ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

236
Radioelectronic and Computer Systems, 2025, no. 4(116)

UDC 004.42:004.415.2:004.052.42 doi: 10.32620/reks.2025.4.16

Oleg ODARUSHCHENKOl'Z, Olena ODARUSHCHENKOl, Oleksii STRIUKZ,
Viacheslav SHAMANSKIY?, Petro HROZA?®

! Poltava State Agrarian University, Poltava, Ukraine

2 LLC RadICS, Kropyvnytskyi, Ukraine

% Military Institute of Telecommunications and Information Technologies
named after the Heroes of Kruty, Kyiv, Ukraine

AUTOMATING REQUIREMENTS TRACEABILITY IN PROJECT
DOCUMENTATION USING TRACETREND TOOL.:
MODEL, DESIGN AND APPLICATION

The object of the study is a formalized model of requirements traceability in project documentation for hardware-
software systems. The subject matter of the research encompasses the application of mathematical modeling
and tool-based approaches to automate the traceability process, focusing on the design and functionality of the
TraceTrend software tool. The primary goal of the study is to improve the quality and integrity of requirements
management by implementing traceability mechanisms that ensure logical consistency, hierarchical correctness,
and complete test coverage across all project documentation stages. The research tasks include: identifying
challenges related to manual requirements tracing in safety-critical domains; constructing a formal mathemat-
ical model based on set theory, binary relations, and directed graphs; defining binary matrices for requirement
inheritance and test coverage; developing automated analysis techniques for traceability conditions; integrating
the model into the TraceTrend tool; and demonstrating its applicability through a real-world case study. The
study employed the following methods: mathematical modeling of binary relations, model-based testing, static
analysis of documentation structures, and the use of Boolean matrix operations for verifying coverage and con-
sistency. As a result of the research, a formal model of requirements traceability was created and implemented
in the TraceTrend tool. The tool enables automated extraction of requirement identifiers, construction of trace-
ability matrices, and verification of coverage and logical completeness. The application of TraceTrend has
shown its effectiveness in identifying undocumented requirements, broken dependencies, and gaps in test cover-
age early in the project lifecycle. Conclusions. The integration of formal models and traceability tools signifi-
cantly strengthens the reliability and auditability of requirements management processes in engineering pro-
jects. TraceTrend has proven to be a valuable instrument for improving documentation quality and supporting
compliance with standards such as IEC 61508 and ISO/IEC/IEEE 29148. Although the tool requires initial con-
figuration for requirement markup, its benefits in enhancing visibility, consistency, and verification readiness
justify its adoption in high-assurance development environments. The study confirms the necessity of embedding
formal traceability analysis into standard project workflows to ensure both structural rigor and regulatory com-
pliance.

Keywords: traceability analysis; mathematical modeling; formal verification; TraceTrend tool; test coverage;
documentation consistency; safety standards; automated analysis; system engineering.

One of the key aspects of requirements management
is requirements traceability—the process of establishing,

1. Introduction

1.1. Motivation

In modern project activities, especially in the devel-
opment of hardware and software systems for critical or
technically complex applications, significant attention is
devoted to requirements management throughout all
stages of the project life cycle. The quality of requirement
formulation, organization, and interrelation affects not
only the functionality of the final product but also its
compliance with safety, reliability, and quality stand-
ards [1, 2].

maintaining, and analyzing links between various types
of requirements (e.g., system, functional, non-functional,
and interface), as well as between requirements and test
scenarios, implementation components, risks, defects,
and other project artifacts. Traceability is a prerequisite
for validation, verification, change management, and au-
dits. Within project documentation, it ensures logical
consistency and completeness.

In typical hardware-software or system projects,
there is a need to efficiently handle large volumes of tex-

Creative Commons Attribution
NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Information security and functional safety

237

tual documentation (requirements, specifications, tech-
nical assignments, detailed design descriptions, test
plans, reports), where requirements often have a complex
hierarchical structure and the links between them are not
explicitly expressed. This complicates manual mainte-
nance of traceability, especially in the context of frequent
changes, collaborative development, and multi-level re-
view processes. To support automated analysis of project
documentation and enable formal traceability of require-
ments, this study proposes a mathematical model based
on the concepts of set theory, binary relations, directed
graphs, and Boolean matrices. Based on this model, the
authors present the TraceTrend tool, designed to auto-
matically build traceability links through configurable re-
quirements markup in project documents. TraceTrend
enables users to identify requirements, establish hierar-
chical relationships, verify test coverage, and detect
traceability violations in accordance with international
standards.

This paper provides:

— a formal description of the mathematical model
of requirements traceability;

— a demonstration example based on real project
documentation;

— an analysis of the TraceTrend as a tool to imple-
ment the traceability process;

— a list of possible improvements to the tool con-
sidering project management requirements.

The obtained results can be used to automate docu-
mentation checks, support requirements validation, and
integrate traceability into the overall project management
system.The research lies within the domain of infor-
mation technologies, specifically in the areas of software
engineering, requirements engineering, software devel-
opment lifecycle (SDLC) management, and the design of
hardware-software systems for critical applications. The
work also intersects with systems engineering, functional
safety, and tool-assisted quality assurance of project doc-
umentation. In the design of complex IT systems—partic-
ularly those that are safety-critical, security-related, or
high-reliability-requirements traceability plays a key
role. It involves establishing connections between re-
quirements, implementation components, test cases, and
risk factors. In practice, requirements traceability can be
performed manually without using specialized software
tools, or with the support of dedicated traceability tools.
Existing traceability solutions range from simple scripts
for identifying and linking requirements in textual docu-
ments to comprehensive and sophisticated industrial plat-
forms integrated into Application Lifecycle Management
(ALM) systems [3]. However, in small to medium and
even relatively large-scale projects, or within research
settings, there is a demand for a flexible, configurable

tool that enables traceability within textual documenta-
tion. In this context, the development of mathematical
models that provide formal traceability validation and in-
strumented analysis of documentation links becomes
highly relevant.

The problem is formulated as the need to provide a
mathematically justified and tool-supported process for
requirements traceability that:

— detects inconsistencies or missing links in doc-
umentation;

— allows the construction of a requirement hierar-
chy and control of test coverage;

— integrates into project documentation without
requiring a complex engineering environment.

This is particularly important for producing verifia-
ble, understandable, reproducible, and certifiable docu-
mentation—especially in projects related to safety and
quality.

