DIAMOND BURNISHING OF PARTS MADE OF NON-COMPACT BASED ALLOYS TITANIUM ALUMINIDE

Євген Валерійович Вишнепольський, Дмитро Вікторович Павленко

Abstract


Parameter research results of the residual porosity of the surface layer of samples of the alloy Ti - 45Al-3Nb - Y2O3 (OX45 - 3ODS) based on titanium aluminides obtained by selective laser sintering from the effect on the parameters of the residual porosity of diamond smoothing with different modes and conditions are presented in current article. Based on the results of variance analysis, the effect of diamond smoothing modes and their pairwise interaction on the porosity parameters of the surface layer is estimated. The regularities of changing the parameters of the pore space of the surface layer of the samples (area, perimeter, eccentricity, and fractal dimension of the pore boundaries) from the feed, the force on the vigilator and its radius are established. It has been determined that for the effective application of the established modes, it is necessary to take into account the initial porosity, which has a random distribution over the surface area of the samples under study. A correlation analysis using the Pareto diagram is performed. The magnitude of the effect of diamond smoothing modes on the residual porosity is determined. The adequacy and homogeneity of the mathematical model are estimated based on the Fisher and Cochren criteria. The optimization of steeple climbing modes has been performed. The optimal processing conditions have been established from achieving a minimum residual porosity in the surface layer. Technological limitations have been determined using diamond tapping for hardening non-compact materials. Further studies are necessary for the practical application of the technology of smoothing materials based on titanium aluminides.

Keywords


titanium alloy; titanium aluminides; selective laser sintering; diamond smoothing; modes; feed; force; radius; surface layer; porosity; optimization

References


Angelo, P. C., Subramanian, R. Powder Metallurgy: Science, Technology and Applications. Delhi, PHI Learning private limited Publ., 2009. 312 p.

Froes, F. H., Mashl, S. J., Hebeisen, J. C. et al. The technologies of titanium powder metallurgy. The Journal of The Minerals, Metals & Materials Society, 2004, vol. 56, issue 11, pp. 46-48. DOI: 10.1007/s11837-004-0252-x.

Agarwala, M., Bourell, D., Beaman, J. et al. Direct selective laser sintering of metals. Rapid Prototyping Journal, 1995, vol. 1, issue 1, pp. 26-36. DOI: 10.1108/13552549510078113.

Kumar, S. Selective laser sintering: A qualitative and objective approach. The Journal of The Minerals, Metals & Materials Society, 2003, vol. 55, issue 10, pp. 43-47. DOI: 10.1007/s11837-003-0175-y.

Orban, R. L. New research directions in powder metallurgy. Romanian Reports in Physics, 2004, vol. 56, no. 3, pp. 505-516.

Lexcellent, C. Shape-Memory Alloys Handbook. Hoboken, Wiley Publ., 2013. 408 p.

Kikuchi, S., Imai, T., Kubozono, H. et al. Effect of harmonic structure design with bimodal grain size distribution on near-threshold fatigue crack propagation in Ti–6Al–4V alloy. International Journal of Fatigue, 2016, vol. 92, рр. 616–622.

Pavlenko, D. V. Assessment of gas saturation of titanium alloys synthesized from powders using twist extrusion. Powder Metallurgy and Metal Ceramics, 2017, vol. 56, issue 5-6, pp. 273 – 282. DOI: 10.1007/s11106-017-9895-3.

Baudana, G., Biamino, S., Ugues, D. et al. Titanium aluminides for aerospace and automotive applications processed by electron beam melting: Contribution of Politecnico di Torino. Metal Powder Report, 2016, vol. 71, issue 3, pp. 193-199.

Pollock, T. M. Alloy design for aircraft engines. Nature Materials, 2016, vol. 15, pp. 809-815. DOI: 10.1038/nmat4709.

Belova, O. V., Borisov, Yu. F. Prospects of application of additive technologies for increasing the efficiency of impeller machines. AIP Conference Proceedings, 2017, vol. 1876, pp. 1-7. DOI: 10.1063/1.4998856.

Ivasishin, O. M., Savvakin, D. G., Froes, F. et al., Synthesis of alloy ti − 6al − 4v with low residual porosity by a powder metallurgy method. Powder Metallurgy and Metal Ceramics, 2002, vol. 41, no. 7-8, pp. 382-390. DOI: 10.1023/A:1021117126537.

Kenel, C., Dawson, K., Barras, J. et al. Microstructure and oxide particle stability in a novel ODS γ-TiAl alloy processed by spark plasma sintering and laser additive manufacturing. Intermetallics, 2017, vol. 90, pp. 63-73. DOI: 10.1016/j.intermet.2017.07.004.

