Experience in implementing additive technologies during repair of GTE parts from alloy EP 648 VI (KHN50VMTYUB-VI) under conditions of serial production

Сергій Леонідович Чигилейчик, Ігор Андрійович Петрик, Олександр Володимирович Овчинников, Світлана Вікторівна Кирилаха

Abstract


Technology has been developed for repairing the nozzle assembly (SA) casing in the D-18T engine by additively growing the damaged part by microplasma surfacing with a powder of EP648VI (KhN50VMTYUB-VI) alloy. Traditionally, a part with such damage was rejected. The cost of replacing a damaged part with a new one is about 200 thousand hryvnias. The article discusses the equipment and features of the growing technology using the method of microplasma multilayer surfacing. Additive growth of the cut-damaged part was carried out on a STARWELD 190 H robotic installation for microplasma powder surfacing using EP648 VI alloy powders with a 63–163 micron fraction. After growing, heat treatment (aging at 700 ºС, exposure for 16 hours), mechanical processing, and quality control of the grown part were carried out. To create an evidence base to determine the possibility of installing a repaired part on the engine, a set of studies was carried out, which included the determination of the chemical composition of samples grown using a technology similar to repair, metallographic studies, and mechanical tests. As a result, it was found that the chemical composition of the deposited metal meets the requirements of the technical specifications TU 14-1-3046-97 "Bars made of heat-resistant alloy grade KhN50VMTYUB (EP648), and the microstructure of the deposited metal after heat treatment is a γ - solid solution with the presence of carbides, carbonitrides and a small amount of γ´ phase, which corresponds to the normally heat-treated state of the EP 648 VI (KhN50VMTYUB-VI) alloy and the level of mechanical properties of the grown alloy with subsequent serial heat treatment (aging at 700 ° C, holding for 16 hours) not lower than the level of the forging used at serial production of a part. The economic effect of the introduction of this technology is shown, which is more than 100 thousand hryvnias (about 23% of the cost of a new part).

Keywords


additive technology; deposition; powder; technology; casing; deposited metal; tempering; aging

References


Petrik, I. A., Ovchinnikov, A. V., Seliverstov, A. G. Razrabotka poroshkov titanovykh splavov dlya additivnykh tekhnologii primenitel'no k detalyam GTD [Developing powders of titanium alloys for additive technologies as applied to gas turbine engine parts]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, no. 8(125), pp. 11–16.

Glotka, O. A. Analiz vitchyznyanykh zharomitsnykh poroshkiv na nikeleviy osnovi, yaki zastosovuyut'sya v adytyvnykh tekhnolohiyakh [Analysis of domestic heat-resistant powders on a nickel basis, which are used in additive technologies]. Novi materialy i tekhnolohiyi v metalurhiyi ta mashynobuduvanni – New materials and technologies in metallurgy and mechanical engineering, 2016, no. 2, pp. 39-42.

Nesterenkov, V. M., Matveychuk, V. A., Rusynik, M. O. Primenenie additivnykh elektronno-luchevykh tekhnologii dlya izgotovleniya detalei iz poroshkov titanovogo splava VT1-0 [Application of additive electron-beam technologies for the manufacture of parts from titanium alloy powders VT1-0]. Avtomaticheskaya svarka – Automatic welding, 2017, no. 3 (762), pp. 5-10.

Yanko, T. B. Titan v additivnykh tekhnologiyakh [Titanium in additive technologies]. Stroitel'stvo, materialovedenie, mashinostroenie: Starodubovskie chteniya. Tezisy dokladov – Construction, materials science, mechanical engineering: Starodubovskie readings. Abstracts of reports, Dnipro, 2018, pp. 217-221.

Glotka, O. A., Ovchinnikov, O. V., Degtyaryov, V. I., Kameneva, S. A. Application of Domestic Heat-Resistant Powders in Additive Techniques. Powder Metallurgy and Metal Ceramics, 2018, vol. 56, pp. 726-732. DOI: 10.1007/s11106-018-9948-2.

Bykov, I. O., Ovchinnikov, A. V., Pavlenko, D. V., Lechovitzer, Z. V. Composition, Structure, and Properties of Sintered Sintered Silicon-Containing Titanium Alloys. Powder Metallurgy and Metal Ceramics, 2020, vol. 58, pp. 613-621. DOI: 10.1007/s11106-020-00117-w.

