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A COMBINED APPROACH TO PIXEL-WISE CLASSIFICATION OF SATELLITE
IMAGES BASED ON LBP, PSEUDOCOLOR FEATURES, AND XGBOOST

The subject of the article is pixel-wise classification of Sentinel-2 satellite imagery represented as three-channel
data mapped to the RGB color space for convenient visualization, with specific attention to the challenges posed
by sensor noise and lossy compression artifacts typical for satellite data. The goal is to develop and validate a
classification approach that maintains high accuracy under substantial noise and compression, by combining
Local Binary Patterns (LBP) texture descriptors with pseudocolor features and employing an efficient ensemble
classifier. The tasks to be addressed are: to design a compact feature representation that integrates LBP-based
texture information with pseudocolor; to train and tune an XGBoost classifier on these features and compare its
performance with baselines that rely on pseudocolor information alone and with simple neural network models;
to assess robustness to noise and compression artifacts across a range of compression levels. The methods used
include extraction of LBP descriptors to capture local texture patterns, construction of pseudocolor features
from RGB-mapped Sentinel-2 channels, and concatenation of these descriptors into joint feature vectors. An
XGBoost algorithm is employed to build the classification model. Model effectiveness is evaluated using the F1
score as the primary metric under varying noise and compression conditions. Visual inspection of the resulting
classification maps is used to corroborate quantitative results and to analyze spatial consistency and error pat-
terns. Conclusions. The scientific novelty of the results is as follows: for the first time in the context of Sentinel-
2 pixel-wise classification, the use of LBP in combination with XGBoost has been systematically investigated
and substantiated for BPG lossy compression scenarios at the optimal operating point (OOP) or nearby; it has
been experimentally established that there is a substantial gain in classification accuracy for heterogeneous
classes (urban areas, vegetation, bare soil) and a limited gain for homogeneous ones (water), and interaction
artifacts of BPG+LBP on homogeneous surfaces have been documented, with directions outlined for adapting
LBP parameters to mitigate them; the computational suitability of the approach (feature extraction, training,
and classification time) for operational pipelines has been demonstrated; a comparison with a simple neural
network has been conducted showing higher stability of the proposed approach on texture-rich classes under
noise and compression, thereby delineating the limits of applicability of alternative methods. The study also
shows that accounting for compression effects is important for operational processing pipelines: compressing
images to an optimal operating point can reduce data volume and, in some cases, slightly improve classification
accuracy by attenuating noise.
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make worse classification accuracy. Moreover, images
may display feature-space overlap between different
classes, complicating their discrimination. The intrinsic
heterogeneity of the Earth’s surface also affects the
data [4].

Data compression. Given the massive volume of
information collected by sensors onboard satellites, com-

1. Introduction
1.1. Motivation

Satellite image classification is one of the key tasks
in Earth remote sensing [1, 2]. Satellites such as Sentinel-
1 and Sentinel-2 provide vast volumes of high-quality

data, including radar and multispectral imagery, which
are used across a wide range of application domains. In
pixel-wise classification, each pixel of a satellite image
must be assigned to a specific class (e.g., water, vegeta-
tion, soil, buildings). However, this approach faces sev-
eral challenges.

Data complexity. Satellite images often exhibit
high levels of noise caused by both sensor characteristics
and atmospheric phenomena during data acquisition.
This noise can cause significant signal distortion [3] and

pression is widely used to enable efficient transmission
and storage. Although lossless compression preserves all
image information, in practice lossy compression is used
in most cases due to bandwidth and storage constraints
[5]. Therefore, it is important that classification algo-
rithms be robust not only to noise but also operate effec-
tively on compressed data, whose distortions often re-
semble noise [6], while maintaining high classification
accuracy.

Limited use of context. Pixel-wise approaches

Creative Commons Attribution
NonCommercial 4.0 International



https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Methods and means of image processing

207

largely focus only on the characteristics of individual pix-
els and ignore spatial relationships among neighboring
pixels. However, these relationships can carry important
information that can substantially improve classification
effectiveness and accuracy [7, 8].

