Markov modelling of human-machine interaction in an augmented reality environment for UAV/UGV-based hazardous area monitoring systems
Abstract
Keywords
Full Text:
PDFReferences
Zatserkovnyі, V., Tsiupa, I., De Donatis, M., Nikoliuk, I., Kravchenia, V., Tsvyk, O., & Mironchuk, T. Methods to detect explosive hazards in agricultural areas. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2025, vol. 3, no. 110, pp. 127-138. DOI: 10.17721/1728-2713.110.14.
Hameed, Q. A., Hussein, H. A., Ahmed, M. A., Salih, M. M., Ismael, R. D., & Omar, M. B. UXO-AID: A New UXO Classification Application Based on Augmented Reality to Assist Deminers. Computers, 2022, vol. 11, iss. 8, article no. 124. DOI: 10.3390/computers11080124.
Blachnik, M., Przyłucki, R., Golak, S., Ściegienka, P., & Wieczorek, T. On the Development of a Digital Twin for Underwater UXO Detection Using Magnetometer-Based Data in Application for the Training Set Generation for Machine Learning Models. Sensors, 2023, vol. 23, iss. 15, article no. 6806. DOI: 10.3390/s23156806.
Jefry, N. F. S., & Rambli, D. R. A. A review of augmented reality systems and their effects on mental workload and task performance. Heliyon, 2021, vol. 7, iss. 3, article no. e06277. DOI: 10.1016/j.heliyon.2021.e06277.
Fesenko, H., Illiashenko, O., Kharchenko, V., Kliushnikov, I., Morozova, O., Sachenko, A., & Skorobohatko, S. Flying sensor and edge network-based advanced air mobility systems: reliability analysis and applications for urban monitoring. Drones, 2023, vol. 7, iss. 7, article no. 409. DOI: 10.3390/drones7070409.
Fedorenko, G., Fesenko, H., Kharchenko, V., Kliushnikov, I., & Tolkunov, I. Robotic-biological systems for detection and identification of explosive ordnance: concept, general structure, and models. Radioelectronic and Computer Systems, 2023, no. 2, pp. 143-159. DOI: 10.32620/reks.2023.2.12.
Sharma, S., Muley, A., Singh, R., & Gehlot, A. UAV for surveillance and environmental monitoring. Indian Journal of Science and Technology, 2016, vol. 9, iss. 43, pp. 1-4. DOI: 10.17485/ijst/2016/v9i43/104396.
Misse, E. S., Villacrés, S. A., Velasco, P. M., & Andaluz, V. H. Augmented reality system for the assistance of unmanned aerial vehicles. 15th Iberian Conference on Information Systems and Technologies (CISTI), Seville, Spain, IEEE, 2020, pp. 1-6. DOI: 10.23919/CISTI49556.2020.9140958.
Ruano, S., Cuevas, C., Gallego, G., & García, N. Augmented reality tool for the situational awareness improvement of UAV operators. Sensors, 2017, vol. 17, iss. 2, article no. 297. DOI: 10.3390/s17020297.
Mutzenich, C., Durant, S., Helman, S., & Dalton P. Updating our understanding of situation awareness in relation to remote operators of autonomous vehicles. Cognitive Research: Principles and Implications, 2021, vol. 6, article no. 9. DOI: 10.1186/s41235-021-00271-8.
Kalatzis, A., Prabhu, V. G., Stanley, L., & Wittie, M. P. Effect of augmented reality user interface on task performance, cognitive load, and situational awareness in human–robot collaboration. 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Busan, Republic of Korea, IEEE, 2023, pp. 1252-1259. DOI: 10.1109/RO-MAN57019.2023.10309468.
Seeling, P. Augmented reality device operator cognitive strain determination and prediction. AIMS Electronics and Electrical Engineering, 2017, vol. 1, iss. 1, pp. 100-110. DOI: 10.3934/ElectrEng.2017.1.100.
Kaufeld, M., Mundt, M., Forst, S., & Hecht, H. Optical see-through augmented reality can induce severe motion sickness. Displays, 2022, vol. 74, article no. 102283. DOI: 10.1016/j.displa.2022.102283.