Requirements traceability has been studied in the
context of requirements engineering [4, 5], requirements
management [6], and traceability modeling [7], as well as
within commercial tools such as IBM DOORS, Polarion,
and Reqtify [8]. Despite the availability of proprietary so-
lutions, the creation of an open and adaptive traceability
tool with formal validation of dependencies in project
documentation remains an open challenge.

Unresolved aspects of the problem include:

— developing a mathematical model that accounts
for not only direct and reverse dependencies but also for
violations of traceability;

— designing a flexible configuration model for
traceability that is independent of any specific ALM plat-
form;

— ensuring full verification of requirements based
on marked-up textual documents.

The aim of the study is to develop a mathematically
grounded and tool-supported approach to requirements
traceability in project documentation, considering struc-
tural hierarchies, test coverage, and functional safety
standards.

The main objectives of the study are as follows:

1. To construct a mathematical model of require-
ments traceability based on sets, binary relations, and di-
rected graphs.

2. To develop a demonstrative application of the
model to real-world multi-level project documentation.

3. To implement traceability using the TraceTrend
tool, with consideration for configurable rule sets.

4. To analyze violations of traceability conditions
according to functional safety standards.

5. To propose directions for improving the Trace-
Trend tool in order to expand its capabilities for practical
project applications.

238

Radioelectronic and Computer Systems, 2025, no. 4(116)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

1.2. State of the art

In modern software engineering, requirements
traceability is one of the central topics—both in the con-
text of development quality assurance and in ensuring
compliance with software lifecycle standards. Traceabil-
ity enables artifact tracking across all stages of project
activity: from requirements analysis to verification, re-
lease, and maintenance [9]. It is a key component for
demonstrating that all safety-related requirements have
been properly implemented and tested. Similarly, the
ISO/IEC/IEEE 29148 [2] standard on requirements engi-
neering emphasizes the importance of traceability for en-
suring the clarity, completeness, and consistency of re-
quirements—where consistency refers to the property of a
requirement set that ensures the absence of contradictions
between individual requirements or their components.

From a scientific perspective, requirements tracea-
bility is an active research area in software engineering.
Scientific studies explore various aspects of traceability,
including models for representing links between require-
ments, methods for automatically establishing and main-
taining these links (e.g., based on natural language pro-
cessing or information retrieval), and evaluation of the
effectiveness of different traceability approaches
[10, 11].

Over the past decades, the scientific community has
proposed a variety of traceability methods, such as:

— graph-based traceability models that formalize
links between artifacts [12];

— semantic analysis-based traceability [13];

— machine learning approaches for automatic ex-
traction of traceability links from textual sources [14, 15].

Despite significant progress, several challenges re-
main unresolved, including:

— implementing simple traceability in textual doc-
umentation without requiring complex environments;

— validating traceability using formal rules;

— aligning tests with requirements without manual
link specification.

Currently, a wide range of software tools exists to
support the requirements traceability process. These tools
range from simple spreadsheet-based solutions to com-
prehensive Requirements Management (RM) systems.

The main functional categories of traceability tools
include:

— enterprise-grade ALM and requirements manage-

ment platforms, such a5 BM DOORS / DOORS Next
Generation, Polarion ALM, and Jama Connect offer ex-
tensive capabilities for creating, managing, tracing, and
analyzing requirements throughout the development
lifecycle. These tools typically support multiple types of
traceability links, visualization of traceability matrices
and dependency graphs, and integration with other

development tools [16]. However, their disadvantages in-
clude high licensing costs, complexity of deployment,
and a steep learning curve, which limits their applicabil-
ity in small-scale or academic projects.;

— test management-oriented tools, such as Jira
with the Xray plugin, TestRail, HP ALM, and Conflu-
ence, provide traceability from requirements to test cases
and test results. These tools support requirements cover-
age analysis and tracking of validation status, particularly
in agile development environments [17]. At the same
time, their functionality is primarily focused on testing,
and integration with broader requirements engineering
processes is limited, making it difficult to achieve com-
plete lifecycle traceability;

— model-based design and UML-oriented tools,
such as Enterprise Architect or Rational Rhapsody, can
support traceability from requirements to model ele-
ments, ensuring alignment between abstract models and
specified requirements. Similar approaches to linking re-
quirements with architectural and design artifacts are dis-
cussed in recent studies on embedded and safety-critical
systems [18, 19]. Nevertheless, these tools usually lack
automated verification of test coverage, require advanced
modeling expertise, and provide limited integration with
textual requirement specifications;

— lightweight and manual approaches, commonly
used in smaller projects, where requirements traceability
is maintained using spreadsheets such as Microsoft Excel
or Google Sheets. Although this approach is less auto-
mated, it may be sufficient for simple use cases and is
frequently recommended in practitioner-oriented guide-
lines [20]. However, spreadsheet-based traceability is er-
ror-prone, difficult to maintain at scale, and does not pro-
vide formal validation mechanisms [21]. This contrast
between enterprise-grade ALM platforms and simplistic
spreadsheet-based approaches illustrates a gap in current
practice. On one hand, professional ALM systems offer
formal rigor but are costly, complex, and require substan-
tial training. On the other hand, spreadsheets are accessi-
ble and low-cost but error-prone and lack any formal val-
idation of traceability. This gap has arisen because re-
source-constrained projects and academic environments
often cannot afford heavy ALM platforms, yet they re-
quire stronger guarantees than spreadsheets can provide.
Recent research efforts propose automated and semi-au-
tomated traceability approaches based on structured fea-
tures, neural networks, or model-based tech-
niques [20 - 22], but these solutions are typically tightly
coupled to specific toolchains or development para-
digms.

TraceTrend is designed precisely to bridge this gap
by combining mathematical rigor with the accessibility
and simplicity of lightweight, document-oriented tools.
However, none of the existing solutions fully satisfies the

Information security and functional safety

239

needs of projects that rely on document-centric work-
flows, operate under resource constraints, or require
mathematically validated traceability without deploying
enterprise-level platforms. This gap motivated the devel-
opment of TraceTrend as a lightweight, configurable, and
standalone tool that integrates formal modeling with
practical document analysis.

1.3. Objectives and Approach

The objective of this article is to develop and vali-
date an instrumental approach to requirements traceabil-
ity in project documentation by means of the TraceTrend
tool. The proposed solution aims to automate the identi-
fication of requirements, construction of their hierar-
chical relationships, verification of test coverage, and de-
tection of inconsistencies in accordance with interna-
tional standards of functional safety and documentation
quality.

