Digital transformation of the occupational health and safety management system in civil aviation through synergetic integration of digital twin and ai agents’ technologies
Abstract
Keywords
Full Text:
PDFReferences
Koshekov, K., Kalekeyeva, M., Seidakhmetov, B., Kaliyeva, G., Assilbekova, I., & Gozhakhmetova, M. Monitoring aviation personnel potential according to the competence approach. Eastern-European Journal of Enterprise Technologies, 2024, vol. 127, no. 1(3), pp. 64–77. DOI: 10.15587/1729-4061.2024.298479.
Kazakhstan Respublikasy Ukimetinіn "Kazakhstan Respublikasynyn kolik-logistikalyk әleuetin damytudyn 2030 zhyllga deіngі tuzhyrymdamasyn bekіtu turaly" 2022 zhyldy 30 zheltoksandaghy № 1116 kaulysy [Resolution of the Government of the Republic of Kazakhstan dated December 30, 2022 No. 1116 "On approval of the Concept for the development of the transport and logistics potential of the Republic of Kazakhstan until 2030"]. Available at: https://www.gov.kz/memleket/entities/aqmola-upt/documents/details/478254?lang=kk (accessed 08.06.2025). (In Kazakh).
"Eldi aumaktik-kenistikte damytudyn 2030 zhilga deyingi bolzhamdy skemasyn bekitu turaly" Kazakhstan Respublikasynyn Prezidenti Zharlygynyn zhobasy turaly [On the draft Decree of the President of the Republic of Kazakhstan "On approval of the Forecast scheme for territorial and spatial development of the country until 2030"]. Available at: https://adilet.zan.kz/kaz/docs/P1900000625 (accessed 08.06.2025). (In Kazakh).
Kazakhstannyn kolik-logistika salasy [Transport and logistics industry of Kazakhstan]. Available at: https://aifc.kz/wp-content/uploads/2024/07/2.1-qazaqstannyng-koelik-logistika-salasy-saewir-2024.pdf (accessed 08.06.2025). (In Kazakh).
Davoudi Kakhki, F., Mosher, G. A., & Freeman, S. A. Use of Neural Networks to Identify Safety Prevention Priorities in Agro-Manufacturing Operations within Commercial Grain Elevators. Applied Sciences, 2019, vol. 9, no. 21, art. no. 4690. DOI: 10.3390/app9214690.
Rojek, I., Mikołajewski, D., & Marciniak, T. Digital Twins in 3D Printing Processes Using Artificial Intelligence. Electronics, 2024, vol. 13, no. 17, art. no. 3550. DOI: 10.3390/electronics13173550.
Koshekov, K., Pirmanov, I., Alibekkyzy, K., Belginova, S., Karymsakova, M., & Baidildina, A. Digital twins technology in the educational process of aviation equipment repair. Indonesian Journal of Electrical Engineering and Computer Science, 2023, vol. 32, no. 2, pp. 752-762. DOI: 10.11591/ijeecs.v32.i2.pp752-762.
Holub, S. V., & Tolbatov, D. V. Metod syntezu bahatosharovoi modeli monitorynhovo prohramnoho ahenta [Method for Synthesising a Multilayer Model of a Monitoring Software Agent]. Mathematical Machines and Systems, 2023, vol. 1, pp. 101-111. DOI: 10.34121/1028-9763-2023-1-101-111. (In Ukrainian).
Ziv, O. How AI Agents Will Disrupt SaaS in 2025. Available at: https://medium.com/@oriziv4/how-ai-agents-will-disrupt-saas-in-2025-7567d793ca68 (accessed 08.06.2025).
Petrenko, A. Agent-based approach to implementing artificial intelligence (AI) in service-oriented architecture (SOA). System Research & Information Technologies, 2025, vol. 1, pp. 104-123. DOI: 10.20535/SRIT.2308-8893.2025.1.08.
Xue, J., Zhang, Q., Zhang, W., Esangbedo, M. O., & Wu, L. The Impact of Emerging Technologies in the Aviation Manufacturing Industry: A Case Study of the Gradual-Change Factors in Shaanxi, PR China. IEEE Transactions on Engineering Management, 2024, vol. 71, pp. 220–232. DOI: 10.1109/tem.2021.3118709.
Allen, B. D. Digital Twins and Living Models at NASA. 2021. Available at: https://ntrs.nasa.gov/citations/20210023699 (accessed 08.06.2025).
Shafto, M., Conroy, M., Royle, D., Glaessgen, E., Kemp, C., LeMoinge, J., & Wang, L. NASA Technology Roadmaps. TA 11: Modelling, Simulation, Information Technology, and Processing. Available at: https://www.lpi.usra.edu/sbag/goals/capability_inputs/2015_Tech_11_modeling_simulation.pdf (accessed 08.06.2025).
