ALGORITHM OF REGIME SETTINGS FOR THERMAL PULSE TREATMENT TAKING INTO ACCOUNT STRENGTH CONSTRAINTS

Сергей Игоревич Планковский, Ольга Владимировна Шипуль, Евгений Владимирович Цегельник

Abstract


The analysis of the applicability of the finish thermal energy and thermal pulse treatment by detonable gas mixtures to various parts determine the need to take into consideration the strength constraints, which in turn is the subject matter of investigation when treatment settings are determined. The goal of the article is to develop an algorithm of settings assigning for thermal pulse finishing taking into account strength constraints of a part. In this regard, as the research tasks, existing methods for designating treatment regimes, including clarifying approaches, have been analyzed. The most probable factors affecting the possible destruction of parts under the action of thermal pulse loads are considered and the need for their comprehensive accounting is determined. The following results are obtained. Evaluation of the distortion possibility of the part shape in places with a minimal wall thickness should be performed by follow condition: plastic deformations in metal must not be reached in the dangerous zones during processing. When the maximum time of thermal pulse action is determined, provided that the residual deformations in the workpiece surface layer are present, it is necessary to amount the anisotropy of the linear thermal expansion coefficient and to apply the Johnson-Cook model, which calculates the dynamic yield strength of the material. Subject to the plasticity resource is exhausted, the possibility of the material destruction must be evaluated according to the criterion of the plasticity resource using as the ratio of the accumulated deformation degree to the maximum allowable state under a certain scheme. For parts with structural heterogeneity, it is suggested to define the possibility of developing cracks from internal pore zones, by determining the values of the stress intensity factor or the J-integral and comparing them with critical values. The following conclusions are formulated. An algorithm for assigning settings for thermal pulse finishing has been developed. The proposed approach ensures to determine agreed settings of the necessary energy of equipment to treat parts with specified qualimetry parameters and the sufficient one from the standpoint of strength requirements. Stability of processing quality should be provided by systems for filling the mixture, burning and releasing the products of combustion of automated thermal pulse equipment.

Keywords


modes of thermoimpulse processing; algorithm for designating processing regimes; strength constraints

References


Gillespie, L. Deburring and edge finishing handbook. New York, Industrial Press Publ., 1999. 404 p.

Niknam. S. A., Davoodi, B., Davim, J. P., Songmene, V. Mechanical deburring and edge-finishing processes for aluminum parts – a review. The International Journal of Advanced Manufacturing Technology, 2018, vol. 95, iss. 1-4, pp. 1101–1125. DOI: 10.1007/s00170-017-1288-8.

Riedel, H. Fracture at high temperatures. Berlin, Tokyo, New York, Springer-Verlag Publ., 2014. 417 p.

Li, C., Zhu, D., Wang, B., Chen, J. Theoretical analysis on the damages for tungsten plasma facing surface under superposition of steady-state and transient heat loads. Fusion Engineering and Design, 2018, vol. 132, pp. 99–106. DOI: 10.1016/j.fusengdes.2018. 05.054.

Swaminathan, K., Naveenkumar, D. T., Zenkour, A. M., Carrera, E. Stress, vibration and buckling analyses of FGM plates – A state-of-the-art review. Composite Structures, 2015, vol. 120, pp. 10–31. DOI: 10.1016/j.compstruct.2014.09.070.

Burlayenko, V. N., Altenbach, H., Sadowski, T., Dimitrova, S. D. Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate. Computational Materials Science, 2016, vol. 116, pp. 11–21. DOI: 10.1016/j.commatsci.2015.08.038.

Durakbasa, M. N., Bas, G., Bauer, J. M., Poszvek, G. Trends in Precision Manufacturing Based on Intelligent Design and Advanced Metrology. Key Engineering Materials, 2014, vol. 581, pp. 417–422. DOI: 10.4028/www.scientific.net/KEM.581.417.

Kelley, D. G., Schwarz, K. Thermal Energy Deburring. Technical paper MR91-136. Dearborn, SME, 1991. 32 p.

Fritz, A., Sekol, L., Koroskenyi, J., Walch, B., Minear, J., Fernandez, V., Liu, L. Experimental Analysis of Thermal Energy Deburring Process by Design of Experiment. ASME 2012 International Mechanical Engineering Congress and Exposition. ASME, 2012, pp. 2035–2041. DOI: 10.1115/IMECE2012-88411.

Bozhko, V. P. Osnovy tehnologii zachistki detalej aviacionnogo proizvodstva vysokotemperaturnymi gazovymi impul'sami. Dis. doct. tekhn. nauk [Fundamentals of technology of aviation production parts cleaning with high-temperature gas impulses. Dr. eng. sci. diss]. Kharkov, 1993. 314 p.

