Sea ice extent forecasting using statistical and deep learning models
Abstract
Keywords
Full Text:
PDFReferences
Copernicus, 2025. Sea ice cover for February 2025. Available at: https://climate.copernicus.eu/sea-ice-cover-february-2025. (accessed September 5, 2025).
Kawaguchi, S., Atkinson, A., Bahlburg, D., Bernard, K.S., Cavan, E.L., Cox, M.J., Hill, S.L., Meyer, B., & Veytia, D. Climate change impacts on Antarctic krill behaviour and population dynamics. Nature Reviews Earth & Environment, 2023, vol. 5, iss. 1, pp.43–58. DOI: 10.1038/s43017-023-00504-y.
Jobanpreet Singh, & Chitradevi. The Accelerating Melting of Glaciers: Impacts on Earth and Emerging Challenges. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours, 2025, vol. 2, iss. 1, pp. 401–414. DOI: 10.61359/11.2206-2501.
Hovorushchenko, T., Alekseiko, V., & Levashenko, V. Machine learning methods’ comparison for land surface temperatures forecasting due to climate classification. Proceedings of the 1st International Workshop on Advanced Applied Information Technologies with CEUR-WS, 2024, vol. 3899, pp. 55-68.
Hnatchuk, Y., Hovorushchenko, T., & Pavlova, O. Methodology for the development and application of clinical decisions support information technologies with consideration of civil-legal grounds. Radioelectronic and Computer Systems, 2023, no. 1, pp.33–44. DOI: 10.32620/reks.2023.1.03.
Hovorushchenko, T., Hnatchuk, Y., Herts, A., Moskalenko, A., & Osyadlyi, V. Theoretical and ap-plied principles of information technology for sup-porting medical decision-making taking into ac-count the legal basis. Proceedings of the 4th International Conference on In-formatics & Data-Driven Medicine with CEUR-WS, Vol. 3038, pp. 172-181.
Huo, X., Sun, N., & Ma, L. MA-BLTSI model for Land Surface Temperature prediction based on multi-dimensional data. Theoretical and Applied Climatology, 2024, vol. 155, iss. 7, pp. 6119–6136. DOI: 10.1007/s00704-024-05009-2.
Dixit, S., & Pandey, K. K. Spatiotemporal variability identification and analysis for non-stationary climatic trends for a tropical river basin of India. Journal of Environmental Management, 2024, vol. 365, article no. 121692. DOI: 10.1016/j.jenvman.2024.121692.
Ng, J. L., Huang, Y. F., Yong, S. L. S., Lee, J. C., Ahmed, A. N., & Mirzaei, M. Analysing the variability of non-stationary extreme rainfall events amidst climate change in East Malaysia. AQUA – Water Infrastructure Ecosystems and Society, 2024, vol. 73, iss. 7, pp.1494–1509. DOI: 10.2166/aqua.2024.132.
Islam, M. T., Kamal, A. S. M. M., Islam, M. M., & Hossain, S. Impact of climate change on dengue incidence in Singapore: time-series seasonal analysis. International Journal of Environmental Health Research, 2024, vol. 34, iss. 12, pp. 3988–3998. DOI: 10.1080/09603123.2024.2337827.
Palerme, C., Lavergne, T., Rusin, J., Melsom, A., Brajard, J., Kvanum, A. F., Sørensen, A. M., Bertino, L., & Müller, M. Improving short-term sea ice concentration forecasts using deep learning. The Cryosphere, 2024, vol. 18, iss. 4, pp. 2161–2176. DOI: 10.5194/tc-18-2161-2024.
Li, W., Hsu, C., & Tedesco, M. Advancing Arctic Sea Ice Remote Sensing with AI and Deep Learning: Opportunities and Challenges. Remote Sensing, 2024, vol. 16, iss. 20, article no. 3764. DOI: 10.3390/rs16203764.
Cao, H., Zhou, Y., Jia, X., & Li, Y. Analysis of Sea Ice Area Fluctuation in the Arctic Circle Based on Big Data and SARIMA Model. In: 2024 Int. Conf. on Electrical Drives, Power Electronics & Engineering (EDPEE). Athens, Greece, IEEE, 2024, pp. 376–380. DOI: 10.1109/EDPEE61724.2024.00077.
Ahanda, B., Yolcu, T., & Watson, R. Forecasting arctic sea ice extent trend using time series models: NNAR, SARIMA and SARIMAX using the data prior to the COVID-19 pandemic. Discover Geoscience, 2025, vol. 3, iss. 18. DOI: 10.1007/s44288-025-00113-w.
Wahyudi, A. J., & Febriani, F. Time-series forecasting of particulate organic carbon on the Sunda Shelf: Comparative performance of the SARIMA and SARIMAX models. Regional Studies in Marine Science, 2024, vol. 80, article no. 103863. DOI: 10.1016/j.rsma.2024.103863.
Song, C., Zhu, J., & Li, X. Assessments of Data-Driven Deep Learning Models on One-Month Predictions of Pan-Arctic Sea Ice Thickness. Advances in Atmospheric Sciences, 2024, vol. 41, pp.1379–1390. DOI: 10.1007/s00376-023-3259-3.
Zaatar, T., Cheaitou, A., Faury, O., & Rigot-Muller, P. Arctic sea ice thickness prediction using machine learning: a long short-term memory model. Annals of Operations Research, 2025, vol. 345, pp. 533–568. DOI: 10.1007/s10479-024-06457-9.
Gao, B., Liu, Y., Lu, P., Wang, L., & Liao, H. Advancing Sea Ice Thickness Hindcast with Deep Learning: A WGAN-LSTM Approach. Water, 2025, vol. 17, iss. 9, article no. 1263. DOI: 10.3390/w17091263.
Pegkou Christofi, V., & Wang, X. D. Optimizing the LSTM Deep Learning Model for Arctic Sea Ice Melting Prediction. Atmospheric and Climate Sciences, 2024, vol. 14, pp. 429–449. DOI: 10.4236/acs.2024.144026.
Ahanda, B., Brinkman ,C., Güler, A., & Yolcu T. Enhancing Arctic Ice extent predictions: leveraging time series analysis and deep learning architectures. Glacies, 2025, vol. 2, iss. 4, article no. 12. DOI: 10.3390/glacies2040012.
Dadjoo, M., & Isleifson, D. Thin sea ice thickness prediction using multivariate Radar-Physical features and machine learning algorithms, Remote Sensing, 2025, vol. 17, iss. 17, article no. 3002. DOI: 10.3390/rs17173002.
Taleghan, S. A., Barrett, A. P., Meier, W. N., & Banaei-Kashani F. IceBench: a benchmark for Deep-Learning-Based Sea-Ice type classification,' Remote Sensing, 2025, vol. 17, iss. 9, article no. 1646. DOI: 10.3390/rs17091646.
Alekseiko, V., Levashenko, V., Voichur, Y., & Medzatyi, D. Sea ice extent data analysis using statistical and unsupervised learning methods. In: The 6th International Workshop on Intelligent Information Technologies & Systems of Information Security (IntelITSIS 2025). CEUR-WS, 2025, vol. 3963, pp. 39–53.
Daily Sea Ice extent Data. Kaggle, 2019. Available at: https://www.kaggle.com/datasets/nsidcorg/daily-sea-ice-extent-data. (accessed September 5, 2025).
National Snow and Ice Data Center, 2025. Available at: https://nsidc.org/home. (accessed September 5, 2025).
DOI: https://doi.org/10.32620/reks.2025.4.12
Refbacks
- There are currently no refbacks.