1.2. State of the art

Satellite-derived data are vital for tasks like drought
monitoring, land management, urban planning, and cli-
mate modeling [4, 9]. Modern remote sensing datasets
provide accurate surface characteristics, essential for
Earth analysis and classification [10].

Classification of satellite data is critical in many
practical applications [11]. Satellites such as Sentinel-1
and Sentinel-2 generate massive volumes of data at rela-
tively high spatial resolution. Compressing such data is a
common and essential step because it can greatly reduce
volume with no loss or only minimal loss of useful infor-
mation. Modern compression algorithms [5] are designed
to combine high compression ratios with the preservation
of features important for downstream analysis. In the
context of remote sensing, data compression is crucial for
efficient transmission from satellites to ground stations
and for optimizing computational resources for pro-
cessing [12].

The impact of lossy compression on satellite image
classification has been widely discussed in recent litera-
ture. For instance, studies have evaluated the High Effi-
ciency Video Coding (HEVC) intra-frame compression —
which serves as the core of the BPG codec — showing its
superior performance over JPEG 2000 in crop classifica-
tion tasks even at high compression ratios [13]. Addition-
ally, the performance of the XGBoost algorithm has been
analyzed in the context of compressed remote sensing
imagery [14]. Another critical factor is the presence of
noise, which significantly affects classification accuracy.
Recent studies have explored the impact of different
noise types and levels on machine learning techniques
[15] and evaluated noise effects on deep learning models
in real-time processing scenarios [16].

Furthermore, the combined effect of noise and lossy
compression presents a complex challenge. Previous re-
search investigated this interaction using quite old DCT-
based coders [17], as well as more recent studies applying
the BPG coder to noisy images with pixel-wise neural
network classification [18]. However, these works often
focus on either spectral features alone or standard neural
architectures.

Compression can both reduce noise levels and in-
troduce artifacts that complicate classification. The pres-
ence of noise is one of the main challenges in working
with satellite data, arising from sensor characteristics as
well as acquisition modes and conditions. A particularly
important task is selecting compression parameters such

that the trade-off between compression and image quality
minimizes the impact of artifacts [12]. This trade-off
point is referred to as the optimal operating point (OOP).
When such a point exists for an image, it enables a com-
promise between minimizing distortions and preserving
key data features required for classification.

Neural networks are often used for the classification
of satellite data [19], offering high accuracy and the abil-
ity to model complex nonlinear relationships. However,
classical algorithms, such as decision tree methods, re-
main a relevant choice due to their efficiency, ease of im-
plementation, and lower computational demands [20].
We adopt the XGBoost algorithm in this research, known
for its high performance and robustness to overfitting
[21]. XGBoost requires data preprocessing and the ex-
traction of relevant features for effective operation. In
general, both spectral and spatial features can be used for
classification. A pixel’s spectral representation is a vec-
tor of values comprising all or selected channels, while
the spatial representation includes information about
neighboring pixels and their relationships [22]. In the
context of pixel-wise classification of satellite data, the
use of Local Binary Patterns (LBP) is a particularly suit-
able choice [23].

LBP is a simple yet effective texture operator. Its
principle is based on comparing the intensities of neigh-
boring pixels around a central pixel against a threshold
and encoding the result as a binary value [24]. The logical
representation of the basic LBP is shown in Fig. 1.

PO | P1 | P2 6 5 2
P7 | C | P3 7 6 1
P6 | P5 | P4 9 8 7
a) b)
1 0 0 1 2 4
1 0 128 8
1 1 1 64 | 32 | 16
) d)

Fig. 1. Original LBP approach: a) binarization template;
b) example image patch; ¢) computed comparison
outcomes relative to the central pixel;

d) weights (i.e., powers of two)

In the example shown, pixels with values greater
than or equal to the central pixel are marked as 1, and
those with smaller values as 0. Using the reverse template
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order P7 P6 P5 P4 P3 P2 P1 PO, we construct the LBP
binary code 11110001. We then convert this binary value
to decimal: 128 + 64 + 32 + 16 + 1 = 241. The resulting
value serves as an additional LBP feature for the central
pixel. While the studies cover 'pair-wise' interactions be-
tween noise, compression, and classification, the simul-
taneous impact of all three components remains insuffi-
ciently explored. Despite the popularity of LBP and
XGBoost, their combined application has not been sys-
tematically studied for satellite imagery processed with
modern BPG (Better Portable Graphics) compression un-
der noise conditions. BPG uses different coding logic
compared to JPEG or JPEG2000, and its interaction with
texture descriptors like LBP remains unexplored, espe-
cially at the Optimal Operating Point (OOP). Our re-
search fills this gap by investigating how BPG-induced
artifacts and noise affect the stability of LBP features and
the subsequent classification performance of XGBoost.