To achieve this objective, the following research
approach has been adopted. First, a formal mathematical
model of requirements traceability was constructed,
based on set theory, binary relations, directed graphs, and
Boolean matrices. This model provides a rigorous frame-
work for representing inheritance between requirements,
their association with documents, and their coverage by
test cases. Second, the model was integrated into the
TraceTrend tool, which performs automatic document
scanning, requirement recognition through configurable
regular-expression markup, and construction of tracea-
bility matrices.

The approach enables automated analysis of docu-
mentation consistency and completeness without reliance
on large-scale ALM systems. By verifying traceability
conditions and detecting coverage gaps, the TraceTrend
tool ensures structural correctness and enhances compli-
ance with safety and quality standards such as IEC 61508
and ISO/IEC/IEEE 29148. In contrast to existing solu-
tions that are either manual and error-prone or embedded
in complex industrial platforms, this study proposes a
lightweight and flexible tool-supported method that can
be effectively applied in resource-constrained projects,
research environments, and educational contexts.

Structure of the article is the following.

Section 1. Introduction. Motivation for requirements
traceability and its role in engineering projects is pre-
sented, along with challenges of manual tracing and lim-
itations of existing industrial tools.

Section 2. Mathematical Model of Requirements
Traceability. Theoretical foundations based on sets, bi-
nary relations, directed graphs, and Boolean matrices are
developed. Formal definitions of inheritance, coverage,
and test result functions are provided.

Section 3. Case Study: TraceTrend Tool. The im-
plementation of the proposed model in the TraceTrend

tool is described. The tool’s algorithm, functional capa-
bilities, and application examples are detailed.

Subsection 3.1. Application Algorithm. Step-by-
step workflow of TraceTrend for document markup,
analysis, matrix construction, coverage verification, and
reporting.

Subsection 3.2. Advantages of Using TraceTrend.
Benefits such as error reduction, improved consistency,
and applicability in small-to-medium projects are high-
lighted.

Section 4. Discussion. The significance of auto-
mated traceability analysis is evaluated, and directions
for improving TraceTrend (support of new formats, inte-
gration with ALM tools) are outlined.

Section 5. Conclusions. Summary of contributions,
including formal model development, tool implementa-
tion, and validation results, with emphasis on compliance
and practical applicability.

2. Mathematical Model
of Requirements Traceability

Let us define the following finite sets:

-D={d;,d;, .., dn} — the set of documents that
contain requirements;

-RID={ry ,r3, ..., rc} — the set of unique require-
ment identifiers;

-TID={t; ,t; , ..., tm} — the set of test cases iden-
tifiers.

Within the framework of the mathematical model
for requirements traceability, the following set is intro-
duced:

TR ={Pass, Fail, N/ T}, ()]

where: TR —is a finite set of test execution outcomes that
reflects the verification status of each requirement in ac-
cordance with the established traceability links.

The elements of the set TR are defined as follows:

- Pass — the test case has been executed and the re-
quirement has successfully passed verification;

- Fail —the test case has been executed but the result
is unsatisfactory, the requirement has not passed verifi-
cation;

- N/T (Not Tested) — the requirement is not yet cov-
ered by any test case or the corresponding test has not
been executed. This status serves as an indicator of in-
complete test coverage.

Furthermore, we introduce a relation denoting the
association between a requirement and the document in
which it is formally specified:

8D x RID, (2)

where & is a binary relation that determines in which doc-
ument a specific requirement is formally recorded.

240

Radioelectronic and Computer Systems, 2025, no. 4(116)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Although ¢ is formally defined as a binary relation,
it represents an association (incidence) relation between
requirements and documents, rather than a structural or
dependency relation. Its purpose is to identify the docu-
ment in which a requirement is formally recorded.

The inheritance relation among requirements is de-
fined as a directed binary relation over the set of require-
ments, inducing an acyclic or partially ordered structure.
This relation may be represented using a directed graph
or a dependency tree:

t < RID x RID. 3)

In contrast, the relation t represents a structural de-
pendency between requirements and is therefore inter-
preted as a directed relation that can be represented by a
graph or a dependency tree.

The proposed model does not introduce an explicit
binary relation between documents. Instead, chains of
traceability between documents are formed indirectly
through hierarchical relationships between requirements
and their association with specific documents. If a high-
level requirement (e.g., a system requirement) is associ-
ated with a system requirements document, and its de-
rived lower-level requirements are associated with soft-
ware requirements, module specifications, V&V plans,
and V&V reports, the sequence of these associations con-
stitutes a traceability chain across documents. Conse-
quently, document chains such as “System Requirements
— Software Requirements — Module Requirements —
V&V Plans — V&V Reports” are represented in the
model as a composition of the requirement inheritance
relation and the association relation between require-
ments and documents.

The coverage relation is a binary relation indicat-
ing the traceability between requirements and test cases.
A test case tj covers requirement ri, if (ri, t;) € 6:

O RID x TID.)

The test result function p: TID —» TR, isa map-

ping from the set of test case identifiers (TID) to the set
of test outcomes (TR), such that each test case is assigned
exactly one result value.

The model can be interpreted as a directed graph:

G = (V, E). ()

where V = RID U TID, E =t U 6. This enables the visu-
alization of traceability as a tree or directed acyclic graph,
where nodes represent requirements and tests, and edges
represent inheritance and coverage relations.

To represent the traceability structure as a single
graph, requirements and test cases are modeled as distinct

types of vertices within a unified vertex set. Although re-
quirement identifiers and test case identifiers represent
different artifact types, they are treated uniformly as
graph nodes for the purpose of traceability analysis.

To formally represent hierarchical and traceability
links, binary relation matrices are used. These matrices
allow:

- compact representation of relationships be-
tween elements;

- automated validation of completeness and trace
consistency;

- application of linear algebra methods for struc-
tural analysis.

