AI-based adaptive management of limited resources in SDN-IoT ecosystems

Anatolii Banar, Heorhii Vorobets

Abstract


The subject of the study is the integration of artificial intelligence (AI) methods into software-defined networks (SDN) for adaptive control of access to limited resources within the infrastructure of Internet of Things (IoT) ecosystems. The goal of this work is to develop a model and architectural solution for a hybrid Cloud-SDN-IoT framework with embedded AI components, enabling the intelligent allocation of network and computing resources, and to experimentally validate the improvement of the fair distribution of a limited IoT resource across different traffic patterns in an emulation environment. The main tasks of the research are: 1) to analyze modern approaches to energy-efficient resource management and security in SDN-IoT networks; 2) to create the architecture of a hybrid Cloud-SDN-IoT framework that combines centralized SDN network control with the flexibility of cloud infrastructure; 3) to develop an experimental methodology using machine learning components to improve resource allocation and reduce load imbalance among competing clients; 4) to evaluate the system’s efficiency in relation to the stated objectives and the fair distribution of limited IoT resources by assessing the request distribution and the accuracy of detecting resource access violations. The paper proposes an improved three-layer SDN architecture model incorporating AI-based analytics: the IoT infrastructure layer, the SDN control layer, and the cloud application layer. The experimental part was implemented in a virtual Linux environment using Mininet and Ryu, where the trained AI model makes decisions about allocating the limited resource. The experimental results demonstrated that integrating the AI module into the SDN controller workflow increases the accuracy of detecting resource access violations, reduces load imbalance among clients, and improves the stability of real-time request distribution. Conclusions. The scientific novelty of the obtained results lies in the development of a reproducible hybrid Cloud-SDN-IoT architecture model that enables adaptive management of access to limited IoT node resources by combining centralized SDN control with AI-based predictive analytics. The AI-enabled control loop increased the average fairness accuracy of request distribution from 79.2% to 90.98%, an increase of 11.78 percentage points (14.87% relative), demonstrating improved proportional access to the limited IoT TokenServer API while preserving stable, real-time request regulation. The practical significance lies in the potential application of the proposed approach to optimize access to limited cloud services, APIs, energy resources, or IoT devices in smart city systems, healthcare, or industrial networks. Further research will focus on expanding the AI components with various machine learning models, forming new datasets, and conducting comparative evaluations of each model’s effectiveness in dynamic SDN-IoT resource management and reproduction under real-world conditions.

Keywords


software-defined networks; Internet of Things; artificial intelligence; resource management; cloud infrastructure; SDN controller; machine learning

Full Text:

PDF

References


Banar, A., & Vorobets', H. Perspektyvni napryamy rozvytku, udoskonalennya i zastosuvan' merezhi SDN na osnovi metodiv shtuchnoho intelektu [Promising Directions for Developing, Improving and Application SDN Networks Based on Artificial Intelligence Methods]. Visnyk Khmel'nyts'koho natsional'noho universytetu. Seriya: Tekhnichni nauky - Herald of Khmelnytskyi National University. Technical Sciences, 2025, vol. 355, no. 4, pp. 15-21. DOI: 10.31891/2307-5732-2025-355-1. (In Ukrainian).

Rukkas, K., Morozova, A., Uzlov, D., Kuznietcova, V., & Chumachenko, D. Optimizing Information Support Technology for Network Control: A Probabilistic-Time Graph Approach. Radioelectronic and Computer Systems, 2024, no. 2, pp. 85-97. DOI: 10.32620/reks.2024.2.08.

Chaganti, R., Suliman, W., Ravi, V., & Dua, A. Deep Learning Approach for SDN-Enabled Intrusion Detection System in IoT Networks. Information, 2023, vol. 14, article no. 41. DOI: 10.3390/info14010041.

Zabeehullah, Haq, Q. M. U., Arif, F., Khan, N. A., Anwar, M. S., & Alhalabi, W. A Secure AI Framework for Intelligent Traffic Prediction and Routing in SDN-Based Consumer Internet of Things. IEEE Transactions on Consumer Electronics, 2025, vol. 71, no. 2, pp. 6294-6306. DOI: 10.1109/TCE.2025.3552609.

Zahoor, S., & Mir, R. N. Resource Management in Pervasive Internet of Things: A Survey. Journal of King Saud University - Computer and Information Sciences, 2021, vol. 33, no. 8, pp. 921-935. DOI: 10.1016/j.jksuci.2018.08.014.

Shuaib, M., Bhatia, S., Alam, S., Masih, R. K., Alqahtani, N., Basheer, S., & Alam, M. S. An Optimized, Dynamic, and Efficient Load-Balancing Framework for Resource Management in the Internet of Things (IoT) Environment. Electronics, 2023, vol. 12, no. 5, article no. 1104. DOI: 10.3390/electronics12051104.

Pandey, S., Chaudhary, M., & Tóth, Z. An Investigation on Real-Time Insights: Enhancing Process Control with IoT-Enabled Sensor Networks. Discover Internet of Things, 2025, vol. 5, article no. 29. DOI: 10.1007/s43926-025-00124-6.