1.3. Objectives and tasks

The goal of this work is to improve pixel-wise clas-
sification performance on compressed satellite images af-
fected by noise at the optimal operating point (OOP). Un-
like existing studies that focus on standard compression
formats, this research explores the synergy between Lo-
cal Binary Patterns (LBP) [24] and the XGBoost algo-
rithm [25] under BPG-specific distortions.

To achieve this goal, the following tasks were ad-
dressed:

1) investigate the impact of controlled noise and
BPG (Better Portable Graphics) compression on satellite
imagery [26], with a specific focus on identifying the op-
timal operating point (OOP) where noise reduction and
edge/detail preservation are balanced;

2) measure the real benefit of using LBP features
under different noise and BPG compression levels to see
how much they improve classification compared to using
only color data;

3) test the robustness of the combined
LBP+XGBoost approach in different cases of data deg-
radation to find the performance limits for both homoge-
neous and heterogeneous land-cover classes;

4) check the computational efficiency of the
method, including the time for feature extraction, model
training, and classification, to make sure it is fast enough
for practical use.

2. Materials and methods of research

For this study, we selected two Sentinel-2 satellite
images previously used in [27] as examples of areas with
different levels of structural complexity. Each image has
a resolution of 512x512 pixels. These images (see Fig. 2)

correspond to regions of the Kharkiv area — a rural local-
ity and an urbanized zone with complex structure.

b)
Fig. 2. Test images SS1 (a) and SS2 (b)

Reusing the same scenes is a logical choice, as prior
analysis has confirmed their suitability for land-cover
classification, specifically for identifying the classes Ur-
ban, Water, Vegetation and Bare soil. Thus, the image
selection is grounded in previous research, providing a
reliable basis for this work.

We adopt the Better Portable Graphics (BPG) en-
coder as the compression algorithm. BPG is based on in-
tra-coding tools from the HEVC (H.265) video compres-
sion standard. At the same file size, images in BPG for-
mat typically provide higher quality than other formats
[26]. The compression level is controlled by the quality
factor Q. Prior studies have shown that, for the same disk
capacity, BPG enables storing a larger number of images
at the required quality level compared with JPEG and
JPEG 2000.
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We propose combining local texture descriptors
(Local Binary Patterns, LBP) with color information (in
this case, three optical bands from the multispectral im-
age mapped to the RGB space) to construct feature vec-
tors. The resulting feature vectors are used to train the
XGBoost classifier [25], which is based on decision-tree
models. The proposed classification algorithm consists of
the following steps:

1) Data Preprocessing: Input image bands are pre-
pared and normalized;

2) Feature Extraction: For each pixel, two types of
data are collected: spectral values (RGB) and the local
texture code calculated using the LBP operator;

3) Feature Fusion: The RGB values and LBP codes
are combined into a single feature vector for every pixel;

4) Model Training/Inference: These combined vec-
tors, along with the corresponding ground-truth masks,
are fed into the XGBoost model. During this stage, the
algorithm builds a series of decision trees that create log-
ical connections between the pixel features and their re-
spective classes.

This approach targets pixel-wise classification by
efficiently extracting informative image features and pro-
cessing them in a robust learning pipeline.

In practice, the following types of data may be
available for training the classifier: 1) images without
lossy compression (or lossless compressed); 2) images
compressed with losses such that the compression char-
acteristics are close to those of the data to be classified;
3) images compressed with losses whose compression
characteristics fully match the target data.

Accordingly, we introduce the following notation:
let I; denote the clean image, I» the noisy image, 1¢(Q) the
image compressed with quality parameter Q, lqoor the
image compressed with Qoop, and lgoor-4 the image com-
pressed with Q = Qoor-4.