The requirement inheritance matrix M - is a binary
matrix of size kxk, where k = [RID] - is the number of
requirements in the project. The formal representation of
the requirement inheritance matrix is as follows:

M, e {0,13k, (6)
where
l, if (I’I,I'J)E‘E
M_.[i,j]= 1 (regiurement r; is references to r;);
0, otherwise;

A simple example of a successor matrix is given
below.
Let’s consider a set of 6 requirements:

R={n, 1, 13,14, 15, I}

Let the parent-child relationships between requirements
be defined as: r1i—ry, r1—fs, ro—ra, r3—fs, r5—fg

Then the successor matrix M, e {0,13%° is:

o O O O o o
O B O O O O

o O O O O -
o O O O O k-
o O O O~ O
o O O r»r O O

The traceability matrix My - is a two-dimensional
binary matrix of size kxm, where k=|RID| - is the number
of requirements in the project, and m =|TID] - is the num-
ber of test cases. The formal representation of the require-
ment traceability matrix is as follows:

My e {0,13™, @)

where

Information security and functional safety

241

(test case t; tests the requirement r;);
0, otherwise;

Mol[ij] =

When there exists an inheritance relation ri—r»,
coverage achieved for r, should also be partially propa-
gated to r1. For example, if Test_02 verifies requirement
r2, then ryis indirectly covered through its dependency on
r,. This can be formally represented using the transitive
closure of the inheritance and coverage matrices:

M’ =M, xM g, 8

where M: — is the extended coverage matrix that incor-

porates indirect coverage induced by inheritance rela-
tions.
Thus, if M_[ry, r2] =1 (meaning ry depends on ry)

and M [r2, Test_02]=1, then in the extended coverage

matrix M: [r1, Test_02]=1.

This approach ensures that requirement coverage
reflects not only direct test links but also indirect satis-
faction through dependent requirements.

A simple example of a traceability matrix:

110001
M = :
0 011100

In this example, requirement rs (column 5 of the ma-
trix) has no associated tests, as indicated by zeros in both
columns of the traceability matrix. This means thatrs is a
documented requirement but remains uncovered, i.e., not
validated by any test case. Such situations represent po-
tential risks, since requirements without test coverage
may lead to undetected defects or non-compliance with
project standards. One of the key advantages of the
TraceTrend tool is its ability to automatically highlight
these uncovered requirements, ensuring that no specifi-
cation item is omitted during verification.

Test Results Matrix

(TR - Pass/Fail/N/T) — 2 tests x 6
requirements has the following form:

Mo - P FE N/T N/T N/T P
T IN/T P P P N/T N/T/

This matrix combines traceability with actual test
results: for example, r; is tested by two test cases, but one
of them failed (F). This immediately indicates the risk of
the requirement not being satisfied.

A simplified example for an extended coverage
matrix is as follows:
« |00
M = ,
° 111

where row 1 = Test_01, row 2 = Test_02; column 1 =ry,
column 2 =r,.

As aresult, after considering inheritance, require-
ment rl additionally ‘inherits’ coverage by test Test_02.

The theoretical framework presented in Section 2,
including the formal definitions of relations, matrices,
and evaluation metrics, provides the foundation for the
development of the TraceTrend software tool. The next
section introduces the architecture and practical imple-
mentation of this tool, demonstrating how the proposed
concepts are applied in real project documentation

3. Case Study

TraceTrend is a software tool developed to auto-
mate the process of requirements traceability within pro-
ject documentation. Its primary objective is to minimize
the time required for traceability execution and to reduce
the likelihood of errors that may arise when modifying
requirements or their interconnections. The tool performs
automatic detection and validation of requirements in
documents based on regular expressions and constructs
traceability matrices that reflect the relationships be-
tween requirements and other project elements, such as
tests or design decisions.

The core functional capabilities of TraceTrend in-
clude:

— scanning documents to detect requirements and
their relationships;

— automatic generation of traceability matrices
based on the identified links;

— test coverage verification and requirement status
tracking;

— impact analysis of changes in requirements on the
overall project structure.

The components of the mathematical model de-
scribed above — namely, the set of documents (D) con-
taining requirements, the set of requirement identifiers
(RID), the set of test cases (TID), and the set of test re-
sults (T) — constitute the foundation for building tracea-
bility matrices. These matrices allow tracking the rela-
tionships between requirements, test cases, and other
documentation elements. Based on this mathematical
model, the TraceTrend tool performs automatic scanning
of project documents to identify and validate require-
ments, and to generate traceability matrices. The result-
ing matrix represents the relations between requirements
and test cases, enabling the assessment of whether all

242

Radioelectronic and Computer Systems, 2025, no. 4(116)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

requirements have been verified through testing, and
whether any omissions or errors exist in the documenta-
tion.

3.1. TraceTrend Tool Application Algorithm

The TraceTrend tool operates according to the fol-
lowing algorithm:

1. Document Markup. The user defines regular ex-
pression templates to identify requirements and their re-
lationships within project documents. These expressions
can be configured according to project-specific conven-
tions, enabling TraceTrend to be used with various types
of documentation — from technical requirements to test
reports.

2. Document Analysis. Once the requirements and
tests contained in the document are marked with the ap-
propriate tags, TraceTrend proceeds with its analysis.
During this process, the tool detects requirements, iden-
tifies relationships among them, and determines the cov-
erage of requirements by corresponding test cases. The
working environment of TraceTrend is shown in Fig. 1.

tacer Fle Satng Hlp
TR ORHEZO BHEHHSGRG// 7 B

Tracer Pies:

Work Report
2025.05.16 16561

Start program Tracer Check File name Label

16:56:45 Open Name Project " - Ok.
Directory Project ‘1 Project

roje
of the project tags are rey

Du/Exe/Tacer 11.00/P)

Work wih fie Work with Face matrc Work with bracrg

Resd Fle T

< > dodyne Create bace

Ol Report Lk Budrn

165716 Project: | Directory Project: Dy/Exe/Tracer 11.00/Project

Fig. 1. Working Environment TraceTrend

3. Traceability Matrix Construction. Based on the
identified links between requirements and test cases,
TraceTrend constructs a traceability matrix. This matrix
clearly shows which requirements are associated with
corresponding test cases, whether additional tests are
needed, and whether any violations exist in the relation-
ships between requirements. An example of the con-
structed traceability matrix is shown in Fig. 2.

4. Test Coverage Verification. Each test case is
checked for compliance with the corresponding require-
ments. If a requirement is not covered by any test, this is
indicated in the results, helping to identify gaps in the
testing process. Test coverage verification is shown in
Fig. 3.

5. Reporting and Result Analysis. The tool gener-
ates reports on identified errors, missing requirements,
and inconsistencies within the documentation.

This allows project managers to promptly detect is-
sues at any stage of project execution and apply the
necessary corrective actions. The summary table of trace-
ability results is presented in Fig. 4.