Fuller, A., Day, C., Fan, Z., & Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access, 2019, vol. 8, pp. 108952–108971. DOI: 10.1109/access . 2020.2998358.
Hakiri, A., Gokhale, A., Yahia, S. B., & Mellouli, N. A comprehensive survey on digital twin for future networks and emerging Internet of Things industry. Computer Networks, 2024, vol. 244, art. no. 110350. DOI: 10.1016/j.comnet.2024.110350.
Jeremiah, S. R., El Azzaoui, A., Xiong, N. N., & Park, J. H. A comprehensive survey of digital twins: Applications, technologies and security challenges. Journal of Systems Architecture, 2024, vol. 151, art. no. 103120. DOI: 10.1016/j.sysarc.2024.103120.
Dalle Mura, M., & Dini, G. An augmented reality approach for supporting panel alignment in car body assembly. Journal of Manufacturing Systems, 2021, vol. 59, pp. 251–260. DOI: 10.1016/j.jmsy.2021.03.004.
Hu, W., Tan, J., Zhang, T., Deng, X., & Liu, Z. Digital twin: a state-of-the-art review of its enabling technologies, applications and challenges. Journal of Intelligent Manufacturing and Special Equipment, 2021, vol. 2, no. 1, pp. 1–34. DOI: 10.1108/jimse-12-2020-010.
Wang, C., Li, Y., & Cai, Z. Sustainable Blockchain-Based Digital Twin Management Architecture for IoT Devices. IEEE Internet of Things Journal, 2023, vol. 10, no. 8, pp. 6535–6548. DOI: 10.1109/jiot.2022.3153653.
Wu, В., & Su, Z. The Application of Digital Technology in the Field of Civil Aircraft Fireproof. Eng. Proc., 2024, vol. 80, iss. 1, art. no. 31. DOI: 10.3390/engproc2024080031.
Agnusdei, G., Elia, V., & Gnoni, V. Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Appl. Sci., 2021, vol. 11, iss. 6, art. no. 2767. DOI: 10.3390/app11062767.
Guo, S., West, A., Theodossiades, S., & Jiang, J. Design of a Modularized IoT Multi-Functional Sensing System and Data Pipeline for Digital Twin-Oriented Real-Time Aircraft Structural Health Monitoring. Sensors. 2025, vol. 25, iss. 21. DOI: 10.3390/s25216531.
Liu, J., & et al., Digital Twin Civil Aviation Research Airport for Aircraft Security and Environment Protection. IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 2022, pp. 408-412. DOI: 10.1109/ICCASIT55263.2022.9986522.
Werbińska-Wojciechowska, S., Giel, R., & Winiarska, K. Digital Twin Approach for Operation and Maintenance of Transportation System-Systematic Review. Sensors, 2024, vol. 24, no. 18, art. no. 6069. DOI: 10.3390/s24186069.
Conde, J., Munoz-Arcentales, A., Romero, M., Rojo, J., Salvachúa, J., Huecas, G., & Alonso, Á. Applying digital twins to manage information in turnaround event operations in commercial airports. Advanced Engineering Informatics, 2022, vol. 54, art. no. 101723. DOI: 10.1016/j.aei.2022.101723.
Koshekov, К., Anayatova, R., Seidakhmetov, B., Savostin, А., & Fedorov, I. Aviation Profiling Method Based on Deep Learning Technology for Emotion Recognition by Speech Signal. Transport and Telecommunication Journal, 2021, vol. 22, no. 4, pp. 471–481. DOI: 10.2478/ttj-2021-0037.
Kabashkin, I. Digital Twin Framework for Aircraft Lifecycle Management Based on Data-Driven Models. Mathematics, 2024, vol. 12, no. 19, art. no. 2979. DOI: 10.3390/math12192979.
Mousavi, Y., Gonizzi Barsanti, S., McDougall, K., Karimi, A. A., Rossi, A., & Gharineiat, Z. Digital Twin Technology in Built Environment: A Review of Applications, Capabilities and Challenges. Smart Cities, 2024, vol. 7, no. 5, pp. 2594–2615. DOI: 10.3390/smartcities7050101.
Amanova, G., Akimova, B., Zholayeva, M., Moldashbayeva, L., & Saparbaeva, S. Problems and prospects in development of digital technologies in accounting and auditing at social enterprises of the Republic of Kazakhstan. RIVISTA DI STUDI SULLA SOSTENIBILITA’, 2023, vol. 13, no. 1, pp. 65–81. DOI: 10.3280/riss2023-001-s1005.