Lin, W. S., Starr, T. L., Harris, B. T. et al. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters. The International Journal of Oral & Maxillofacial Implants, 2013, vol. 28, no. 6, рр. 1490-1495. DOI: 10.11607/jomi.3164.

Hoshiyama, Y., Miyake, H., Murakami, K. et al. Rapidly solidified titanium aluminide-based composite deposits with dispersed nitride particles produced by reactive plasma spraying. Journal of the Japan Institute of Metals, 2002, vol. 66, pp. 784-791. DOI: 10.2320/jinstmet1952.66.7_784.

McCracken, C. G., Barbis, D. P., Deeter, R. C. Key characteristics of hydride – dehydride titanium powder. Powder Metallurgy, 2011, vol. 54, iss. 3, pp. 180-183. DOI: 10.1179/174329011X1304507 6771849.

Dahms, M., Seeger, J., Smarsly, W. Wildhag, B., Titanium-aluminides by hot isostatic pressing of cold extruded titanium-aluminium powder mixtures. ISIJ International, 1991, vol. 31, no. 10, pp. 1093-1099.

Kothari, K., Radhakrishnan, R., Wereley, N. M. Advances in gamma titanium aluminides and their manufacturing techniques. Progress in Aerospace Sciences, 2012, vol. 55, pp. 1-16.

Ran, G., Zhou, J., Wang, Q. G. The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 cast aluminum alloy. Journal of Alloys and Compounds, 2006, vol. 421, pp. 80-86.

Appel, F., Oehring, M., Wagner, R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics, 2000, vol. 8, pp. 1283-1312.

Beygelzimer, Y. Vortices and mixing in metals during severe plastic deformation. Materials Science Forum, 2011, vol. 683, pp. 213-224. DOI: 10.4028/www.scientific.net/MSF.683.213.

Lapovok, R., Tomus, D., Muddle B. C. Low-temperature compaction of Ti–6Al–4V powder using equal channel angular extrusion with back pressure. Materials Science and Engineering: A, 2008, vol. 490, issues 1-2, pp. 171-180. DOI: /10.1016/j.msea.200801.075.

Stolyarov, V. V., Beigel’zimer, Ya. E., Orlov D. V., Valiev, R. Z. Refinement of microstructure and mechanical properties of titanium processed by twist extrusion and subsequent rolling. The Physics of Metals and Metallography, 2005, vol. 99, no. 2, pp. 204-211.

Bobrovskij, I. N. Burnishing Systems: а Short Survey of the State-of-the-art. IOP Conf. Series: Materials science and engineering. Samara, 2018, vol. 302, pp. 1-6. DOI: 10.1088/1757-899X/302/1/012041.

Nazarova, M. N., Palaev, A. G. Diagnostics and repair of centrifugal oil transfer pump rotor shaft. IOP Conf. Series: Earth and Environmental Science 87, 2017, vol. 87, issue 9, pp. 1-6. DOI: 10.1088/1755-1315/87/9/092016.

López de Lacalle, L. N., Rodríguez, A. et al. Five-axis machining and burnishing of complex parts for the improvement of surface roughness. Materials and Manufacturing Processes, 2011, vol. 26, issue 8, pp. 997-1003. DOI: /10.1080/10426914.2010.529589.

Akkurt, A. Comparison of roller burnishing method with other hole surface finishing processes applied on AISI 304 austenitic stainless steel. Journal of Materials Engineering and Performance, 2011, vol. 20, iss. 6, pp. 960-968. DOI: 10.1007/s11665-010-9718-x.

Mantle, A. L., Aspinwall, D. K. Surface integrity of a high-speed milled gamma titanium aluminide. Journal of Materials Processing Technology, 2001, vol. 118, iss. 1-3, pp. 143-150. DOI: 10.1016/S0924-0136(01)00914-1.

Klocke, F., Lung, D., Arft, M. et al. On high-speed turning of a third-generation gamma titanium aluminide. The International Journal of Advanced Manufacturing Technology, 2013, vol. 65, iss. 1-4, pp. 155-163. DOI: 10.1007/s00170-012-4157-5.

Priarone, P. C., Robiglio, M., Settineri, L., Tebaldo, V. Milling and turning of titanium aluminides by using minimum quantity lubrication. Procedia CIRP, 2014, vol. 24, pp. 62-67. DOI: 10.1016/j.procir.2014.07.147.

Vishnepol'skii, E. V., Pukhal'skaya, G. V., Glikson, I. L. Povyshenie soprotivleniya ustalosti mest kontsentratsii napryazhenii v tsilindricheskikh obolochkakh almaznym vyglazhivaniem [Increase in fatigue resistance of stress concentration sites in cylindrical shells by diamond burnishing]. Visnyk dvyhunobuduvannya, 2009, no. 1, pp. 90-94. (In Russian).




DOI: https://doi.org/10.32620/aktt.2020.3.05