
ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 4(116)               ISSN 2663-2012 (online) 

206 

UDC 621.3:004.932  doi: 10.32620/reks.2025.4.14 
 

Maksym RYBNYTSKYI, Sergii KRYVENKO, Volodymyr LUKIN, Volodymyr REBROV 
 

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine 
 

A COMBINED APPROACH TO PIXEL-WISE CLASSIFICATION OF SATELLITE 

IMAGES BASED ON LBP, PSEUDOCOLOR FEATURES, AND XGBOOST 
 

The subject of the article is pixel-wise classification of Sentinel-2 satellite imagery represented as three-channel 
data mapped to the RGB color space for convenient visualization, with specific attention to the challenges posed 

by sensor noise and lossy compression artifacts typical for satellite data. The goal is to develop and validate a 

classification approach that maintains high accuracy under substantial noise and compression, by combining 

Local Binary Patterns (LBP) texture descriptors with pseudocolor features and employing an efficient ensemble 

classifier. The tasks to be addressed are: to design a compact feature representation that integrates LBP-based 

texture information with pseudocolor; to train and tune an XGBoost classifier on these features and compare its 

performance with baselines that rely on pseudocolor information alone and with simple neural network models; 

to assess robustness to noise and compression artifacts across a range of compression levels. The methods used 

include extraction of LBP descriptors to capture local texture patterns, construction of pseudocolor features 

from RGB-mapped Sentinel-2 channels, and concatenation of these descriptors into joint feature vectors. An 

XGBoost algorithm is employed to build the classification model. Model effectiveness is evaluated using the F1 
score as the primary metric under varying noise and compression conditions. Visual inspection of the resulting 

classification maps is used to corroborate quantitative results and to analyze spatial consistency and error pat-

terns. Conclusions. The scientific novelty of the results is as follows: for the first time in the context of Sentinel-

2 pixel-wise classification, the use of LBP in combination with XGBoost has been systematically investigated 

and substantiated for BPG lossy compression scenarios at the optimal operating point (OOP) or nearby; it has 

been experimentally established that there is a substantial gain in classification accuracy for heterogeneous 

classes (urban areas, vegetation, bare soil) and a limited gain for homogeneous ones (water), and interaction 

artifacts of BPG+LBP on homogeneous surfaces have been documented, with directions outlined for adapting 

LBP parameters to mitigate them; the computational suitability of the approach (feature extraction, training, 

and classification time) for operational pipelines has been demonstrated; a comparison with a simple neural 

network has been conducted showing higher stability of the proposed approach on texture-rich classes under 

noise and compression, thereby delineating the limits of applicability of alternative methods. The study also 
shows that accounting for compression effects is important for operational processing pipelines: compressing 

images to an optimal operating point can reduce data volume and, in some cases, slightly improve classification 

accuracy by attenuating noise. 
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1. Introduction 
 

1.1. Motivation  
 

Satellite image classification is one of the key tasks 

in Earth remote sensing [1, 2]. Satellites such as Sentinel-

1 and Sentinel-2 provide vast volumes of high-quality 

data, including radar and multispectral imagery, which 

are used across a wide range of application domains. In 

pixel-wise classification, each pixel of a satellite image 

must be assigned to a specific class (e.g., water, vegeta-

tion, soil, buildings). However, this approach faces sev-

eral challenges. 

Data complexity. Satellite images often exhibit 

high levels of noise caused by both sensor characteristics 

and atmospheric phenomena during data acquisition. 

This noise can cause significant signal distortion [3] and 

make worse classification accuracy. Moreover, images 

may display feature-space overlap between different 

classes, complicating their discrimination. The intrinsic 

heterogeneity of the Earth’s surface also affects the 

data [4]. 

Data compression. Given the massive volume of 

information collected by sensors onboard satellites, com-

pression is widely used to enable efficient transmission 

and storage. Although lossless compression preserves all 

image information, in practice lossy compression is used 

in most cases due to bandwidth and storage constraints 

[5]. Therefore, it is important that classification algo-

rithms be robust not only to noise but also operate effec-

tively on compressed data, whose distortions often re-

semble noise [6], while maintaining high classification 

accuracy. 

Limited use of context. Pixel-wise approaches 
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largely focus only on the characteristics of individual pix-

els and ignore spatial relationships among neighboring 

pixels. However, these relationships can carry important 

information that can substantially improve classification 

effectiveness and accuracy [7, 8]. 

 

1.2. State of the art  

 

Satellite-derived data are vital for tasks like drought 

monitoring, land management, urban planning, and cli-

mate modeling [4, 9]. Modern remote sensing datasets 

provide accurate surface characteristics, essential for 

Earth analysis and classification [10]. 

Classification of satellite data is critical in many 

practical applications [11]. Satellites such as Sentinel-1 

and Sentinel-2 generate massive volumes of data at rela-

tively high spatial resolution. Compressing such data is a 

common and essential step because it can greatly reduce 

volume with no loss or only minimal loss of useful infor-

mation. Modern compression algorithms [5] are designed 

to combine high compression ratios with the preservation 

of features important for downstream analysis. In the 

context of remote sensing, data compression is crucial for 

efficient transmission from satellites to ground stations 

and for optimizing computational resources for pro-

cessing [12]. 