Rawat, P., Rawat, G. S., Rawat, H., & Chauhan, S. Energy-Efficient Cluster-Based Routing Protocol for Heterogeneous Wireless Sensor Network. Annals of Telecommunications, 2025, vol. 80, no. 1, pp. 109-122. DOI: 10.1007/s12243-024-01015-7.

Prasad, V. K., Dansana, D., Bhavsar, M. D., Acharya, B., Gerogiannis, V. C., & Kanavos, A. Efficient Resource Utilization in IoT and Cloud Computing. Information, 2023, vol. 14, no. 11, article no. 619. DOI: 10.3390/info14110619.

Lilhore, U. K., Simaiya, S., Sharma, Y. K., Rai, A. K., Padmaja, S. M., Vajid, K. N., Kumar, V., Alroobaea, R., & Alsufyani, H. Cloud-Edge Hybrid Deep Learning Framework for Scalable IoT Resource Optimization. Journal of Cloud Computing, 2025, vol. 14, no. 1, article no. 5. DOI: 10.1186/s13677-025-00729-w.

Banar, A., & Vorobets', H. Khmarni SDN-kontrolery z pidtrymkoyu ShI: arkhitektura, masshtabovanist' ta bezpeka - porivnyal'ne doslidzhennya [AI-Enabled Cloud SDN Controllers: Architecture, Scalability, and Security - A Comparative Study]. Bezpeka infokomunikatsiynykh system ta Internetu rechey - Security of Infocommunication Systems and Internet of Things, 2025, vol. 3, no. 1, article no. 01011. DOI: 10.31861/sisiot2025.1.01011. (In Ukrainian).

Siddiqui, S., Hameed, S., Shah, S. A., Ahmad, I., Aneiba, A., Draheim, D., & Dustdar, S. Toward Software-Defined Networking-Based IoT Frameworks: A Systematic Literature Review, Taxonomy, Open Challenges and Prospects. IEEE Access, 2022, vol. 10, pp. 70850-70901. DOI: 10.1109/ACCESS.2022.3188311.

Udayaprasad, P. K., Shreyas, J., Srinidhi, N. N., Dilip Kumar, S. M., Dayananda, P., Askar, S. S., & Abouhawwash, M. Energy Efficient Optimized Routing Technique with Distributed SDN-AI to Large Scale I-IoT Networks. IEEE Access, 2024, vol. 12, pp. 2742-2759. DOI: 10.1109/ACCESS.2023.3346679.

Bekri, W., Jmal, R., & Chaari Fourati, L. Distributed Secured and Trustworthy IoT Framework Based on SDN, AI, and Blockchain. Cluster Computing, 2025, vol. 28, article no. 1065. DOI: 10.1007/s10586-025-05770-7.

Mishra, S. R., Shanmugam, B., Yeo, K. C., & Thennadil, S. SDN-Enabled IoT Security Frameworks - A Review of Existing Challenges. Technologies, 2025, vol. 13, no. 3, article no. 121. DOI: 10.3390/technologies13030121.

Sayegh, H. R., Dong, W., & Al-Madani, A. M. Enhanced Intrusion Detection with LSTM-Based Model, Feature Selection, and SMOTE for Imbalanced Data. Applied Sciences, 2024, vol. 14, no. 2, article no. 479. DOI: 10.3390/app14020479.

Wani, A., Revathi, S., & Khaliq, R. SDN-Based Intrusion Detection System for IoT Using Deep Learning Classifier (IDSIoT-SDL). CAAI Transactions on Intelligent Technology, 2021, vol. 6, no. 3, pp. 281-290. DOI: 10.1049/cit2.12003.

Kulkarni, M., Baddeley, M., & Haque, I. Embedded vs. External Controllers in Software-Defined IoT Networks. Proceedings of the 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo, Japan, IEEE, 2021, pp. 298-302. DOI: 10.1109/NetSoft51509.2021.9492688.

Theodorou, T., & Mamatas, L. DENIS-SDN: Software-Defined Network Slicing Solution for Dense and Ultra-Dense IoT Networks, 2023. Available at https://arxiv.org/abs/2312.13662 (accessed 27.09.2025). DOI: 10.48550/arXiv.2312.13662.

Maleh, Y., Qasmaoui, Y., El Gholami, K., Sadqi, Y., & Mounir, S. A Comprehensive Survey on SDN Security: Threats, Mitigations, and Future Directions. Journal of Reliable Intelligent Environments, 2023, vol. 9, no. 2, pp. 201-239. DOI: 10.1007/s40860-022-00171-8.

Candal-Ventureira, D., Fondo-Ferreiro, P., Gil-Castiñeira, F., & González-Castaño, F. J. Quarantining Malicious IoT Devices in Intelligent Sliced Mobile Networks. Sensors, 2020, vol. 20, no. 18, article no. 5054. DOI: 10.3390/s20185054.

