkov, A. S., Burkov, A. S., Yagodnikov, D. A., Suhov, A. V., Tomak, V. I. Spektrozonalnaya diagnostika processov goreniya poroshkoobraznogo alyuminiya v vozdushnom potoke [Spectrozonal diagnostics of combustion processes of powdered aluminum in an air flow]. Inzhenernyj zhurnal: nauka i innovacii, 2017, no. 10(70), pp. 1-9. DOI: 10.18698/2308-6033-2017-10-1686 (in Russian).

Afgan, N. H., Carvalho, M. G., Pilavachi, P. A., Tourlidakis, A., Olkhonski, G. G., Martins, N. An expert system concept for diagnosis and monitoring of gas turbine combustion chambers Applied Thermal Engineerin, 2006, vol. 26, iss. 7, pp. 766-771. DOI: 10.1016/j.applthermaleng.2005.04.020.

Vanchin, A. G. Diagnostika tehnicheskogo sostoyaniya osnovnyh uzlov gazoturbinnyh dvigatelej gazoperekachivayushih agregatov v usloviyah ekspluatacii s ispolzovaniem dannyh individualnyh zavodskih stendovyh ispytanij [Diagnostics of the technical condition of the main components of gas turbine engines of gas compressor units under operating conditions using the data of individual factory bench tests]. Neftegazovoe delo, 2012, no. 4. pp. 483-490.

Mauricio, A., Helm, D., Timusk, M., Antoni, J., Gryllias, K. Novel cyclo-nonstationary indicators for monitoring of rotating machinery operating under speed and load varying conditions. Journal of Engineering for Gas Turbines and Power, 2022, vol. 144, iss. 4, pp. 24-40. DOI: 10.1115/1.4049778.

Kochergin, A. V., Pavlova, N. V., Valeeva, K. A. Vibroacoustic control of technical conditions of GTE. Paper presented at the Procedia Engineering, 2016, vol. 150, pp. 363-369. DOI: 10.1016/j.proeng.2016.06.723.

Loznya, S. V., Nekrasov, S. S., Solyanik, V. G, Torhov, M. I., Frenev, A. V., Yakunin, V. N. Primenenie sredstv vibracionnoj diagnostiki dlya zashity ot vibracionnogo goreniya [Application of means of vibration diagnostics for protection against vibration burning]. Vibracii v tehnike i tehnologiyah, 2001, no. 4 (20), pp. 57–60. (in Russian).

Torhov, M. I., Loznya, S. V., Nalesnyj, N. B. Metod vyyavleniya vibracionnogo goreniya topliva v kamerah sgoraniya gazoturbinnyh ustanovok [Method for detecting vibrational combustion of fuel in combustion chambers of gas turbine installations]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2006, no. 10 (36), pp. 103-106. (in Russian).




DOI: https://doi.org/10.32620/aktt.2022.3.03