To determine the OOP, we use the formula pro-
posed in [12], which is valid for component-wise (per-
channel) compression:

QOOP =14.9 + 2010g10 (0), (l)

where ¢? denotes the noise variance in the image.

In this work, we consider three noise variance levels
for Additive White Gaussian Noise (AWGN) — ¢2 = 25,
50, and 100 — assuming three-channel RGB images with
noise independent across channels. These variance levels
are used to evaluate the classifier’s performance under
noisy conditions (see Fig. 3). Let us visualize the possi-
ble existence of an optimal operating point. For example,
for the highest noise level 62 = 100, according to (1) the
predicted Qoop is Q = 35. Consider the corresponding
PSNR curves for both images (Fig. 4), where the peak
signal-to-noise ratio PSNRy is calculated between I; and
the compressed image.

From the plots in Fig. 4(a), it follows that the theo-
retically obtained OOP value agrees with practical results
for PSNR computed between I and 1(Q). However, the
example in Fig. 4(b) shows that an OOP may not be ob-
served. In such case, it may be reasonable to compress

b)
Fig. 3. Test images SS1 (a) and SS2 (b) with Additive
White Gaussian Noise (AWGN) at 62 = 100

the image at a value different from the Qoop estimated by
(1), but at a slightly lower value, e.g., Q = Qoop - 4. This
situation is typical for images of high complexity with
many fine details and textures.

The images used (the original SS1 and SS2) are as-
sumed to be nearly noise-free or to have very low noise
levels (i.e., they are treated as I). Artificial noise with
specified characteristics is then added, and the resulting
images are compressed using the Q values specified
above.

All computations were carried out on a machine
configured with an Apple M1 Pro CPU and 32 GB of
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Channel-wise PSNR for SS1 (sigma”~2=100)
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Fig. 4. PSNR(Q) curves for component-wise (per-channel) compression of images SS1 - Image 1 (a)
and SS2 — Image 2 (b) using the BPG encoder, o2 = 100

LPDDR5 RAM, using Python. LBP features were com-
puted separately for each channel. By default, the Python
XGBoost package provides the following settings: num-
ber of trees = 100; maximum depth = 6; learning rate =
0.3. For LBP, the baseline configuration uses a radius of
1 and 8 neighbors [24, 28]. Other configurations are also
recommended depending on image complexity [29]. To
select optimal classifier hyperparameters, we employed a
grid-search procedure [20].

The following hyperparameter grid was proposed
for the search:

number of trees (XGBoost): [100, 200, 300, 500];

maximum depth (XGBoost): [4, 6, 8];

learning rate (XGBoost): [0.05, 0.1, 0.3];

radius (LBP): [1, 2, 3];

number of neighbors (LBP): [8, 16, 24].

The optimal parameters were selected based on the best
model performance across both images and visual in-
spection of the classified masks, while also accounting
for the time required for training and classification. For
this research, the following parameters were chosen:

the number of trees (XGBoost): 500; maximum tree
depth (XGBoost): 4; learning rate (XGBoost): 0.3; radius
(LBP): 1; number of neighbors (LBP): 8.

3. Results and Discussion

The classifier was trained using three image vari-
ants: In, looor and lgoor-2 — at multiple noise levels, yield-
ing nine models in total, which were then evaluated on
each image at the corresponding noise level. The training
and validation masks shown in Fig. 5 were used.
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Fig. 5. Fragments used for training (a, ¢) and validation
(b, d) of the model for images SS1 (a, b) and SS2 (c, d)

The masks contain overlapping regions; in the vali-
dation mask for SS1, there are 69 451 pixels that do not
appear in the training mask and 85 711 that are shared.
For SS2, there are 45 243 non-overlapping pixels and 15
071 shared.

All pixels within the respective masks were used for
training and validation without additional sampling. Ta-
ble 1 reports the number of labeled pixels and their dis-
tribution across classes for each mask, as well as the num-
ber of pixels not used for training.

The F1-score metric was used to assess model ac-
curacy [30].