The impact of lossy compression on satellite image 

classification has been widely discussed in recent litera-

ture. For instance, studies have evaluated the High Effi-

ciency Video Coding (HEVC) intra-frame compression –  

which serves as the core of the BPG codec – showing its 

superior performance over JPEG 2000 in crop classifica-

tion tasks even at high compression ratios [13]. Addition-

ally, the performance of the XGBoost algorithm has been 

analyzed in the context of compressed remote sensing 

imagery [14]. Another critical factor is the presence of 

noise, which significantly affects classification accuracy. 

Recent studies have explored the impact of different 

noise types and levels on machine learning techniques 

[15] and evaluated noise effects on deep learning models 

in real-time processing scenarios [16]. 

Furthermore, the combined effect of noise and lossy 

compression presents a complex challenge. Previous re-

search investigated this interaction using quite old DCT-

based coders [17], as well as more recent studies applying 

the BPG coder to noisy images with pixel-wise neural 

network classification [18]. However, these works often 

focus on either spectral features alone or standard neural 

architectures. 

Compression can both reduce noise levels and in-

troduce artifacts that complicate classification. The pres-

ence of noise is one of the main challenges in working 

with satellite data, arising from sensor characteristics as 

well as acquisition modes and conditions. A particularly 

important task is selecting compression parameters such 

that the trade-off between compression and image quality 

minimizes the impact of artifacts [12]. This trade-off 

point is referred to as the optimal operating point (OOP). 

When such a point exists for an image, it enables a com-

promise between minimizing distortions and preserving 

key data features required for classification. 

Neural networks are often used for the classification 

of satellite data [19], offering high accuracy and the abil-

ity to model complex nonlinear relationships. However, 

classical algorithms, such as decision tree methods, re-

main a relevant choice due to their efficiency, ease of im-

plementation, and lower computational demands [20]. 

We adopt the XGBoost algorithm in this research, known 

for its high performance and robustness to overfitting 

[21]. XGBoost requires data preprocessing and the ex-

traction of relevant features for effective operation. In 

general, both spectral and spatial features can be used for 

classification. A pixel’s spectral representation is a vec-

tor of values comprising all or selected channels, while 

the spatial representation includes information about 

neighboring pixels and their relationships [22]. In the 

context of pixel-wise classification of satellite data, the 

use of Local Binary Patterns (LBP) is a particularly suit-

able choice [23]. 

LBP is a simple yet effective texture operator. Its 

principle is based on comparing the intensities of neigh-

boring pixels around a central pixel against a threshold 

and encoding the result as a binary value [24]. The logical 

representation of the basic LBP is shown in Fig. 1. 

 

 
Fig. 1. Original LBP approach: a) binarization template; 

b) example image patch; c) computed comparison  

outcomes relative to the central pixel;  

d) weights (i.e., powers of two) 

 

In the example shown, pixels with values greater 

than or equal to the central pixel are marked as 1, and 

those with smaller values as 0. Using the reverse template 
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order P7 P6 P5 P4 P3 P2 P1 P0, we construct the LBP 

binary code 11110001. We then convert this binary value 

to decimal: 128 + 64 + 32 + 16 + 1 = 241. The resulting 

value serves as an additional LBP feature for the central 

pixel. While the studies cover 'pair-wise' interactions be-

tween noise, compression, and classification, the simul-

taneous impact of all three components remains insuffi-

ciently explored. Despite the popularity of LBP and 

XGBoost, their combined application has not been sys-

tematically studied for satellite imagery processed with 

modern BPG (Better Portable Graphics) compression un-

der noise conditions. BPG uses different coding logic 

compared to JPEG or JPEG2000, and its interaction with 

texture descriptors like LBP remains unexplored, espe-

cially at the Optimal Operating Point (OOP). Our re-

search fills this gap by investigating how BPG-induced 

artifacts and noise affect the stability of LBP features and 

the subsequent classification performance of XGBoost. 

 

1.3. Objectives and tasks 

 

The goal of this work is to improve pixel-wise clas-

sification performance on compressed satellite images af-

fected by noise at the optimal operating point (OOP). Un-

like existing studies that focus on standard compression 

formats, this research explores the synergy between Lo-

cal Binary Patterns (LBP) [24] and the XGBoost algo-

rithm [25] under BPG-specific distortions. 

To achieve this goal, the following tasks were ad-

dressed: 

1) investigate the impact of controlled noise and 

BPG (Better Portable Graphics) compression on satellite 

imagery [26], with a specific focus on identifying the op-

timal operating point (OOP) where noise reduction and 

edge/detail preservation are balanced; 

2) measure the real benefit of using LBP features 

under different noise and BPG compression levels to see 

how much they improve classification compared to using 

only color data; 

3) test the robustness of the combined 

LBP+XGBoost approach in different cases of data deg-

radation to find the performance limits for both homoge-

neous and heterogeneous land-cover classes; 

4) check the computational efficiency of the 

method, including the time for feature extraction, model 

training, and classification, to make sure it is fast enough 

for practical use. 