Matrilsi - Excel

Pasu|00p|‘ﬂaHr‘Peue|va|Dfﬁc‘Ham‘Kom| © Momown Bxon 9 O6uwwit socyn|§

[BCEN Eca

™ = o | | BYenosroe popuauponanne~ || P
o oLy~
Sybep | Wpnd Bupasrumanve Uncno | = COPMETPOSETS KK TIOINLY T | 0 b arnposaine
obmena~| ~ - - @Cmnmueexv - -
Crunn -~
Al MR fe || 1D Document v
0% Matrixxlsx - I
| A B|[C | D|E F | e | v | o | 0] \E
1 |iDDocument __Ip1.0]p3.1]D5.1]D5.4
2 [p1o g |-
3 [p3a [-
4 [ps.a I} -
5 [ps.a 1 [o
3 =]
| Tite | statiscs | Mawixi3s [@ ¢ [o
ToToBo B o o-——i + 100

Fig. 2. Constructed Traceability Matrix

\\ TaceTrend - 0o X
e e LT

8= e eS| AEH @RS/ 2

S

Traces e Trace 134
H 1345
2012930 1588 4

“Save Teacer Cutes
Sove Tacer s
/@ dosetacer oDl

Fie name
! "D1.0,F5C Product Concept Dec:
031,585 doc”

1%
9 ok Fies e
15480 Openti & _SmeRetlinkF L= e 5 D055C ity Nohdotion Tt lan o’
. T
Setthe name of the racer 7 /
A % \ Open fie "o
s —

L Nocammest ance (€
= Nocamma ancx (D)
& CO-smcrcnon (F)

en 22
161726 Project Radiy FPGA] v e > LI

Cen Report

Viun ains: D54 UAL RS doox” DIBFSC v | Images (foc”, ") v

Comn] [onen

Fig. 3. Test Coverage Verification

\\ Shoning taces results - o x
Generdl nrmaton Fiters (W12] [Mtscaton | [mres Y| o
ey | | Reauremers rat hve been tsied
Tesce resus anslysi: Tacerl3ts ”D Loction TestRet Level apwert -
1 s 010 Nt { 5
7 fies snshzed: : ENE® o0 T s
1 fie 3 psNe 010 Nt 1 7
File name: “D10FSC Product ConceptDocv | 4 PSNG3 & 010 Nt ' 7
> s psne 2 010 Nt 1 3
Povor Cridrequeerments for PSHOY
RD Location A) totion RD Lotion
1 ERo2e0r 4o 1L 010 1|1 sscos 031
2 s # 051 2 55005 o1
3 s 051 3 s 031
4 s002 ® o051 4 R0 0 o1
s 500 % 051 v s sRo1 o1 v
Trace 10 andef. Crshaned reqrements Lostreferences o pwents
"D Location - PRID Location FleContsinlink -
1 ERQe0 # 010 1N # 010) “D1.0_£5C Product Concept Document doc”
2 R # pao 2 pmor ® D24] “D40_FSC.Sofety_Vaidation,_Test Plan.doca”
3 R0 ! oo 3 PAme 0 024] “D3.0_FSC_Safety_Vaicatics
4 ERazgo ® 00 : ERog ® 021
s pagiol @ pao | s pam # 024 1 “D20,F5C. Safety Vodaticn,_Test Plan.doer” v
Content of equrenent FSI.0F. Dozment DLY
TheFsC operation,
< >
Orerwete to Matrx Sove s Mstix Seve Tracer Remds Gose

Fig. 4. Reporting and

Result Analysis

3.2. Advantages of the TraceTrend Tool

The use of TraceTrend si

mplifies and improves the

requirements traceability process by:

Information security and functional safety

243

— automating traceability operations, which reduces
the likelihood of errors associated with manual data entry
or modification;

—reducing the time required to verify project docu-
mentation for compliance with requirements, thereby sig-
nificantly accelerating the development and testing pro-
cess.

TraceTrend can be particularly useful for small and
medium-sized projects where access to large and expen-
sive requirements management systems is limited. Due to
its flexibility, TraceTrend serves as an effective tool for
analyzing and tracing requirements in resource-con-
strained projects. The tool can also be used for educa-
tional purposes to demonstrate the requirements tracea-
bility process and verify documentation compliance with
established standards.

To evaluate the efficiency of the developed tool, a
pilot study was conducted on a medium-scale project
specification (=240 requirements). The comparison be-
tween manual verification and TraceTrend-based analy-
sis is presented in Table 1.

Table 1
Quantitative comparison of manual vs.
TraceTrend-based traceability verification

Verification Undetected traceability
Approach . -
time (hours) issues
Mar_1ua| 12 4
review
TraceTrend 7 1
4. Discussion

The results of the study demonstrate that the formal-
ization of requirements traceability through mathemati-
cal models and its implementation in the TraceTrend tool
provides significant advantages over manual or semi-au-
tomated approaches.

By introducing binary relations, directed graphs,
and Boolean matrices into the process of documentation
analysis, it becomes possible to not only verify the pres-
ence of links but also to assess their logical consistency
and completeness. This aspect is crucial in safety-critical
projects, where gaps or inconsistencies in traceability
may lead to non-compliance with standards such as IEC
61508 or ISO/IEC/IEEE 29148, thereby jeopardizing
certification.

A key strength of the TraceTrend approach is its fo-
cus on document-oriented projects, where requirements
are embedded in textual artifacts such as specifications,
design descriptions, and test reports in Word and PDF
formats. Unlike heavy ALM platforms (e.g., IBM

DOORS or Polarion ALM), which are optimized for en-
terprise environments but costly and difficult to adapt,
TraceTrend offers a lightweight and configurable alter-
native.

This makes it especially valuable for small-to-me-
dium projects, academic settings, and organizations with
limited resources. Furthermore, the ability to integrate
formal validation rules into documentation workflows
ensures that traceability violations are detected at early
stages, reducing rework and improving overall develop-
ment efficiency.

At the same time, several limitations were identi-
fied. First, TraceTrend requires initial configuration of
regular expressions for requirement markup, which may
demand effort from the project team and domain experts.
Although this step is a one-time investment, it represents
a barrier for non-technical users compared to systems
with built-in parsers and templates. Second, the tool sup-
ports only a limited set of document formats (DOCX,
PDF), which may restrict its adoption in organizations re-
lying on LaTeX or specialized modeling environments.
Third, while TraceTrend performs well in identifying un-
documented requirements and coverage gaps, it does not
yet fully integrate with broader project management sys-
tems, test automation pipelines, or version control repos-
itories.

From a scientific perspective, the results align with
recent research trends in the field of requirements engi-
neering. Approaches such as graph-based traceability
models, natural language processing for trace link recov-
ery, and ML-based classification of requirement-test
pairs demonstrate a shift towards automation and intelli-
gence in traceability management. TraceTrend contrib-
utes to this discourse by showing that formal mathemati-
cal modeling, even without advanced Al, can provide a
robust foundation for ensuring traceability in real-world
documentation.