Savvakin, D. G., Stasiuk, O. O., Pohrelyuk, I. M., Shlyakhetka, K. S., Ovchinnikov, O. V., Tkachenko, S. M., Osypenko, O. V. Vplyv mikrostruktury na koroziynu tryvkist' u kyslotnykh seredovyshchakh tytanovykh splaviv, oderzhanykh za poroshkovoyu tekhnolohiyeyu [Influence of Microstructure of Titanium Alloys Produced with Powder Technology on Their Corrosion Resistance in Acid Environments]. Metallophysics and Advanced Technologies, 2020, vol. 42, no. 10, pp. 1347–1362. DOI: 10.15407/mfint.42.10.1347.

Lytunov, S. N., Slobodenyuk, V. S., Mel'nykov, D. V. Obzor y analyz addytyvnukh tekhnolohyy. Chast' 1 [Review and analysis of additive technologies. Part 1]. Omskyy nauchnuy vestnyk – Omsk Scientific Bulletin, 2016, no. 1 (145), pp. 12-17.

Chemodurov, A. N. Prymenenye addytyvnukh tekhnolohyy v proyzvodstve yzdelyy mashynostroe-nyya [The use of additive technologies in the production of mechanical engineering products]. Yzvestyya TuhHU. Tekhnycheskye nauky – Izvestiya TugSU. Technical science, 2016, no. 8, pp. 210-217.

Gnatenko, M., Zhemanyuk, P., Petryk, I., Sakhno, S., Chigileichik, S., Naumik, V., Ovchinnikov, A., & Matkovskaya, M. Detecting the influence of heats sources on material properties when prodaction a aviation parts by a direct energy deposition method. Eastern-European Journal of Enterprise Technologies, 2019, vol. 1, no. 12 (97), pp. 49–55. DOI: 10.15587/1729-4061.2019.157604.

Gnatenko, M., Naumyk, V., Matkovska, M. Influence of sources of heating and protective gases on the properties of the material obtained by the direct deposition. Materials Science and Technology, 2019, pp. 68–74. DOI: 10.7449/2019/MST_2019_68_74.

Gnatenko, M. O., Marchenko, Yu. A., Mitina, T. I. Otsenka vozmozhnosti izgotovleniya i remonta detalei metodom additivnykh tekhnologii iz alyuminievykh splavov [Evaluation of the possibility of manufacturing and repairing parts using additive technologies from aluminum alloys]. Protsessy lit'ya – Casting processes, 2018, no. 4 (130), pp. 56–61.

Petrik, I. A., Chigileichik, S. L., Mitina, T. A., Marchenko, Yu. A., Gnatenko, M. O. Otsenka vozmozhnosti primeneniya tekhnologii posloinogo formirovaniya sposobom plazmennoi naplavki detalei iz titanovykh splavov uzlov vertoletov GTD [Evaluation of the possibility of using the technology of layer-by-layer formation by plasma surfacing of parts from titanium alloys of helicopter GTE units]. Sovremennaya elektrometallurgiya – Modern electrometallurgy, 2018, no. 3 (132), pp. 45-51.

Gnatenko, M. O. Vyyavlennya vplyvu dzherel nahrivu i zakhysnykh haziv na vlastyvosti materialu pid chas vyhotovlennya aviatsiynykh detaley metodom pryamoho vyroshchuvannya [Detection of the influence of heat sources and protective gases on the properties of the material during the manufacture of aviation parts by direct cultivation]. Metaloznavstvo ta termichna obrobka metaliv – Metallurgy and heat treatment of metals, 2019, no. 3 (86), pp. 33 - 36.

Gnatenko, M. O., Naumyk, V. V. Prochnostnoi raschet aviatsionnoi detali kryshki reduktora, poluchennyi metodom additivnogo vyrashchivaniya [Strength calculation of an aircraft part of a gearbox cover obtained by additive growing]. Novi materialy i tekhnolohiyi v metalurhiyi ta mashynobuduvanni – New materials and technologies in metallurgy and mechanical engineering, 2019, no. 1, pp. 74–78.




DOI: https://doi.org/10.32620/aktt.2022.1.07