 

2. Materials and methods of research 
 

For this study, we selected two Sentinel-2 satellite 

images previously used in [27] as examples of areas with 

different levels of structural complexity. Each image has 

a resolution of 512×512 pixels. These images (see Fig. 2) 

correspond to regions of the Kharkiv area – a rural local-

ity and an urbanized zone with complex structure.  

 

 
   a) 

 
b) 

Fig. 2. Test images SS1 (a) and SS2 (b) 

 

Reusing the same scenes is a logical choice, as prior 

analysis has confirmed their suitability for land-cover 

classification, specifically for identifying the classes Ur-

ban, Water, Vegetation and Bare soil. Thus, the image 

selection is grounded in previous research, providing a 

reliable basis for this work. 

We adopt the Better Portable Graphics (BPG) en-

coder as the compression algorithm. BPG is based on in-

tra-coding tools from the HEVC (H.265) video compres-

sion standard. At the same file size, images in BPG for-

mat typically provide higher quality than other formats 

[26]. The compression level is controlled by the quality 

factor Q. Prior studies have shown that, for the same disk 

capacity, BPG enables storing a larger number of images 

at the required quality level compared with JPEG and 

JPEG 2000. 
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We propose combining local texture descriptors 

(Local Binary Patterns, LBP) with color information (in 

this case, three optical bands from the multispectral im-

age mapped to the RGB space) to construct feature vec-

tors. The resulting feature vectors are used to train the 

XGBoost classifier [25], which is based on decision-tree 

models. The proposed classification algorithm consists of 

the following steps: 

1) Data Preprocessing: Input image bands are pre-

pared and normalized; 

2) Feature Extraction: For each pixel, two types of 

data are collected: spectral values (RGB) and the local 

texture code calculated using the LBP operator; 

3) Feature Fusion: The RGB values and LBP codes 

are combined into a single feature vector for every pixel; 

4) Model Training/Inference: These combined vec-

tors, along with the corresponding ground-truth masks, 

are fed into the XGBoost model. During this stage, the 

algorithm builds a series of decision trees that create log-

ical connections between the pixel features and their re-

spective classes. 

This approach targets pixel-wise classification by 

efficiently extracting informative image features and pro-

cessing them in a robust learning pipeline. 

In practice, the following types of data may be 

available for training the classifier: 1) images without 

lossy compression (or lossless compressed); 2) images 

compressed with losses such that the compression char-

acteristics are close to those of the data to be classified; 

3) images compressed with losses whose compression 

characteristics fully match the target data. 

Accordingly, we introduce the following notation: 

let It denote the clean image, In the noisy image, Ic(Q) the 

image compressed with quality parameter Q, IQОOP the 

image compressed with QОOP, and IQОOP-4 the image com-

pressed with Q = QОOP-4. 

To determine the OOP, we use the formula pro-

posed in [12], which is valid for component-wise (per-

channel) compression: 

 

                      QООР = 14.9 + 20log10(σ),  (1) 

 

where σ² denotes the noise variance in the image. 

In this work, we consider three noise variance levels 

for Additive White Gaussian Noise (AWGN) – σ² = 25, 

50, and 100 – assuming three-channel RGB images with 

noise independent across channels. These variance levels 

are used to evaluate the classifier’s performance under 

noisy conditions (see Fig. 3).  Let us visualize the possi-

ble existence of an optimal operating point. For example, 

for the highest noise level σ² = 100, according to (1) the 

predicted QОOP  is Q = 35. Consider the corresponding 

PSNR curves for both images (Fig. 4), where the peak 

signal-to-noise ratio PSNRtc  is calculated between It and 

the compressed image.  

From the plots in Fig. 4(a), it follows that the theo-

retically obtained OOP value agrees with practical results 

for PSNR computed between It and Ic(Q). However, the 

example in Fig. 4(b) shows that an OOP may not be ob-

served. In such case, it may be reasonable to compress  

 

 
   a) 

 
   b) 

Fig. 3. Test images SS1 (a) and SS2 (b) with Additive 

White Gaussian Noise (AWGN) at σ² = 100 

 

the image at a value different from the QOOP estimated by 

(1), but at a slightly lower value, e.g., Q = QOOP - 4. This 

situation is typical for images of high complexity with 

many fine details and textures. 

The images used (the original SS1 and SS2) are as-

sumed to be nearly noise-free or to have very low noise 

levels (i.e., they are treated as It). Artificial noise with 

specified characteristics is then added, and the resulting 

images are compressed using the Q values specified 

above. 

All computations were carried out on a machine 

configured with an Apple M1 Pro CPU and 32 GB of  
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a)  

 
b) 

Fig. 4. PSNR(Q) curves for component-wise (per-channel) compression of images SS1 - Image 1 (a)  

and SS2 – Image 2 (b) using the BPG encoder, σ² = 100 

 

LPDDR5 RAM, using Python. LBP features were com-

puted separately for each channel. By default, the Python 

XGBoost package provides the following settings: num-

ber of trees = 100; maximum depth = 6; learning rate = 

0.3. For LBP, the baseline configuration uses a radius of 

1 and 8 neighbors [24, 28]. Other configurations are also 

recommended depending on image complexity [29]. To 

select optimal classifier hyperparameters, we employed a 

grid-search procedure [20]. 