Finally, the incorporation of visualization tech-
niques (interactive dependency graphs, dashboards)
would improve the interpretability of analysis results and
support project managers in decision-making.

The discussion highlights that TraceTrend bridges a
practical gap between the need for formal rigor in trace-
ability analysis and the demand for accessible, low-cost
tools in engineering projects. While the tool cannot yet
replace enterprise-level platforms, it provides a scalable
and extensible framework that can evolve with project
needs, making it a valuable addition to the toolbox of re-
quirements engineering.

As shown in Table 2, TraceTrend offers a unique
balance of formal validation, low cost, and ease of use,
which distinguishes it from existing categories of tracea-
bility tools.

244 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)
Table 2
Comparison of Traceability Tools
ALM tools Test management
Criterion (DOORS, Polar- (Jira/Xray, mo d::ihr:l Ltools Spr(e;?::Sets TraceTrend
ion, Jama) TestRail) g
Co?t / . High Medium Medium Very low Low
accessibility
Ease of Low Medium Medium High High
deployment
qu_erage Strong Limited to tests Weak None Strong
verification
Form_al n_wodel No No Partial No Yes
validation
Suitability for Low Medium Low/Medium High High
small teams

5. Conclusions

This study has addressed the problem of automating
requirements traceability in project documentation for
hardware—software systems, with particular emphasis on
formal correctness, completeness, and test coverage.

The objective of the research—developing a mathe-
matically grounded and tool-supported approach to re-
quirements traceability—has been successfully achieved.
As a result of the research, a formal model of require-
ments traceability was developed based on set theory, bi-
nary relations, directed graphs, and Boolean matrices.
The model provides a rigorous framework for represent-
ing requirement hierarchies, associations between re-
quirements and documents, traceability links between re-
quirements and test cases. By distinguishing between as-
sociation (incidence) relations and structural dependency
relations, the model ensures semantic clarity and formal
consistency.

The proposed model was implemented in the Trace-
Trend software tool, which enables automated identifica-
tion of requirements in project documents, construction
of traceability matrices, and verification of test coverage.
The tool supports hierarchical traceability across multiple
documentation levels and allows detection of missing,
uncovered, or inconsistently linked requirements at early
stages of the project lifecycle.

The obtained results confirm that the integration of
formal modeling with automated analysis tools signifi-
cantly improves the reliability and auditability of require-
ments management processes. The developed approach
contributes to improving documentation quality and sup-
ports compliance with functional safety and requirements
engineering standards such as IEC 61508 and
ISO/IEC/IEEE 29148. Overall, the study demonstrates
that mathematically justified traceability models, when

combined with lightweight and configurable tooling, pro-
vide an effective solution for managing requirements in
safety-critical and resource-constrained engineering pro-
jects.

Future research will focus on extending the Trace-
Trend tool to support additional document formats, in or-
der to broaden its applicability in academic and industrial
environments including integration with algebraic meth-
ods of requirement engineering and verification [23, 24].

Contribution of authors: article concept, problem
formulation, writing of the original manuscript — Oleg
Odarushchenko; development of the mathematical
model — Olena Odarushchenko; concept of the tracea-
bility tool, analysis and validation of results, software
testing, and manuscript review — Oleksii Striuk,
Viacheslav Shamanskiy; development of the Trace-
Trend tool, preparation of demonstration examples —
Petro Hroza.

Conflict of Interest
The authors declare that they have no conflict of in-
terest concerning this research, whether financial, per-
sonal, authorship or otherwise, that could affect the re-
search and its results presented in this paper.

Financing
This study was conducted without financial support.

Data Availability
The manuscript has no associated data.

Use of Artificial Intelligence
The authors confirm that they did not use artificial
intelligence methods while creating the presented work.

Information security and functional safety

245

All the authors have read and agreed to the pub-
lished version of this manuscript.

References

1. IEC 61508:2010. Functional safety of electri-
cal/electronic/programmable electronic safety-related
systems. Published. 2010 — 04. IEC Standards, 2010.
594 p.

2. ISO/IEC/IEEE 29148. Systems and software en-
gineering — Life cycle processes — Requirements engi-
neering. International Organization for Standardization /
International Electrotechnical Commission / Institute of
Electrical and Electronics Engineers, 2018. 134 p.

3. Fucci, D., Unterkalmsteiner, M., Fernandez,
D.M., Gorschek, T., & Wagner, S. When traceability
goes awry: An industrial experience report. 2022
IEEE/ACM 44th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-
SEIP), Pittsburgh, PA, USA, May 2022, pp. 41-50. DOI:
10.1145/3510457.3513022.

4. Sommerville, I. Software Engineering, 10th ed.,
USA, Pearson Education, 2016. 812 p. ISBN: 978-0-13-
394303-0.

5. Wiegers, K., & Beatty, J. Software Requirements,
3rd ed. Redmond, WA, USA, Microsoft Press, 2013. 648
p. ISBN: 978-0-7356-7966-5.

6. Martins, L. E. G., & Gorschek, T. (Eds.) Require-
ments Engineering for Safety-Critical Systems. Gistrup,
Denmark: River Publishers, 2021. 218 p. ISBN: 978-87-
7022-427-7.

7. Ramesh, B., & Jarke, M. Toward reference mod-
els for requirements traceability. IEEE Transactions on
Software Engineering, 2001. vol. 27, no. 1, pp. 58-93.
DOI: 10.1109/895989.

8. Ratiu, C., Mayr-Dorn, C., Assung¢do, W., &
Egyed, A. Taming cross-tool traceability in the wild.
2023 IEEE 31st International Requirements Engineering
Conference (RE). IEEE, 2023, pp. 233-243. DOI:
10.1109/RE57278.2023.00031.

9. llyas, I., Hafees, Y., Hussain, S. Jammal, M., &
Toure, I. K. Optimized change management process
through semantic requirements and traceability analysis
tool. Journal of Engineering, 2025, article 1D 2296387.
17 p. DOI: 10.1155/je/2296387.

10. Mucha, J., Kaufmann, A., & Riehle, D. A sys-
tematic literature review of pre-requirements specifica-
tion traceability. Requirements Engineering, 2024, vol.
29, pp. 119-141. DOI: 10.1007/s00766-023-00412.

11. Zhao, Z, Su, Y., Li, Y., Zou, Y., Li, R, &
Zhang, R. A survey on self-supervised graph foundation
models: Knowledge-based perspective. Journal of La-
TeX Class Files, 2020, vol. 18, iss. 9, pp. 1-12. DOI:
10.48550/arXiv.2403.16137.

