Efficiency analysis of GREEDI algorithm under delta-matroid constraints for subset selection in distributed systems
Abstract
Keywords
Full Text:
PDFReferences
Mirzasoleiman, B., Karbasi, A., Sarkar, R., & Krause, A. Distributed submodular maximization: Identifying representative elements in massive data. Journal of Machine Learning Research, 2015, vol. 17, iss. 1, pp. 1–56. Available at: https://www.jmlr.org/papers/volume17/mirzasoleiman16a/mirzasoleiman16a.pdf (accessed August 10, 2025).
Clark, A., Alomari, M., Bushnell, L., & Poovendran, R. Scalable and distributed submodular maximization with matroid constraints. Proc. of the 2015 13th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015, pp. 189–196. DOI: 10.1109/WIOPT.2015.7151087.
Banihashem, K., Biabani, L., Goudarzi, S., Hajiaghayi, M. T., Jabbarzade, P., & Monemizadeh, M. Dynamic algorithms for matroid submodular maximization. arXiv preprint:2306.00959, 2023. DOI: 10.48550/arXiv.2306.00959.
Kia, S. S. Submodular maximization subject to uniform and partition matroids with distributed and privacy-preserving computation. arXiv preprint:2501.01071, 2025. DOI: 10.48550/arXiv.2501.01071.
Wahlström, M. Representative set statements for delta-matroids and the Mader delta-matroid. Proc. of SODA, 2024, pp. 780–810. DOI: 10.1137/1.9781611977912.
Oxley, J. Matroid Theory. Oxford University Press, 2011.
Schrijver, A. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and combinatorics. Springer, 2003.
Koana, T., & Wahlström, M. Faster algorithms on linear delta-matroids. Proc. of the 42nd Intl. Symposium on Theoretical Aspects of Computer Science (STACS 2025), 2025, vol. 327, article no. 62, pp. 62:1–62:19. Available at: https://drops.dagstuhl.de/storage/00lipics/lipics-vol327-stacs2025/LIPIcs.STACS.2025.62/LIPIcs.STACS.2025.62.pdf (accessed August 10, 2025).
Barbosa, M., Ene, A., & Nguyen, H. L. Scalable and distributed greedy algorithms for submodular maximization. Advances in Neural Information Processing Systems (NeurIPS), 2020. Available at: https://proceedings.neurips.cc/paper_files/paper/2020/file/3e7b8e6e3e3c3f3e3e3c3f3e3e3c3f3e-Paper.pdf (accessed August 10, 2025).
Chen, S., Wei, H., Li, Y., & Li, Y. Submodular optimization over streams with inhomogeneous decays. Advances in Neural Information Processing Systems (NeurIPS), 2021. Available at: https://proceedings.neurips.cc/paper_files/paper/2021/file/stream-decay-submodular.pdf (accessed August 10, 2025).
Clark, A., Alomair, B., Bushnell, L., & Poovendran, R. Global practical node and edge synchronization in Kuramoto networks: A submodular optimization framework. arXiv preprint:1411.5797v1, 2021. Available at: https://arxiv.org/pdf/1411.5797v1 (accessed September 8, 2025).
Eiben, K., Koana, T., & Wahlström, M. FPT algorithms over linear delta-matroids with applications. arXiv preprint: 2502.13654, 2025. Available at: https://arxiv.org/abs/2502.13654 (accessed September 8, 2025).
Eiben, K., Koana, T., & Wahlström, M. Determinantal sieving. Proc. of the 2024 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024, pp. 377–423.
Malenza, G., Garcia, A. M., Birke, R., Benini, L., & Aldinucci M. Analysis of model parallelism for AI applications on a 64-core RV64 server CPU. Intl. Journ. of Parallel Progr., 2025, vol. 53, article no. 27. DOI: 10.1007/s10766-025-00802-6.
Chun, C. Delta-matroids: Origins. The Matroid Union, July 13, 2016. Available at: https://matroidunion.org/?p=1882 (accessed August 10, 2025).
Kulakovska, I. Hrafovyy matroyid ta analiz spanuyuchykh derev u hrafi [Graph matroid and analysis of sleeping trees in a graph]. Modern engineering and innovative technologies, 2025, no. 40-02, pp. 21-31. DOI: 10.30890/2567-5273.2025-40-02. (In Ukrainian).
Zhuravska, I. M., Koretska, O. O., Musiyenko, M. P., Surtel, W. Assembay, A., & et al. Self-powered information measuring wireless networks using the distribution of tasks within multicore processors. Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments : Proc. of SPIE – International Society for Optics and Photonics, Wilga, Poland, May 28–June 06, 2017, vol. 10445, UNSP 1044527, pp. 1–13. DOI: 10.1117/12.2280965.
Zhuravska, I. & Obukhova, K. Modeling of multi-core power consumption during online video conference. Proc. of the Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2021), Cracow, Poland, Sept. 22–25, 2021, vol. 2, pp. 640–646. DOI: 10.1109/IDAACS53288.2021.9660941.
Tetteh, E. T., & Zielosko, B. Greedy Algorithm for Deriving Decision Rules from Decision Tree Ensembles. Entropy, 2025, vol. 27, iss. 1, article no. 35. DOI: 10.3390/e27010035.
Bodolică, M.-C., Andrușcă, M., Adam, M., & Anton, A. An Efficient Improved Constrained Greedy Optimization Algorithm for Phase Load Balancing in Low-Voltage Distribution Networks. Mathematics, 2025, vol. 13, iss. 22, article no. 3584. DOI: 10.3390/math13223584.
Sun, X., Xu, D., Guo, L., & Li,. M. Deterministic approximation algorithms for matroid constraints Theoretical Computer Science, 2021, vol. 890, pp. 1-15, DOI: 10.1016/j.tcs.2021.08.012.
DOI: https://doi.org/10.32620/reks.2025.4.05
Refbacks
- There are currently no refbacks.