Costa, C., Gomes, E., Rodrigues, N., Gonçalves, A., Ribeiro, R., Costa, P., & Pereira, A. Augmented reality mobile digital twin for unmanned aerial vehicle wildfire prevention. Virtual Reality, 2025, vol. 29, article no. 71. DOI: 10.1007/s10055-025-01145-w.
Sautenkov, O., Asfaw, S., Yaqoot, Y., Mustafa, M. A., Fedoseev, A., Trinitatova, D., & Tsetserukou, D. FlightAR: AR flight assistance interface with multiple video streams and object detection aimed at immersive drone control. IEEE International Conference on Robotics and Biomimetics (ROBIO), Bangkok, Thailand, IEEE, 2024, pp. 614-619. DOI: 10.1109/ROBIO64047.2024.10907428.
Bagassi, S., Fadda, T., & Corsi, M. Advanced human machine interfaces for drone monitoring: assessment of the technological framework for the design of an augmented reality interface. Available at: https://www.icas.org/icas_archive/icas2024/data/papers/icas2024_1059_paper.pdf (accessed: 27 September 2025).
Azuma, R.T. A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 1997, vol. 6, iss. 4, pp. 355-385. DOI: 10.1162/pres.1997.6.4.355.
Mugruza-Vassallo, C. A., Granados-Domínguez, J. L., Flores-Benites, V., & Córdova Berríos, L. L. Different Markov chains modulate visual stimuli processing in a Go–Go experiment in 2D, 3D, and augmented reality. Frontiers in Human Neuroscience, 2022, vol. 16, pp. 1-13. DOI: 10.3389/fnhum.2022.955534.
Kliushnikov, I., Fesenko, H., Fedorenko, G., Rudakov, S., Mikhalevskyi, V., & Kompaniiets, O. Swarm of unmanned aerial vehicles as a multistate queueing system with non-controlled and controlled degradation. 12th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, IEEE, 2022, pp. 1-7. DOI: 10.1109/DESSERT58054.2022.10018784.
Rodríguez-Fernández, V., Gonzalez-Pardo, A., & Camacho, D. Finding behavioral patterns of UAV operators using multichannel hidden Markov models. IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 2016, IEEE, pp. 1-8. DOI: 10.1109/SSCI.2016.7850101.
Abakumov, A., Kharchenko, V., & Ponochovnyi, Y. UAV Cyber Resilience Assessment Method: Combining IMECA, Penetration Testing and State-space Markov Modeling. International Journal of Computing, 2025, vol. 24, iss. 4, pp. 790-801. DOI: 10.47839/ijc.24.4.4346.
Kharchenko, V., Kliushnikov, I., Rucinski, A., Fesenko, H., & Illiashenko, O. UAV Fleet as a Dependable Service for Smart Cities: Model-Based Assessment and Application. Smart Cities, 2022, vol. 5, iss. 3, pp. 1151-1178. DOI: 10.3390/smartcities5030058.
Kabashkin, I., Iskakov, D., Topilskiy, R., Tlepiyeva, G., Sultanov, T., & Sansyzbayeva, Z. Communication Infrastructure Design for Reliable UAV Operations in Air Mobility Corridors. Drones, 2025, vol. 9, iss. 6, article no. 401. DOI:10.3390/drones9060401.
Kliushnikov, I. Safety and security assessment of unmanned aerial vehicles application using Markov models. Systemy ozbroiennia i viiskova tekhnika – Systems of Arms and Military Equipment, 2023, no. 4(76), pp. 51-57. DOI: 10.30748/soivt.2023.76.05. (In Ukrainian).
Kharchenko, V., Ponochovnyi, Y., Ivanchenko, O., Fesenko, H., & Illiashenko, O. Combining Markov and Semi-Markov Modelling for Assessing Availability and Cybersecurity of Cloud and IoT Systems. Cryptography, 2022, vol. 6, iss. 3, article no. 44. DOI: 10.3390/cryptography6030044.
DOI: https://doi.org/10.32620/reks.2025.4.03
Refbacks
- There are currently no refbacks.