12. Pauzi, Z., & Capiluppi, A. Applications of nat-
ural language processing in software traceability: A sys-
tematic mapping study. Journal of Systems and Software,
2023, vol. 198, article 111616. DOl:
10.1016/j.jss.2023.111616.

13. Elangovan, G. R., Sujitha, V., Sasirekha, V.,
Prisca Mary, J., V.R.R., & Vengatesh, T. Machine Learn-
ing Algorithms in the Detection of Pattern System using
Algorithm of Textual Feature Analysis and Classifica-
tion. Journal of Neonatal Surgery, 2025, vol. 14(14s), pp.
66-74. DOI: 10.63682/jns.v14i14S.3430.

14. Lin, J., Liu, Y., Zeng, Q., Jiang, M., & Cleland-
Huang, J. Traceability Transformed: Generating more
Accurate Links with Pre-Trained BERT Models. Pro-
ceedings of the 43rd International Conference on Soft-
ware Engineering (ICSE), 2021, Madrid, Spain, May, pp.
324-335. DOI: 10.1109/1CSE43902.2021.00040.

15. Guo, J. L. C., Steghofer, J.-P., Vogelsang, A., &
Cleland-Huang, J. Natural Language Processing for Re-
quirements Traceability. Handbook of Natural Language
Processing for Requirements Engineering, 2024. DOI:
10.48550/arXiv.2405.10845.

16. Maro, S., Steghofer, J.-P., Knauss, E., Horkoff,
J., Kasauli, R., Wohlrab, R., Korsgaard, J. L., Warten-
berg, F., Strem, N. J., & Alexandersson, R. Managing
traceability information models: Not such a simple task
after all? IEEE Software, 2021, vol. 38, iss. 5, pp. 101-
109. DOI: 10.1109/MS.2020.3020651.

17. Chandrika, A. R. R. N. Test Case Management
in Agile Software Development Using Jira. International
Journal for Multidisciplinary Research (IJFMR), 2024,
vol. 4, iss. 4, article no. 20560. DOI:
10.36948/ijfmr.2022.v04i04.20560.

18. Yoo, I, Park, H., Lee, S.-W., & Ryu, K.-Y.
Building traceability between functional requirements
and component architecture elements in embedded soft-
ware using structured features. Applied Sciences, 2024,
vol. 14, no. 23, aricle. no. 10796, pp. 1-23. DOI:
10.3390/app142310796.

19. Medvedik, M., & Zdansky, J. Safety PLC Pro-
gramming Based on UML Statechart”, 2020 29th IEEE
International Conference on Emerging eLearning Tech-
nologies and Applications (ELEKTRO), 2020, pp. 1-5.
DOI: 10.1109/ELEKTR049696.2020.9130307.

20. Kriiger, G. How to Create a Requirements
Traceability Matrix — with Examples. Perforce Blog, 26
June 2025. Awvailable at: https: //www.per-
force.com/blog/ alm/how-create-traceability-matrix (ac-
cessed: 25 August 2025).

21. Bonner, M., Zeller, M., Schulz, G., Beyer, D.,
& Olteanu, M. Automated traceability between require-
ments and model-based design. Proceedings of the
REFSQ-2023 Workshops (CEUR Workshop Proceed-
ings, 2023, vol. 3378, pp. 1-7. Available at: https://ceur-
ws.org/\VVol-3378/PT-paper3.pdf. (accessed: 25 August
2025).

22. Dai, P., Yang, L., Wang, Y., Jin, D., & Gong, Y.
Constructing Traceability Links between Software Re-
quirements and Source Code Based on Neural Networks.
Mathematics, 2023, vol. 11, article no. 315. DOI:
10.3390/math11020315.

23. Letychevskyi, O., Peschanenko, V.,
Kharchenko, V., Volkov, A., & Odarushchenko, O. Mod-
eling method for development of digital system algo-
rithms based on programmable logic devices. Cybern.

246 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)

Syst. Analysis, 2020, vol. 56, no. 5, pp. 710-717. DOI: Insertion Semantics of VHDL as Electronic Design

10.1007/s10559-020-00289-8. Languge. Cybern. Syst. Analisys, 2022, vol. 58, pp. 289—
24. Letychevskyi, 0., Odarushchenko, O., 298.DOI: 10.1007/s10559-022-00461-2.

Peschanenko, V., Kharchenko, V., & Moskalets, V.

Received 14.06.2025, Received in revised form 12.10.2025
Accepted date 17.11.2026, Published date 08.12.2025

ABTOMATM3AIIISI TPACYBAHHS BUMOT Y ITPOEKTHIN JOKYMEHTAIIII 3A JOIIOMOTI' OO
IHCTPYMEHTA TRACETREND: MOJIEJIb, JIM3AMH, 3ACTOCYBAHHSI