Losev, A. V. Povyshenie jeffektivnosti zachistki detalej pnevmaticheskih i gidrotoplivnyh sistem pri ispol'zovanii termoimpul'snogo metoda Diss. kand. tekhn. nauk [Increasing the efficiency of cleaning of pneumatic and hydro-fuel systems parts using thermal pulse method. PhD diss.]. Kharkov, 1995. 210 p.

Zhdanov, A. A. Termoimpul'snye tekhnologii ochistki poverkhnostei detalei agregatov aviatsionnykh dvigatelei. Diss. kand. tekhn. nauk [Thepmal pulse technology of aircraft engines components surface cleaning. PhD diss.]. Kharkov, 2003. 182 p.

Slominskaja, E. N. Termoimpul'snaja otdelka poverhnostej detalej letatel'nyh apparatov. Diss. kand. tekhn. nauk [Thepmal pulse finish cleaning of aircraft parts surfaces. PhD diss.]. Moscow, 1997. 165 p.

Kozlov, V. G. Povyshenie effektivnosti finishnoi ochistki detalei gidravlicheskikh sistem samoletov na baze termoimpul'snogo metoda. Diss. kand. tekhn. nauk [Improving of finish cleaning of aircraft's hydraulic systems parts based thermal-pulse method. PhD diss.]. Kharkov, 2013. 176 p.

Trifonov, O. V. Metod naznachenija rezhimov termoimpul'snoj obrabotki detonirujushhimi gazovymi smesjami v integrirovannyh CAD/CAE-sistemah [The method of regime setting for the thermal pulse processing by detonable gaseous mixtures using integrated CAD/CAE-systems. PhD diss.]. Kharkov, 2013. 152 p.

Malashenko, V. L. Sovershenstvovanie tehno-logii zachistnoj obrabotki detalej iz termoplastov na baze termoimpul'snogo metoda [Improving of deflashing technology of thermoplastics parts based thermal pulse method. PhD diss.]. Kharkov, 2014. 163 p.

Shipul', O. V., Tsegel'nik, E. V., Garin, A. O., Garin, V. O., Trifonov, O. V. Sovremennye metody finishnoi ochistki intensivnymi potokami energii [The modern methods of final cleaning by intense energy flux]. Kharkov, KHAI Publ., 2013. 189 p.

Shipul', O. V., Kuznecov, I. B., Palazjuk, E. S. Metodika naznachenija rezhimov termoimpul'snoj otdelki s uchetom trebovanij k kachestvu kromki [Method of the mode setting during thermal pulse treatment with the requirements for edge quality]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2015, no. 5 (122), pp. 11–26.

Shypul', O. V., Myntyuk, V. B., Breha, D. A., Kryts'kyy, S. O. Analiz termichnykh napruzhen' detali pid diyeyu termoimpul'snoho navantazhennya [Analysis of internal stresses in parts under the thermal pulse loading]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii – Open Information and Computer Integrated Technologies, 2016, iss. 72, pp. 77–90.

Kuznecov, I. B., Tsegel'nik, E. V., Shipul', O. V. Matematicheskoe modelirovanie naprjazhennogo sostojanija detalej voennoj tehniki pri detonacionnoj ochistke [Mathematical modeling of the military technique parts stress state during the detonation cleaning]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii – Open Information and Computer Integrated Technologies, 2016, iss. 73, pp. 44–51.

Shypul', O. V., Kuznecov, І. B., Tevzadze, G. S., Hodak, R. O. Doslidzhennya trishhy`nostijkosti detali pid diyeyu termoimpul`snogo navantazhennya [The study of part fracture toughness under the thermal pulse loading]. Aviacijno-kosmicna tehnika i tehnologia - Aerospace technic and technology, 2017, no. 1 (136), pp. 67–72.

Plankovskij, S. I., Shipul', O. V., Hodak R. A. Vybor sistemy opredeljajushhih uravnenij i kriterija poverhnostnogo razrushenija dlja analiza naprjazhennogo sostojanija detalej pri termoimpul'snoj obrabotke [The choice of the determining equations system and the criterion of surface failure for analyzing the stressed state of parts in thermal pulse processing]. Voprosy proektirovanija i proizvodstva letatel'nyh apparatov – Issues of design and manufacture of flying vehicles, 2017, iss. 2 (90), pp. 78–88.




DOI: https://doi.org/10.32620/aktt.2018.4.09