Long, K., Ma, C., Li, H., Li, Z., Huang, H., Shi, H., Huang, Z., Sheng, Z., Shi, L., Li, P., Chen, S., & Li, X. AI-Enabled Digital Twin Framework for Safe and Sustainable Intelligent Transportation. Sustainability, 2025, vol. 17, iss. 10, art. no. 4391. DOI: 10.3390/su17104391.
Kalantayevskaya, N., Savostin, A., Murat, K., Latypov, S., & Koshekov, K. Design of decision-making support system in power grid dispatch control based on the forecasting of energy consumption. Cogent Engineering, 2022, vol. 9, no. 1, art. no. 2026554. DOI: 10.1080/23311916.2022.2026554.
Zhou, T., Zhang, Z., Tang, D., & Zhu, H. Multi-agent reinforcement learning for online scheduling in smart factories. Robotics and Computer-Integrated Manufacturing, 2021, vol. 72, art. no. 102202. DOI: 10.1016/j.rcim.2021.102202.
Mersha, M., Lam, K., Wood, J., Alshami, A. K., & Kalita, J. Explainable artificial intelligence: A survey of needs, techniques, applications, and future direction. Neurocomputing, 2024, vol. 599, art. no. 128111. DOI: 10.1016/j.neucom.2024.128111.
Ning, Z., & Xie, L. A survey on multi-agent reinforcement learning and its application. Journal of Automation and Intelligence, 2024, vol. 3, no. 2, pp. 73–91. DOI: 10.1016/j.jai.2024.02.003.
Koay, A. M. Y., Radke, K., Ko, R. K. L., & Hettema, H. Machine learning in industrial control system (ICS) security: current landscape, opportunities and challenges. Journal of Intelligent Information Systems, 2022, vol. 60, no. 2, pp. 377–405. DOI: 10.1007/s10844-022-00753-1.
Huang, C., Yao, X., Zhang, Z., & Mao, B. An Overview of Artificial Intelligence Ethics. IEEE Transactions on Artificial Intelligence, 2023, vol. 4, no. 4, pp. 799–819. DOI: 10.1109/tai.2022.3194503.
Soori, M., Arezoo, B., & Dastres, R. Digital twin for smart manufacturing, A review. Sustainable Manufacturing and Service Economics, 2023, vol. 2, art. no. 100017. DOI: 10.1016/j.smse.2023.100017.
Liu, S., Bao, J., & Zheng, P. A review of digital twin-driven machining: From digitization to intellectualization. Journal of Manufacturing Systems, 2023, vol. 67, pp. 361–378. DOI: 10.1016/j.jmsy.2023.02.010.
Wang, K., Liu, X., Hu, Q., Qiu, R., Xu, H., & Wang, H. Digital twin-driven safety management and decision support approach for port operations and logistics. Frontiers in Marine Science, 2024, vol. 11, art. no. 1455522. DOI: 10.3389/fmars.2024.1455522
Kazakhstan Respyblikasyndaky kolik (2024 zhylgy qantar-zheltoqsan) [Transport in the Republic of Kazakhstan (January–December 2024)]. Available at: https://stat.gov.kz/industries/business-statistics/stat-transport/publications/279840/ (accessed 08.06.2025). (In Kazakh).
Kazakhstanda zholaushyldardy әue koligimen tasymaldau kөlemi 23%-ga arttы [The volume of passenger transportation by air in Kazakhstan increased by 23%]. Available at: https://www.gov.kz/memleket/entities/transport/press/news/details/673508?lang=kk (accessed 08.06.2025). (In Kazakh).
Radanliev, P., Anthi, E., Montalvo, R. M., Van Kleek, M., Maddox, L., Burnap, P., Santos, O., De Roure, D., & Walton, R. Artificial intelligence and machine learning in dynamic cyber risk analytics at the edge. SN Applied Sciences, 2020, vol. 2, art. no. 1773. DOI: 10.1007/s42452-020-03559-4.
Helmus, J. J., & Collis, S. M. The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. Journal of Open Research Software, 2016, vol. 4, no. 1, art. no. 25. DOI: 10.5334/jors.119.
Sinha, R. K. Book review: Christoph Molnar. 2020. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Metamorphosis: A Journal of Management Research, 2024, vol. 23, no. 1, pp. 92–93. DOI: 10.1177/09726225241252009.
Mienye, I. D., & Sun, Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access, 2022, vol. 10, pp. 99129–99149. DOI: 10.1109/access.2022.3207287.
Shao, Z., Ahmad, M. N., & Javed, A. Comparison of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR Features for Mapping Urban Impervious Surface. Remote Sensing, 2024, vol. 16, no. 4, art. no. 665. DOI: 10.3390/rs16040665.
DOI: https://doi.org/10.32620/reks.2025.4.01
Refbacks
- There are currently no refbacks.
