Study on potential application of brightness temperature models in passive remote sensing
Abstract
Keywords
Full Text:
PDFReferences
Hong, Z., Moreno, H. A., Li, Z., Li, S., Greene, J. S., Hong, Y., & Alvarez, L. V. Triple Collocation of Ground-, Satellite- and Land Surface Model-Based Surface Soil Moisture Products in Oklahoma—Part I: Individual Product Assessment. Remote Sensing, 2022, vol. 14, no. 22, article no. 5641. DOI: 10.3390/rs14225641.
Wu, X. Assessment of Effective Roughness Parameters for Simulating Sentinel-1A Observation and Retrieving Soil Moisture over Sparsely Vegetated Field. Remote Sensing, 2022, vol. 14, no. 23, article no. 6020. DOI: 10.3390/rs14236020.
Duan, S.-B., Han, X.-J., Huang, C., Li, Z.-L., Wu, H., Qian, Y., Gao, M., & Leng, P. Land Surface Temperature Retrieval from Passive Microwave Satellite Observations: State-of-the-Art and Future Directions. Remote Sensing, 2020, vol. 12, no. 16, article no. 2573. DOI: 10.3390/rs12162573.
Xu, R., Pan, Z., Han, Y., Zheng, W., & Wu, S. Surface Properties of Global Land Surface Microwave Emissivity Derived from FY-3D/MWRI Measurements. Sensors, 2023, vol. 23, no. 12, article no. 5534. DOI: 10.3390/s23125534.
Bettenhausen, M. H., & Anguelova, M. D. Brightness Temperature Sensitivity to Whitecap Fraction at Millimeter Wavelengths. Remote Sensing, 2019, vol. 11, no. 17, article no. 2036. DOI: 10.3390/rs11172036.
Sharifnezhad, Z., Norouzi, H., Prakash, S., Blake, R., & Khanbilvardi, R. Diurnal Cycle of Passive Microwave Brightness Temperatures over Land at a Global Scale. Remote Sensing, 2021, vol. 13, no. 4, article no. 817. DOI: 10.3390/rs13040817.
Nambiar, M. K., Ambadan, J. T., Rowlandson, T., Bartlett, P., Tetlock, E., & Berg, A. A. Comparing the Assimilation of SMOS Brightness Temperatures and Soil Moisture Products on Hydrological Simulation in the Canadian Land Surface Scheme. Remote Sensing, 2020, vol. 12, no. 20, article no. 3405. DOI: 10.3390/rs12203405.
Linkova, A. M., & Khlopov, G. I. Vosstanovlenie intensivnosti zhidkikh osadkov s pomoshch'yu mnogo-chastotnogo aktivno-passivnogo zondirovaniya [Reconstruction of liquid precipitation intensity using multi-frequency active-passive sensing]. Radiofizika i elektronika – Radiophysics and electronics, 2014, vol. 5(19), no. 3, pp. 26-31. Available at: http://nbuv.gov.ua/UJRN/rphre_2014_5(19)_3_6 (accessed September 13, 2023). (In Russian)
Schulte, R. M., Kummerow, C. D., Berg, W., Reising, S. C., Brown, S. T., Gaier, T. C., Lim, B. H., & Padmanabhan, S. A Passive Microwave Retrieval Algorithm with Minimal View-Angle Bias: Application to the TEMPEST-D CubeSat Mission. Journal of Atmospheric and Oceanic Technology, 2020, vol. 37, no. 2, pp. 197-210. DOI: 10.1175/JTECH-D-19-0163.1.
McCarthy, S., Crawford, S., Wood, C., Lewis, M. D., Jolliff, J. K., Martinolich, P., Ladner, S., Lawson, A., & Montes, M. Automated Atmospheric Correction of Nanosatellites Using Coincident Ocean Color Radiometer Data. Journal of Marine Science and Engineering, 2023, vol. 11, no. 3, article no. 660. DOI: 10.3390/jmse11030660.
Pathiranage, D. S., Leigh, L., & Pinto, C. T. Evaluation of Low-Cost Radiometer for Surface Reflectance Retrieval and Orbital Sensor’s Validation. Remote Sensing, 2023, vol. 15, no. 9, article no. 2444. DOI: 10.3390/rs15092444.
Mel'nik, Yu. A., Zubkovich, S. G., Stepanenko, V. D., Sokolov, Yu. P., Gubin, V. A., Dulevich, V. E., Pereslegin, S. V., Vertyagin, A. A., Glushkov, V. M., & Yurkov, Yu. A. Radiolokatsionnye metody issledovaniya Zemli [Radar methods of Earth exploration]. Moscow, Sovetskoe radio Publ., 1980. 262 p.
Volosyuk, V. K., & Kravchenko, V. F. Statisticheskaya teoriya radiotekhnicheskikh sistem distantsionnogo zondirovaniya i radiolokatsii [Statistical theory of radio-technical systems of remote sensing and radiolocation]. Moscow, Fiziko-matematicheskaya literatura Publ., 2008. 704 p.
Pandey, P., & Kakar, R. An empirical microwave emissivity model for a foam-covered sea. IEEE Journal of Oceanic Engineering, 1982, vol. 7, no. 3, pp. 135-140. DOI: 10.1109/JOE.1982.1145527.
Wei, E., & Ge, Y. A microwave emissivity model of sea surface under wave breaking. Chinese Physics, 2005, vol. 14, no. 6, article no. 1259. DOI: 10.1088/1009-1963/14/6/036.
Paloscia, S., Macelloni, G., & Santi, E. Soil Moisture Estimates From AMSR-E Brightness Temperatures by Using a Dual-Frequency Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2006, vol. 44, no. 11, pp. 3135-3144. DOI: 10.1109/TGRS.2006.881714.
Shi, J., Jiang, L., Zhang, L., Chen, K. S., Wigneron, J. P., Chanzy, A., & Jackson, T. J. Physically Based Estimation of Bare-Surface Soil Moisture With the Passive Radiometers. IEEE Transactions on Geoscience and Remote Sensing, 2006, vol. 44, no. 11, pp. 3145-3153. DOI: 10.1109/TGRS.2006.876706.
Munoz-Martin, J. F., Rodriguez-Alvarez, N., Bosch-Lluis, X., & Oudrhiri, K. Effective Surface Roughness Impact in Polarimetric GNSS-R Soil Moisture Retrievals. Remote Sensing, 2023, vol. 15, no. 8, article no. 2013. DOI: 10.3390/rs15082013.
Stepanenko, V. D., Shchukin, G. G., Bobylev, L. P., & Matrosov, S. Yu. Radioteplolokatsiya v meteorologii [Radio-thermal location in meteorology]. Leningrad, Gidrometeoizdat Publ., 1987. 280 p.
Wilheit, T. T., & Chang, A. T. C. An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer. Radio Science, 1980, vol. 15, no. 3, pp. 525-544. DOI: 10.1029/RS015i003p00525.
Order of the Cabinet of Ministers of Ukraine “On approval of the Concept of the National Target Scientific and Technical Space Program of Ukraine for 2021-2025” of January 13, 2021 № 15-р. (In Ukrainian).
Resolution of the Verkhovna Rada of Ukraine “On Adopting as a Basis the Draft Law of Ukraine on Approval of the National Target Scientific and Technical Space Program for 2021-2025” of November 4, 2022 № 2727-IX. (In Ukrainian).
DOI: https://doi.org/10.32620/reks.2024.1.05
Refbacks
- There are currently no refbacks.