The following hyperparameter grid was proposed 

for the search: 

number of trees (XGBoost): [100, 200, 300, 500]; 

maximum depth (XGBoost): [4, 6, 8]; 

learning rate (XGBoost): [0.05, 0.1, 0.3]; 

radius (LBP): [1, 2, 3]; 

number of neighbors (LBP): [8, 16, 24]. 

The optimal parameters were selected based on the best 

model performance across both images and visual in-

spection of the classified masks, while also accounting 

for the time required for training and classification. For 

this research, the following parameters were chosen: 

the number of trees (XGBoost): 500; maximum tree 

depth (XGBoost): 4; learning rate (XGBoost): 0.3; radius 

(LBP): 1; number of neighbors (LBP): 8. 

 

3. Results and Discussion 
 

The classifier was trained using three image vari-

ants: In, IQОOP and IQOOP-4 – at multiple noise levels, yield-

ing nine models in total, which were then evaluated on 

each image at the corresponding noise level. The training 

and validation masks shown in Fig. 5 were used.  
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a) 

 
b) 

 
c) 

 
d) 

Fig. 5. Fragments used for training (a, c) and validation 

(b, d) of the model for images SS1 (a, b) and SS2 (c, d) 

The masks contain overlapping regions; in the vali-

dation mask for SS1, there are 69 451 pixels that do not 

appear in the training mask and 85 711 that are shared. 

For SS2, there are 45 243 non-overlapping pixels and 15 

071 shared. 

All pixels within the respective masks were used for 

training and validation without additional sampling. Ta-

ble 1 reports the number of labeled pixels and their dis-

tribution across classes for each mask, as well as the num-

ber of pixels not used for training. 

The F1-score metric was used to assess model ac-

curacy [30].  

The contribution of LBP features compared with us-

ing only per-channel image information is presented in 

Table 2 for SS1 and Table 3 for SS2. Let us also explain 

what is meant by homogeneous and heterogeneous clas-

ses. For both images, Water is treated as a homogeneous 

class, whereas Bare soil, Vegetation, and Urban are con-

sidered heterogeneous classes. In SS1, Water forms a 

large homogeneous region; for this class, adding LBP 

features improved classification accuracy by only 1–2%. 

This is because LBP effectively captures local spatial pat-

terns (texture), which are almost absent in uniform water 

surfaces, making standard spectral data sufficient for this 

class. 

In contrast, for the heterogeneous classes, the im-

provement ranged from 2% to 17%, with the largest gain 

observed for Bare soil. This significant increase suggests 

that texture information is crucial for distinguishing be-

tween classes with similar spectral signatures but differ-

ent surface structures. When comparing results for origi-

nal versus compressed images, the greatest increase in 

accuracy was observed at σ² = 100. Across all classes, the 

inclusion of LBP features yielded accuracy improve-

ments. This indicates that LBP features provide a degree 

of noise-filtering effect, as they focus on local pixel rela-

tionships rather than individual noisy pixel values. For 

SS2, no single class dominates as in SS1. The overall 

trend indicates that LBP features improve the accuracy of 

texture-rich classes. Moreover, at σ² = 100, uncom-

pressed images showed a larger accuracy gain than com-

pressed images. 

The results for all classification scenarios using In, 

IQОOP та IQОOP-4 for training and validation on image SS1 

are presented in Table 4. These scenarios allow evaluat-

ing the model's sensitivity to mismatches between the 

training data quality and the real-world input data. 

When using In for both training and validation, a 

slight degradation in the weighted F1-score is observed 

with increasing σ²: 0.96 at σ² = 25 and 0.95 at σ² = 100. 

For IQOOP-4, the same trend persists, with the weighted F1-

score decreasing as σ² increases. For IQОOP, the metric re-

mained essentially stable regardless of σ². The stability 

of the IQOOP  results suggests that optimal compression 

can act as a regularizer, removing high-frequency noise 
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that typically confuses the classifier at high σ2 levels. 

When training on IQOOP-4  and testing on IQОOP-4 and 

IQОOP, the decreasing trend of the F1 metric with  increas-

ing σ² persisted. However, the weighted F1 score was 

higher than in the scenario where In was used for training. 

This confirms that training on data that matches the ex-

pected degradation (noise and compression) of the test 

data is more effective than training on 'clean' images. 

The results for SS2 are shown in Table 5. When us-

ing In for both training and validation, the weighted F1-

score decreased slightly as σ² increased—from 0.88 at 

σ²=25 to 0.87 at σ²=100. The overall lower F1-scores for 

SS2 compared to SS1 are likely due to the higher com-

plexity and fragmentation of the classes in the second im-

age. 

