NUMERICAL METHOD GTE TORCH IGNITOR DESIGN OPTIMIZATION
Abstract
Solved the problem of gas-turbine engine combustion chamber flame igniter efficiency increasing by increasing the flame temperature via optimizing the body design. To determine the influence of the igniter body various geometric parameters, affecting the formation and combustion of the fuel-air mixture, a parametric model was developed. This model together with the developed project in the ANSYS Workbench software package made it possible to automate the modeling process. The influence of the geometric parameters of the igniter body and external factors on the average flame temperature has been studied via a numerical model of the stationary combustion process of the air-fuel mixture formed inside the igniter of the combustion chamber of a gas turbine engine by evaporation and spraying particles of aviation kerosene in the air stream. The adequacy of the numerical simulation results was confirmed by the implementation of a series of full-scale experiments using the Fisher criterion.
The uniformity of temperature and adequacy of the average temperature estimation algorithm was established using the correlation analysis of the results of measured temperature at various points of the flame. To determine the degree and nature of their influence, sequentially screening (fractional), as well as full-factor experiments with varying factors at two and three levels were implemented. Based on the results of the analysis of variance, the most statistically significant factors were selected. A regression dependence was established that relates the diameter of the air inlet orifice and the air pressure drop to the flame temperature. A qualitative and quantitative assessment of the influence of the considered factors on the process of formation of a hot air mixture and its combustion has been performed. The optimal values of the geometric parameters of the igniter body and its operating conditions are determined under which the maximum flame temperature at the stationary combustion stage is ensured. Relationships between design features, igniter operation mode, and the temperature of the flame are established. This allows expanding the range of stable ignition of gas turbine engine combustion chambers in accordance with the design of the igniter, the starting fuel supply mode, and the air pressure drop.Keywords
Full Text:
PDF (Українська)References
Grigorev, V. A., Gishvarov, A. S. Ispy`taniya aviacionny`x dvigatelej: uchebnik dlya vuzov [Testing of aircraft engines: a textbook for universities]. Moscow, Mashinostroenie Publ., 2009. 504 p.
Serbin, S. I., Mostipanenko, A. B., Kozlovskij, A. V. Razrabotka metodov rascheta xarakteristik nestacionarnogo rabochego processa v nizko-emissionnyx kamerax sgoraniya GTD [Development of the methods for calculating characteristics of an unsteady working process in low-emission GTE combustion chambers.]. Vіsnik NTU “KPI”, 2014, no. 11 (1054), pp. 90-94
Mitrofanov, V. A. Kamery sgoraniya gazoturbinnyx dvigatelej matematicheskoe modelirovanie, metodologiya rascheta, koncepciya optimalnogo proektirovaniya. Synopsis Diss. dokt. tekhn. nauk [Combustion chambers of gas turbine engines: mathematical modeling, calculation methodology, optimal design concept. Synopsis Dr. eng. sci. diss.]. Saint Petersburg, SPGPU Publ., 2004. 32 p.
Kostyuk, V. E., Kravchenko, I. F. Analiz sovremennyx podxodov k prognozirovaniyu puskovyx i sryvnyx xarakteri-stik kamer sgoraniya GTD. I. Makromodelirovanie [Analysis of modern approaches to forecasting the starting and stall characteristics of gas turbine engine combustion chambers. I. Macromodeling]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2004, no 4 (12), pp. 48−55
Kostyuk, V. E., Kravchenko, I. F. Analiz sovremennyx podxodov k prognozirovaniyu puskovyx i sryvnyx xarakteri-stik kamer sgoraniya GTD. II. Modelirovanie na mikrourovne [Analysis of modern approaches to predicting the starting and disruptive characteristics of gas turbine engine combustion chambers. II. Micro level modeling]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2004, no 7 (15), pp. 59−68
Grasko, T. V., Mayaczkij, S. A. Verifikaciya razrabotannoj raschetnoj modeli osnovnoj kamery sgoraniya serij-nogo gazoturbinnogo dvigatelya s rezultatami ispytanij na osnove chislennogo modelirovaniya [Verification of the developed calculation model of the gas turbine engine in production main combustion chamber with test results based on numerical simulation]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie – Proceedings of higher educational institutions. Mechanical engineering, 2014, no 10 (655), pp. 18–24.
