Plasma-enhanced thermal growth of copper oxide nanostructures on anode of glow discharge setup
Abstract
Keywords
Full Text:
PDFReferences
Feng, Y., Zheng, X. Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Letters, 2010, no. 10, pp. 4762-4766.
Scuderi, V., Amiard, G., Boninelli, S., Scalese, S., Miritello, M., Sberna, P. M., Impellizzeri, G., Privitera, V. Photocatalytic activity of CuO and Cu2O nanowires. Materials Science in Semiconductor Processing, 2016, no. 42, pp. 89-93.
Wang, W., Wang, L., Shi, H., Liang, Y. A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm, 2012, no. 14, pp. 5914-5922.
Wang, W. N., Wu, F., Myung, Y., Niedzwiedzki, D. M., Im, H. S., Park, J., Banerjee, P., Biswas, P. Surface Engineered CuO Nanowires with ZnO Islands for CO2 Photoreduction. ACS Applied Materials & Interfaces, 2015, no. 7, pp. 5685-5692.
Tang, C., Liao, X., Zhong, W., Yu, H., Liu, Z. Electric field assisted growth and field emission properties of thermally oxidized CuO nanowires. RSC Advances, 2017, no. 7, pp. 6439-6446.
Hansen, B. J., Kouklin, N., Lu, G., Lin, I. K., Chen, J., Zhang, X. Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. The Journal of Physical Chemistry C, 2010, no. 114, pp. 2440-2447.
Shao, F., Hernández-Ramírez, F., Prades, J. D., Fàbrega, C., Andreu, T., Morante, J. R. Copper (II) oxide nanowires for p-type conductometric NH3 sensing. Applied Surface Science, 2014, no. 311, pp. 177-181.
Yang, F., Guo, J., Liu, M., Yu, S., Yan, N., Li, J., Guo, Z. Design and understanding of a high-performance gas sensing material based on copper oxide nanowires exfoliated from a copper mesh substrate. Journal of Materials Chemistry A, 2015, no. 3, pp. 20477-20481.
Zhong, M. L., Zeng, D. C., Liu, Z. W., Yu, H. Y., Zhong, X. C., Qiu, W. Q. Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Materialia, 2010, no. 58, pp. 5926-5932.
Wang, L., Zhang, K., Hu, Z., Duan, W., Cheng, F., Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Research, 2014, no. 7, pp. 199-208.
Filipič, G., Cvelbar, U. Copper oxide nanowires: A review of growth. Nanotechnology, 2012, no. 23, pp. 194001-1-17.
Sheng, H., Zheng, H., Jia, S., Li, L., Cao, F., Wu, S., Han, W., Liu, H., Zhao, D., Wang, J. Twin structures in CuO nanowires. Journal of Applied Crystallography, 2016, no. 49, pp. 462-467.
Xiang, L., Guo, J., Wu, C., Cai, M., Zhou, X., Zhang, N. A brief review on the growth mechanism of CuO nanowires via thermal oxidation. Journal of Materials Research and Technology, 2018, no. 33, pp. 2264-2280.
Yuan, L., Wang, Y., Mema, R., Zhou, G. Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Materialia, 2011, no. 59, pp. 2491-2500.
Sun, X., Zhu, W., Wu, D., Liu, Z., Chen, X., Yuan, L., Wang, G., Sharma, R., Zhou, G. Atomic‐Scale Mechanism of Unidirectional Oxide Growth. Advanced Functional Materials, 2020, no. 30, pp. 1906504-1-12.
Rackauskas, S., Jiang, H., Wagner, J. B., Shandakov, S. D., Hansen, T. W., Kauppinen, E. I., Nasibulin, A. G. In Situ Study of Noncatalytic Metal Oxide Nanowire Growth. Nano Letters, 2014, no. 14, pp. 5810-5813.
Fritz-Popovski, G., Sosada-Ludwikowska, F., Köck, A., Keckes, J., Maier, G. A. Study of CuO Nanowire Growth on Different Copper Surfaces. Scientific Reports, 2019, no. 9, pp. 1-13.
Jillani, S., Jelani, M., Hassan, N. U., Ahmad, S., & Hafeez, M. Synthesis, characterization and biological studies of copper oxide nanostructures. Materials Research Express, 2018, vol. 5, no. 4, pp. 045006-1-9.
Murugesan, N., Remona, A. M., Kumar, S. K., & Suresh, S. Facile preparation of diverse copper oxide nanostructures and their characterization. Materials Letters, 2018, no. 222, pp. 100-104.
Filipič, G., Baranov, O., Mozetič, M., Cvelbar, U. Growth dynamics of copper oxide nanowires in plasma at low pressures. Journal of Applied Physics, 2015, no. 117, pp. 043304-1-10.
Filipič, G., Baranov, O., Mozetič, M., Ostrikov, K., Cvelbar, U. Uniform surface growth of copper oxide nanowires in radiofrequency plasma discharge and limiting factors. Physics of Plasmas, 2014, no. 21, pp. 113506-1-8.
Altaweel, A., Filipič, G., Gries, T., Belmonte, T. Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. Journal of Crystal Growth, 2014, no. 407, pp. 17-24.
Bazaka, K., Baranov, O., Cvelbar, U., Podgornik, B., Wang, Y., Huang, S., Xu, L., Lim, J. W. M., Levchenko I., Xu, S. Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication. Nanoscale, 2018, no. 10, pp. 17494-17511.
Levchenko, I., Romanov, M., Baranov, O., Keidar, M. Ion deposition in a crossed E×B field system with vacuum arc plasma sources. Vacuum, 2003, vol. 72, no. 3, pp. 335-344.
Baranov, O., Romanov, M. Current distribution on the substrate in a vacuum arc deposition setup. Plasma Processes and Polymers, 2008, vol. 5, no. 3, pp. 256-262.
Baranov, O. O., Fang, J., Rider, A. E., Kumar, S., Ostrikov, K. Effect of ion current density on the properties of vacuum arc-deposited TiN coatings. IEEE Transactions on Plasma Science, 2013, vol. 41, no. 12, pp. 3640-3644.
Baranov, O., Košiček, M., Filipič, G., Cvelbar, U. A deterministic approach to the thermal synthesis and growth of 1D metal oxide nanostructures. Applied Surface Science, 2021, no. 566, pp. 150619-1-19.
DOI: https://doi.org/10.32620/aktt.2021.6.03