 

Table 1 

Comparison of the masks used for training and validation of the model 

 Total Urban Water Vegetation Bare soil 

Training mask SS1 (pixels) 85983 7441 52310 19936 6296 

Validation mask SS1 (pixels) 155162 12154 96852 38258 7898 

Difference for SS1 (pixels) 69451 4808 44554 18322 1767 

Training mask SS2 (pixels) 36744 11469 4201 5993 15081 

Validation mask SS2 (pixels) 60314 28040 7117 6032 19125 

Difference for SS2 (pixels) 45243 24434 3792 259 16758 

 

Table 2 

Comparative table of classification results with and without LBP features for SS1 

 

Table 3 

Comparative table of classification results with and without LBP features for SS2 

Case σ2 
Training 
Image 

Classified 
Image 

F1, 
Urban 

F1, 
Water 

F1, 
Vegetation 

F1,  Bare 
soil 

1. RGB only 
 
25 

 

In In 0.84 0.98 0.91 0.80 

1. RGB+LBP In In 0.89 0.99 0.94 0.87 

2. RGB only IQОРТ IQОРТ 0.86 0.99 0.95 0.83 

2. RGB+LBP IQОРТ IQОРТ 0.89 0.99 0.96 0.88 

3. RGB only 

50 

In In 0.82 0.97 0.88 0.77 

3. RGB+LBP In In 0.88 0.99 0.93 0.86 

4. RGB only IQОРТ IQОРТ 0.85 0.99 0.95 0.83 

4. RGB+LBP IQОРТ IQОРТ 0.89 0.99 0.96 0.87 

5. RGB only 

 

100 

In In 0.80 0.96 0.84 0.73 

5. RGB+LBP In In 0.91 0.98 0.93 0.90 

6. RGB only IQОРТ IQОРТ 0.84 0.99 0.95 0.80 

6. RGB+LBP IQОРТ IQОРТ 0.88 0.99 0.96 0.86 

Case σ2 
Training 

Image 

Classified 

Image 

F1, 

Urban 

F1, 

Water 

F1, 

Vegetation 

F1,   

Bare soil 

1. RGB only 
 

25 

 

In In 0.90 0.76 0.61 0.85 

1. RGB+LBP In In 0.93 0.79 0.70 0.91 

2. RGB only IQОРТ IQОРТ 0.91 0.77 0.66 0.88 

2. RGB+LBP IQОРТ IQОРТ 0.93 0.77 0.69 0.90 

3. RGB only 

50 

In In 0.89 0.77 0.57 0.82 

3. RGB+LBP In In 0.92 0.80 0.69 0.89 

4. RGB only IQОРТ IQОРТ 0.91 0.79 0.63 0.86 

4. RGB+LBP IQОРТ IQОРТ 0.93 0.78 0.68 0.89 

5. RGB only 

 

100 

In In 0.88 0.77 0.53 0.79 

5. RGB+LBP In In 0.92 0.81 0.67 0.87 

6. RGB only IQОРТ IQОРТ 0.89 0.77 0.58 0.83 

6. RGB+LBP IQОРТ IQОРТ 0.92 0.79 0.66 0.87 
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Table 4 

Classification results for image SS1 

 

Table 5 

Classification results for image SS2 

Case σ2 Training 

Image 

Classified 

Image 

F1 class 3 

(Urban) 

F1 class 0 

( Water) 

F1 class 1 

(Vegetation) 

F1 class 2.       

(Bare soil) 
F1 Total 

1 25 In In 0.89 0.99 0.94 0.87 0.96 

2 25 In IQОРТ-4 0.84 0.98 0.93 0.80 0.95 

3 25 In IQОРТ 0.84 0.99 0.94 0.80 0.96 

4 25 IQОРТ-4 In 0.84 0.97 0.89 0.79 0.93 

5 25 IQОРТ-4 IQОРТ-4 0.89 0.99 0.96 0.88 0.97 

6 25 IQОРТ-4 IQОРТ 0.85 0.99 0.95 0.81 0.96 

7 25 IQОРТ In 0.80 0.97 0.91 0.78 0.94 

8 25 IQОРТ IQОРТ-4 0.84 0.99 0.95 0.81 0.96 

9 25 IQОРТ IQОРТ 0.89 0.99 0.96 0.88 0.97 

10 50 In In 0.88 0.99 0.93 0.86 0.96 

11 50 In IQОРТ-4 0.84 0.98 0.91 0.80 0.94 

12 50 In IQОРТ 0.84 0.97 0.90 0.78 0.93 

13 50 IQОРТ-4 In 0.81 0.97 0.89 0.78 0.93 

14 50 IQОРТ-4 IQОРТ-4 0.89 0.99 0.95 0.87 0.97 

15 50 IQОРТ-4 IQОРТ 0.85 0.99 0.95 0.80 0.96 

16 50 IQОРТ In 0.81 0.95 0.85 0.76 0.90 

17 50 IQОРТ IQОРТ-4 0.84 0.99 0.93 0.79 0.95 

18 50 IQОРТ IQОРТ 0.89 0.99 0.96 0.87 0.97 

19 100 In In 0.88 0.98 0.92 0.86 0.95 

20 100 In IQОРТ-4 0.83 0.98 0.91 0.78 0.94 

21 100 In IQОРТ 0.83 0.84 0.71 0.75 0.80 

22 100 IQОРТ-4 In 0.83 0.98 0.91 0.78 0.94 

23 100 IQОРТ-4 IQОРТ-4 0.88 0.98 0.93 0.85 0.96 

24 100 IQОРТ-4 IQОРТ 0.83 0.96 0.87 0.77 0.92 

25 100 IQОРТ In 0.75 0.93 0.83 0.74 0.88 

26 100 IQОРТ IQОРТ-4 0.81 0.96 0.87 0.75 0.91 

27 100 IQОРТ IQОРТ 0.88 0.99 0.96 0.86 0.97 

Case σ2 
Training 

Image 

Classified 

Image 

F1 class 3 

(Urban) 