Lodnya, V. A. Uluchshenie parametrov dvuxtaktnogo DVS putem primeneniya neposredstvennogo vpryskivaniya benzina i sovershenstvovaniya processa smeseobrazovaniya. Dis. kand. texn nauk [Characteristics improvement of a two-stroke ICE by applying direct injection of gasoline and improving the process of mixture formation. PhD diss.]. Moscow, 2000. 171 p.
Kargin, S. A. Teoreticheskoe obosnovanie i eksperimentalnoe issledovanie rabochego protsessa sudovogo DVS s kombinirovannym smeseobrazovaniem i prinuditel'nym vosplameneniem. Dis. kand. texn nauk [Theoretical basis and experimental study of the working process of a ship ICE with combined mixture formation and forced ignition. PhD diss.]. Astrakhan, 2006. 177 p.
Vyrubov, D. N., Efimov, S. I., Ivashhenko, N. A. Dvigateli vnutrennego sgoraniya [Internal combustion engine]. Moscow, Mashinostroenie Publ., 1984. 384 p.
Chesnokov, S. A., Frolov, N. N., Dunaev, V. A., Kuz`mina, I. V. Modeli smeseobrazovaniya i goreniya v DVS s neposredstvennym vpryskom [Mixture formation and combustion models in ICE with direct injection]. Dvigatelestroenie – Engines construction, 2005, no. 1, pp. 3−5
Borisova, O. S., Plankovskij, S. I., Shipul, O. V., Trifonov, O. V. Modelirovanie termoimpulsnoj obrabotki s uchetom neodnorodnosti toplivnoj smesi [Simulation of thermal pulse processing considering fuel mixture heterogeneity]. Otkrytye informacionnye i kompyuternye texnologii – Open information and computer technologies, 2010, no. 46, pp. 75–87.
Maznichenko, S. A., Plankovskij, S. I., Borisova, O. S. Ob osobennostyax smeseobrazovaniya v teplovyx privodax impulsnogo oborudovaniya [About the features of mixture formation in pulsed equipment thermal drives]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2007, no. 7(44), pp. 45−52.
Torba, Yu. I., Plankovskij, S. I., Trifonov, O. V., Cegelnik, E. V., Pavlenko, D. V. Modelirovanie processa goreniya v fakelnyx zapalnikax GTD [Combustion process simulation in gas turbine torch ignitors]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 7(159), pp. 39−49. DOI: 10.32620/aktt.2019.7.05.
Torba, Yu. I. Eksperimentalnaya ustanovka i metod issledovaniya rabotosposobnosti fakelnyx vosplamenitelej v shirokix diapazonax imitiruemyx ekspluatacionnyx xarakteristik [Experimental setup and method for studying the performance of flare igniters in a wide range of simulated operational characteristics]. Vestnik dvigatelestroeniya – Herald of Aeroenginebuilding, 2006, no. 4, pp. 56−60
Spiridonov, A. A. Planirovanie eksperimenta pri issledovanii texnologicheskix processov [Planning an experiment in the study of technological processes]. Moscow, Mashinostroenie Publ., 1981. 184 p.
Torba, Yu. I., Pavlenko, D. V. Zavisimost kachestva raspyla puskovoj forsunki zapalnika GTD ot perepada davleniya topliva [The dependence of quality spray starting sprayer of the gte igniter from the fall pressure drop]. Vestnik dvigatelestroeniya – Herald of Aeroengine building, 2019, no. 1, pp. 46-53.
DOI: https://doi.org/10.32620/aktt.2020.5.11