Lv, J., Babbar, H., & Rani, S. AI-Driven Resource Management for Energy-Efficient Aerial Computing in Large-Scale Healthcare SDN-IoT Systems. IEEE Internet of Things Journal, 2025, vol. 12, no. 13, pp. 23536-23549. DOI: 10.1109/JIOT.2025.3556943.

Masood, F., Khan, W. U., Alshehri, M. S., Alsumayt, A., & Ahmad, J. Energy Efficiency Considerations in Software-Defined Wireless Body Area Networks. Engineering Reports, 2024, vol. 6, no. 3, article no. 12841. DOI: 10.1002/eng2.12841.

Arevalo-Herrera, J., Mendoza, J., Torre, J., Zona-Ortiz, T., & Ramirez, J. Assessing SDN Controller Vulnerabilities: A Survey on Attack Typologies, Detection Mechanisms, Controller Selection, and Dataset Application in Machine Learning. Wireless Personal Communications, 2025, vol. 140, pp. 739-775. DOI: 10.1007/s11277-025-11748-w.

Ye, R., Ouyang, Y., & Che, X. Security and Attack Prevention in Software-Defined Network. Proceedings of the 2024 International Conference on Telecommunications and Power Electronics (TELEPE), Frankfurt, Germany, IEEE, 2024, pp. 824-828. DOI: 10.1109/TELEPE64216.2024.00154.

Dhadhal, H., & Kotak, P. Leveraging Datasets for Effective Mitigation of DDoS Attacks in Software-Defined Networking: Significance and Challenges. Radioelectronic and Computer Systems, 2024, no. 2, pp. 136-146. DOI: 10.32620/reks.2024.2.11.

Santo, Y., Dalmazo, B. L., Cordeiro, W., Abelém, A., & Riker, A. A SDN-Based Approach for Conflicting Energy Profiles on Partially Sustainable IoT Networks. Proceedings of the 2024 IEEE 10th World Forum on Internet of Things (WF-IoT), Ottawa, ON, Canada, IEEE, 2024, pp. 906-911. DOI: 10.1109/WF-IoT62078.2024.10811403.

Talib, M. M., & Croock, M. S. AI-Enhanced Power Management System for Buildings: A Review and Suggestions. Journal Européen des Systèmes Automatisés, 2023, vol. 56, no. 3, pp. 383-391. DOI: 10.18280/jesa.560304.

Kashyap, M., Dev, A. K., & Sharma, V. Implementation and Analysis of EMQX Broker for MQTT Protocol in the Internet of Things. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 2024, vol. 10, article no. 100846. DOI: 10.1016/j.prime.2024.100846.

Hamad, D., Yalda, K., Tapus, N., & Okumus, I. T. Enhancing IoT Scalability and Security through SDN. Romanian Journal of Information Technology and Automatic Control), 2024, vol. 34, no. 2, pp. 113-126. DOI: 10.33436/v34i2y202409.

Kotsiopoulos, T., Radoglou-Grammatikis, P., Lekka, Z., Mladenov, V., & Sarigiannidis, P. Defending Industrial Internet of Things Against Modbus/TCP Threats: A Combined AI-Based Detection and SDN-Based Mitigation Solution. International Journal of Information Security, 2025, vol. 24, article no. 157. DOI: 10.1007/s10207-025-01076-2.

Karmakar, K. K., Varadharajan, V., Nepal, S., & Tupakula, U. SDN-Enabled Secure IoT Architecture. IEEE Internet of Things Journal, 2021, vol. 8, no. 8, pp. 6549-6564. DOI: 10.1109/JIOT.2020.3043740.

Ishaq, K., & Khan, F. Blockchain in the IoT Industry: A Systematic Literature Review, 2023. Available at https://arxiv.org/abs/2308.13613(accessed 27.09.2025). DOI: 10.48550/arXiv.2308.13613.

Zhao, D., Zhang, D., Pei, Q., Liu, L., & Yue, P. Blockchain-Based Security Deployment and Resource Allocation in SDN-Enabled MEC System. IEEE Internet of Things Journal, 2024, vol. 11, no. 24, pp. 40417-40430. DOI: 10.1109/JIOT.2024.3455425.

Masood, F., Khan, W. U., Jan, S. U., & Ahmad, J. AI-Enabled Traffic Control Prioritization in Software-Defined IoT Networks for Smart Agriculture. Sensors, 2023, vol. 23, no. 19, article no. 8218. DOI: 10.3390/s23198218.

Rostami, M., & Goli-Bidgoli, S. An Overview of QoS-Aware Load Balancing Techniques in SDN-Based IoT Networks. Journal of Cloud Computing: Advances, Systems and Applications, 2024, vol. 13, article no. 89. DOI: 10.1186/s13677-024-00651-7.

Marshoodulla, S. Z., & Saha, G. An Approach towards Removal of Data Heterogeneity in SDN-Based IoT Framework. Internet of Things, 2023, vol. 22, article no. 100763. DOI: 10.1016/j.iot.2023.100763.




DOI: https://doi.org/10.32620/reks.2025.4.11

Refbacks

  • There are currently no refbacks.