F1 class 0 

(Water) 

F1 class 1 

(Vegetation) 

F1 class 2      

(Bare soil) 

F1 

Total 

1 25 In In 0.93 0.79 0.70 0.91 0.88 

2 25 In IQOOP-4 0.92 0.69 0.63 0.89 0.85 

3 25 In IQOOP 0.91 0.66 0.62 0.88 0.84 

4 25 IQOOP-4 In 0.91 0.69 0.61 0.86 0.84 

5 25 IQOOP-4 IQOOP-4 0.93 0.79 0.70 0.90 0.88 

6 25 IQOOP-4 IQOOP 0.93 0.76 0.66 0.90 0.87 

7 25 IQOOP In 0.88 0.67 0.60 0.81 0.81 

8 25 IQOOP IQOOP-4 0.92 0.74 0.64 0.87 0.85 

9 25 IQOOP IQOOP 0.93 0.77 0.69 0.90 0.88 

10 50 In In 0.92 0.80 0.69 0.89 0.87 

11 50 In IQOOP-4 0.92 0.71 0.62 0.89 0.85 

12 50 In IQOOP 0.90 0.61 0.59 0.86 0.82 

13 50 IQOOP-4 In 0.91 0.72 0.62 0.87 0.85 

14 50 IQOOP-4 IQOOP-4 0.92 0.78 0.67 0.89 0.87 

15 50 IQOOP-4 IQOOP 0.92 0.76 0.65 0.89 0.86 

16 50 IQOOP In 0.88 0.64 0.57 0.80 0.79 

17 50 IQOOP IQOOP-4 0.90 0.74 0.60 0.83 0.83 

18 50 IQOOP IQOOP 0.93 0.78 0.68 0.89 0.87 

19 100 In In 0.92 0.81 0.67 0.87 0.87 

20 100 In IQOOP-4 0.91 0.79 0.62 0.87 0.86 

21 100 In IQOOP 0.90 0.65 0.57 0.84 0.82 
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Continuation of the Table 5 

 

When training the model on IQOOP-4 and evaluating 

on IQOOP-4 and IQОOP, the weighted F1-score decreased as 

noise increased for both images (SS1 and SS2). During 

training on IQОOP, similar trends were observed. 

From the obtained results, it follows that it is best to 

use images with approximately the same noise level and 

compression factor for both model training and inference. 

A significant mismatch in noise levels between training 

and classification phases leads to a drop in performance, 

as the model learns features that are not present or are 

distorted in the test set. Moreover, using compressed im-

ages does not lead to a significant decrease in classifica-

tion accuracy; at σ² = 100 and Q = QOOP, an accuracy of 

0.96–0.97 for IQОРТ-4 and IQOOP observed, compared with 

about 0.95 for In. This implies that the loss of information 

during compression is compensated by the reduction of 

noise, which is particularly beneficial for the XGBoost 

algorithm. 

It is worth noting that, in many cases, we obtained 

higher F1-scores than those reported in [18] for a simple 

neural network (NN) classifier based on multilayer per-

ceptron (see Tables 6 and 7). XGBoost's decision-tree-

based architecture appears more robust to outliers caused 

by noise than the MLP, which can overfit to specific 

noise patterns. For SS1, XGBoost outperformed the NN 

for all classes except Water and Vegetation, suggesting 

that the NN handled the classification of pixels in homo-

geneous regions better. This is likely because the NN can 

learn smoother decision boundaries for areas with low 

variance. Moreover, using the NN yielded higher F1-

scores for all classes in the scenario where both training 

and testing were performed on IQOOP−4 at σ² = 100. For 

SS2, the XGBoost classifier produced a lower F1 for the 

Bare soil class, which in this image also corresponds to a 

relatively homogeneous area. The NN outperformed 

XGBoost in the compressed-and-noisy setting IQOOP-4, σ² 

= 100. The noise-filtering effect induced by compression 

appears to have a stronger positive impact when using the 

NN, whereas our classifier is largely insensitive to it, ex-

hibiting only small performance changes –either upward 

or downward, depending on the class. 

It is also important to report the time spent on train-

ing and classification. Training used image fragments ac-

cording to the provided masks. Each run of feature ex-

traction, training, and classification produced slightly dif-

ferent timings: however, the values were close, and the 

differences can be attributed to background processes on 

the computation machine. Therefore, we report average 

values. Feature extraction for training took 0.18–0.20 

seconds for SS1 and 0.1 seconds for SS2, which reflects 

the ratio of pixels in the masks. Feature extraction for the 

full image prior to classification took about 0.30 seconds 

for SS1 and 0.14 seconds for SS2. Model training re-

quired 4.0–4.5 seconds for SS1 and 3.5 seconds for SS2. 