0. M. Ooapywenxo, O. b. Odapywenko, O. 10. Cmpiok, B. O. Illamancekui, I1. M. I'po3a

VY crarTi po3risHYTO MUTAHHS TPACYBaHHS BUMOI' y KOHTEKCTI iH)KEHepil porpaMHoro 3a0e3neyeHHs Ta CUCTe-
MHOI iH)KeHepii, 30KpeMa, B rajty3i po3poOKH pOorpaMHO-anapaTHUX 3aco0iB Juist KpUTHUHKUX cucteM. O6'ekToM j10-
CITIJPKEHHSI € TIPOIIEC TPAaCyBaHHS BUMOT Y IPOEKTHIH JOKYMEHTallii, a MpeIMeTOM — MaTeMaTH4YHe MOJICITIOBaHHS Ta
IHCTpYMEHTaJIbHA peaizallisi IIboro mporecy. MeTow TocimkeHb € po3po0Ka MaTeMaTUYHO OOTPYHTOBAHOIO ITiJI-
XOJly JI0 TpacyBaHHsI BUMOT' Y IPOEKTHIN JOKyMeHTallii, o 3a0e3reuye aBTOMAaTHYHE BHUSBJICHHS Ta TIEPEBIPKY BH-
Mor, TOOYIOBY IXHIX i€papXidHUX 3B'SA3KiB, aHANI3 OKPUTTS TECTAMH Ta BHSBJICHHS MOPYIICHb TPACYBAIBHUX 3B'513-
KiB, 3 YpaXyBaHHSAM CTaHIAPTIB (YHKI[IOHAIHEHOI OE3MEYHOCTI Ta BUMOT JIO SKOCTI JOKyMEHTAIlii. /[qocsrHeHHs
METH JIOCII/PKEHHs OYJIM 3aCTOCOBaHI METOAM TeOpii MHOXHH, O1HAPHUX BiIHOIIEHBb, OPI€EHTOBAHUX IpadiB, a TAKOK
METOJIM MPOrpaMHOI peastizalii Ta TecTyBaHHs. Y pe3yabTaTi AOCHTiDKEHHs Oylia po3poliieHa MaTeMaTHYHA MOJIENb
TpacyBaHHSI BUMOT, SKa BKIIOYa€ OCHOBHI MHOYXHMHH (JJOKYMEHTH, 1IeHTU(IKaTOPH BUMOT', TECTOBI BUTIAJIKHN), O1HAPHI
BiJIHOLIEHHS (HAJISKHICTh, CMIaJIKOEMHICTh, TIOKPUTTS TeCTaMM) Ta QYHKIIIO pe3yibTaTy TecTyBaHHsA. Mojenb Oyna
peanizoBaHa B iHCTpyMeHTI TraceTrend, 1o aBToMaTH3ye Mpolec TPacyBaHHS BUMOT Y MPOEKTHUX JIOKYMEHTAX,
niepeBipsie OKPUTTS TECTAMHU Ta BUSBJISE MOPYIIECHHsT yMOB TpacyBaHHs. TraceTrend mo3Bosie eheKTHBHO TpaIlio-
BaTH 3 1€papXiYHUMHU 3B'SI3KaMU MIXK BUMOTaMH, TECTaMU Ta IHIIMMH eJIeMEHTaMH JOKYMEHTallil, 10 3a0e31edye BU-
COKHI1 piBeHb TOUHOCTI Ta BiAMOBIHOCTI cTaHapTaM Oe3neku, TakuM sk [EC 61508, ISO 26262. OcHOBHUM pe3yJib-
TaTOM € CTBOPEHHS IHCTPYMEHTY JUISI aBTOMaTH30BaHOTO aHaIi3y MPOEKTHOT JOKyMEHTAIIi1, 0 3HAaYHO 3HUKYE UMO-
BipHICTh OMHJIOK Ta JJO3BOJISIE 320€3MEYNTH LITICHICTD 1 HOBHOTY BUMOT. Takox 0YJI0 BUSIBIICHO, 1[0 BUKOPHCTAHHS
TraceTrend 3Menrnye gac, HCOOXiMHUIA I IEPEBIPKK JOKYMEHTAIIiT, Ta MiABUINYE e(EKTHBHICT MPOIIECY TECTY-
BaHHA. BUCHOBKM J0CTIPKEHHS CBiUaTh, 1[0 MaTeMaTHYHE MOJCTIOBAHHS TPacyBaHHS BUMOT' y IIOEJHAHHI 3 1HCTPY-
MEHTAJILHOIO Peati3alliero MOKe 3HAYHO OKPAIIMTH YIIPABIIiHHS BUMOTAaMH B IPOEKTAX, OCOOJIMBO B KPUTHYHHUX 200
BHCOKOHA/IIHHUX CUCTEMAX, Ta 3a0€3MeUUTH BIAMOBIAHICTh MIXKHAPOJAHUM CTaHAAPTaM.

Koarwuosi ciioBa: TpacyBaHHs BUMOI; MareMaTuuHe MojeitoBaHHs; iHctpymeHnTt TraceTrend; GiHapHi BinHO-
LIEHHS; IOKPUTTS TECTaAMH; CTaHIApTH OE3MeKH.

Onapymenko Osier MukosaiioBu4 — 1-p TeXH. HayK, npod., mpod. kad. inpopmMaIiiiHuX cucreM Ta TEXHOO-
riii , [lonTraBchkuil nepxaBHUiA arpapuuit yHiBepcuret, [lontaBa, Ykpaina.

Onapymenko Ouena bopuciBHa — kaH/. TeXH. HayK, JIOIL., JAOL. Kad. iHHOPMAIIIHUX CHCTEM Ta TEXHOJOTIH,
[NonraBchkuii ep>kaBHUiA arpapHuit yHiBepcuret, [lontaBa, Ykpaina.

Crprok Ouexciii FOpiiioBu4 — KaHJI. TEXH. HAayK, JIOIl., CTapIll. HayK. cHiBpo0., HaykoBo-BUpoOHMYE minpH-
emctBO «Panikcy, KponuBHuibkuii, Ykpaina.

lamaHchkuii Bsauecaas OQueroBuy — crapiil. imxeHep-nporpamict, HaykoBo-BupoOHU4e minpueMcTBo «Pa-
nikcy, KponmBauIekui, Y kpaina.

I'po3a Iletpo MukonaiioBu4 — KaH/A. TEXH. HAayK, JIOIL., 0L Kad. iHpopMaliiHUX CUCTEM 1 TeXHOMNOriH, Biii-
CHKOBHI IHCTUTYT TeJIEeKOMYHiKamii Ta inpopmartu3zanii imeHi ['epoiB Kpyr, Kui, Ykpaina.

Oleg Odarushchenko — Doctor of Technical Sciences, Professor, Professor of the Department of Information
Systems and Technologies Poltava State Agrarian University, Poltava, Ukraine,
e-mail: odarushchenko@gmail.com, ORCID: 0000-0003-3933-9637.

Olena Odarushchenko — Candidate of Technical Sciences, Associate Professor, Associate Professor of the De-
partment of Information Systems and Technologies, Poltava State Agrarian University, Poltava, Ukraine,
e-mail: elena.odarushchenko@gmail.com, ORCID: 0000-0002-2293-2576.

Oleksii Striuk — Candidate of Technical Sciences, Associate Professor, Lead Verification Engineer, RadICS
LLC, Kropyvnytskyi, Ukraine, e-mail: oleksii.striuk@radics-ua.com, ORCID: 0009-0009-2237-1623.

Viacheslav Shamanskyi — Senior, Software Engineer, RadICS LLC, Kropyvnytskyi, Ukraine,
e-mail: viacheslav.shamanskyi@radics-ua.com, ORCID: 0000-0001-8228-282X.

Petro Hroza — Candidate of Technical Sciences, Associate Professor of the Department of Information Systems
and Technologies, Heroes Krut Military Institute of Telecommunications and Informatization, Kyiv, Ukraine,
e-mail: groza@ukr.net, ORCID: 0000-0001-5308-4728.