Classification – i.e., generating the full image mask — 

took 1.2–1.5 seconds for both SS1 and SS2. 

Examine the masks for the classified images. For 

SS1, the results are shown in Fig. 6.  

Table 6 

Comparative table of image classification results using a simple neural network (NN) and XGBoost 

(RGB+LBP) for SS1 

Case σ2 
Training 

Image 

Classified 

Image 

F1 class 3 

(Urban) 

F1 class 0 

(Water) 

F1 class 1 

(Vegetation) 

F1 class 2      

(Bare soil) 

F1 

Total 

22 100 IQOOP-4 In 0.91 0.79 0.60 0.86 0.85 

23 100 IQOOP-4 IQOOP-4 0.92 0.81 0.67 0.87 0.87 

24 100 IQOOP-4 IQOOP 0.90 0.69 0.59 0.86 0.83 

25 100 IQOOP In 0.88 0.72 0.56 0.80 0.80 

26 100 IQOOP IQOOP-4 0.89 0.73 0.57 0.81 0.82 

27 100 IQOOP IQOOP 0.92 0.79 0.66 0.87 0.86 

c 

 
σ2 

Training 

Image 

Classified 

Image 

F1, 

Urban 

F1, 

Water 
F1, Vegetation 

F1,  Bare 

soil 

F1, 

Total 

XGBoost  
 

25 

 

In In 0.89 0.99 0.94 0.87 0.96 

NN In In 0.82 0.98 0.89 0.75 0.93 

XGBoost IQOOP-4 IQOOP-4 0.89 0.99 0.96 0.88 0.97 

NN IQOOP-4 IQOOP-4 0.85 1.00 0.96 0.84 0.97 

XGBoost 

50 

In In 0.88 0.99 0.93 0.86 0.96 

NN In In 0.81 0.97 0.87 0.71 0.92 

XGBoost IQOOP-4 IQOOP-4 0.89 0.99 0.95 0.87 0.97 

NN IQOOP-4 IQOOP-4 0.88 1.00 0.96 0.86 0.97 

XGBoost 

 

100 

In In 0.88 0.98 0.92 0.86 0.95 

NN  In In 0.76 0.96 0.83 0.69 0.90 

XGBoost IQOOP-4 IQOOP-4 0.88 0.98 0.93 0.85 0.96 

NN IQOOP-4 IQOOP-4 0.89 1.00 0.96 0.89 0.97 
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Visually the largest number of errors is observed for 

the uncompressed image (Case 1). There are many mis-

classifications between the Water and Vegetation classes, 

specifically Vegetation pixels being labeled as Water. 

The masks for compressed images exhibit fewer obvious 

misclassifications, which is particularly noticeable for 

the Vegetation class. Thus, using compression at the 

OOP – which led to an increase in PSNR – also had a 

positive effect on overall classification accuracy. For S2, 

the results are presented in Fig. 7. Visually, the classifi-

cation masks for compressed images look better, espe-

cially for homogeneous regions. The Bare soil class 

shows fewer false assignments to Vegetation. 

 
 

Table 7 

Comparative table of image classification results using a simple neural network (NN)  

and XGBoost (RGB+LBP) for SS2 

 

 
a) 

 
c) 

 
b) 

 
d) 

Fig. 6. Classification results for image SS1, Case 1 (a) and Case 9 (b), Case 18 (c) and Case 27 (d) 

c 

 
σ2 

Training 

Image 

Classified 

Image 

F1, 

Urban 

F1, 

Water 
F1, Vegetation 

F1, Open 

Ground 

F1, To-

tal 

XGBoost 
 

25 

 

In In 0.93 0.79 0.70 0.91 0.88 

NN In In 0.90 0.71 0.58 0.86 0.83 

XGBoost IQOOP-4 IQOOP-4 0.93 0.79 0.70 0.90 0.88 

NN IQOOP-4 IQOOP-4 0.92 0.69 0.71 0.93 0.87 

XGBoost 

50 

In In 0.92 0.80 0.69 0.89 0.87 

NN In In 0.89 0.71 0.56 0.82 0.81 

XGBoost IQOOP-4 IQOOP-4 0.92 0.78 0.67 0.89 0.87 

NN IQOOP-4 IQOOP-4 0.92 0.72 0.73 0.93 0.88 

XGBoost 

 

100 

In In 0.92 0.81 0.67 0.87 0.87 

NN In In 0.88 0.75 0.49 0.80 0.80 

XGBoost IQOOP-4 IQOOP-4 0.92 0.81 0.67 0.87 0.87 

NN IQOOP-4 IQOOP-4 0.93 0.72 0.72 0.92 0.88 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 7. Classification results for image SS2, Case 1 (a) 

and Case 9 (b), Case 18 (c) and Case 27 (d) 

4. Conclusions 
 

The study confirmed that the proposed classifica-

tion method – combining LBP, channel features, and the 

XGBoost algorithm – is effective for satellite imagery 

even under challenging conditions, such as the presence 

of noise and compression-induced distortions due to 

lossy coding. Using LBP features proved beneficial, as 

they improved classification accuracy compared with re-

lying on per-channel information alone. Moreover, LBP 

exhibited robustness to noise: evaluation metrics such as 

the F1 score were less sensitive to noise level than in the 

case of a neural network–based classifier. Importantly, 

LBP not only improves classification outcomes but is 

also computationally efficient due to its simple mathe-

matical formulation. 

Regarding the impact of compression, the model 

also proved fully competitive. Although strong compres-

sion somewhat affects the results, overall accuracy re-

mains at an acceptable level even at relatively high Q val-

ues for BPG. A specific issue does arise on homogeneous 

surfaces such as water. Despite LBP’s ability to capture 

texture characteristics, compressed images exhibited ar-

tifacts stemming from the interaction between BPG com-

pression and LBP. This was especially evident in situa-

tions where texture homogeneity makes the model more 

sensitive to compression-induced distortions. Thus, there 

is potential to refine the LBP configuration to reduce ar-

tifacts that appear under compression on homogeneous 

surfaces. 

A comparison with a simple NN has showed that the 

XGBoost-based classifier generally exhibits greater sta-

bility and accuracy, especially for texture-rich classes 

such as Urban areas, even under challenging noise and 

compression conditions. At the same time, the NN 

demonstrated an advantage on homogeneous and rela-

tively homogeneous regions – particularly for Water 

(SS1) and Bare soil (SS2) – where its accuracy was 

higher in some cases. 

Adapting LBP parameters and refining approaches 

for processing surfaces with different degrees of homo-

geneity may become an important direction for future 

work. Promising avenues include incorporating compres-

sion parameters at the model design stage and investigat-

ing how to adapt the classifier to diverse noise types and 

image texture regimes. 
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КОМБІНОВАНИЙ ПІДХІД ДО ПІКСЕЛЬНОЇ КЛАСИФІКАЦІЇ СУПУТНИКОВИХ ЗОБРАЖЕНЬ 

НА ОСНОВІ LBP, ПСЕВДОКОЛЬОРОВИХ ОСОБЛИВОСТЕЙ ТА XGBOOST 

М. А. Рибницький, С. С. Кривенко, В. В. Лукін,  В. С. Ребров 

Предметом статті є попіксельна класифікація супутникових зображень Sentinel-2, представлених як три-
канальні дані, приведені до простору RGB для зручної візуалізації, з особливою увагою до викликів, зумов-

лених сенсорним шумом і артефактами стиснення з втратами, типовими для супутникових даних. Мета по-

лягає у розробленні та валідації підходу до класифікації, який зберігає високу точність за умов значного шуму 

та стиснення, поєднуючи текстурні дескриптори Local Binary Patterns (LBP) із псевдокольоровими ознаками 

та використовуючи ефективний ансамблевий класифікатор. Завдання, які необхідно вирішити: спроєктувати 

компактне подання ознак, що інтегрує текстурну інформацію на основі LBP із псевдокольором; навчити та 

налаштувати класифікатор XGBoost на цих ознаках і порівняти його роботу з базовими підходами, які вико-

ристовують лише псевдокольорову інформацію, а також із простими моделями нейронних мереж; оцінити 

стійкість до шуму та артефактів стиснення в діапазоні рівнів компресії. Використані методи включають ви-

лучення дескрипторів LBP для фіксації локальних текстурних шаблонів, формування псевдокольорових ознак 

із каналів Sentinel-2, відображених у RGB, та поєднання цих дескрипторів у спільні вектори ознак. Для побу-

дови моделі класифікації застосовано алгоритм XGBoost. Ефективність моделі оцінюється за метрикою F1 як 
основною, за різних умов шуму та стиснення. Додатково використовується візуальний аналіз отриманих кла-

сифікаційних мап для підтвердження кількісних результатів і аналізу просторової узгодженості та профілю 
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помилок. Висновки. Наукова новизна отриманих результатів полягає в наступному: вперше для задачі попі-

ксельної класифікації Sentinel-2 системно досліджено й обґрунтовано використання LBP у поєднанні з 

XGBoost у сценаріях стиснення з втратами BPG при роботі в оптимальній робочій точці (ОРТ) або поблизу 

неї; експериментально встановлено суттєвий приріст у точності екласифікації для неоднорідних класів (урба-

нізовані території, рослинність, відкритий ґрунт) і обмежений — для однорідних (вода), а також зафіксовано 

артефакти взаємодії BPG+LBP на однорідних поверхнях і окреслено напрям адаптації параметрів LBP для 

їхнього зменшення; показано обчислювальну придатність підходу (час виділення ознак, навчання та класифі-

кації) для операційних конвеєрів; проведено порівняння з простою нейронною мережею і продемонстровано 

вищу стабільність запропонованого підходу на текстурно насичених класах за умов шуму та стиснення, що 

задає межі застосовності альтернативних методів. Дослідження також показує, що врахування ефектів стис-

нення важливе для операційних конвеєрів обробки: стиснення зображень до оптимальної робочої точки може 
зменшити обсяг даних і, у деяких випадках, трохи поліпшити точність класифікації завдяки послабленню 

шуму. 

Ключові слова: класифікація; супутникові зображення; Local Binary Patterns; XGBoost; шум; стиснення. 
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