The contribution of LBP features compared with us-
ing only per-channel image information is presented in
Table 2 for SS1 and Table 3 for SS2. Let us also explain
what is meant by homogeneous and heterogeneous clas-
ses. For both images, Water is treated as a homogeneous
class, whereas Bare soil, Vegetation, and Urban are con-
sidered heterogeneous classes. In SS1, Water forms a
large homogeneous region; for this class, adding LBP
features improved classification accuracy by only 1-2%.
This is because LBP effectively captures local spatial pat-
terns (texture), which are almost absent in uniform water
surfaces, making standard spectral data sufficient for this
class.

In contrast, for the heterogeneous classes, the im-
provement ranged from 2% to 17%, with the largest gain
observed for Bare soil. This significant increase suggests
that texture information is crucial for distinguishing be-
tween classes with similar spectral signatures but differ-
ent surface structures. When comparing results for origi-
nal versus compressed images, the greatest increase in
accuracy was observed at 6> = 100. Across all classes, the
inclusion of LBP features yielded accuracy improve-
ments. This indicates that LBP features provide a degree
of noise-filtering effect, as they focus on local pixel rela-
tionships rather than individual noisy pixel values. For
SS2, no single class dominates as in SS1. The overall
trend indicates that LBP features improve the accuracy of
texture-rich classes. Moreover, at 6> = 100, uncom-
pressed images showed a larger accuracy gain than com-
pressed images.

The results for all classification scenarios using In,
looor = lgoor-a for training and validation on image SS1
are presented in Table 4. These scenarios allow evaluat-
ing the model's sensitivity to mismatches between the
training data quality and the real-world input data.

When using |, for both training and validation, a
slight degradation in the weighted F1-score is observed
with increasing o2: 0.96 at 62 = 25 and 0.95 at o2 = 100.
For looor-4, the same trend persists, with the weighted F1-
score decreasing as o2 increases. For Igoop, the metric re-
mained essentially stable regardless of ¢2. The stability
of the lgoor results suggests that optimal compression
can act as a regularizer, removing high-frequency noise
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that typically confuses the classifier at high o levels.
When training on lqoop-4 and testing on Iqoop-4 and
looop, the decreasing trend of the F1 metric with increas-
ing o2 persisted. However, the weighted F1 score was
higher than in the scenario where I, was used for training.
This confirms that training on data that matches the ex-
pected degradation (noise and compression) of the test
data is more effective than training on 'clean’ images.

The results for SS2 are shown in Table 5. When us-
ing I, for both training and validation, the weighted F1-
score decreased slightly as o2 increased—from 0.88 at
02=25 t0 0.87 at 6>=100. The overall lower F1-scores for
SS2 compared to SS1 are likely due to the higher com-
plexity and fragmentation of the classes in the second im-
age.

Table 1
Comparison of the masks used for training and validation of the model
Total Urban Water Vegetation Bare soil

Training mask SS1 (pixels) 85983 7441 52310 19936 6296

Validation mask SS1 (pixels) 155162 12154 96852 38258 7898

Difference for SS1 (pixels) 69451 4808 44554 18322 1767

Training mask SS2 (pixels) 36744 11469 4201 5993 15081

Validation mask SS2 (pixels) 60314 28040 7117 6032 19125

Difference for SS2 (pixels) 45243 24434 3792 259 16758
Table 2

Comparative table of classification results with and without LBP features for SS1
Case o2 Training Classified F1, F1, F1, ' F1, Bare
Image Image Urban Water Vegetation soil

1. RGB only In In 0.84 0.98 0.91 0.80

1. RGB+LBP 25 In In 0.89 0.99 0.94 0.87

2. RGB only loopt loopt 0.86 0.99 0.95 0.83

2. RGB+LBP loopt loopt 0.89 0.99 0.96 0.88

3. RGB only In In 0.82 0.97 0.88 0.77

3. RGB+LBP 50 In In 0.88 0.99 0.93 0.86

4. RGB only loopt loopt 0.85 0.99 0.95 0.83

4. RGB+LBP loopt loopt 0.89 0.99 0.96 0.87

5. RGB only In In 0.80 0.96 0.84 0.73

5. RGB+LBP In In 0.91 0.98 0.93 0.90

6. RGB only 100 loopT loopt 0.84 0.99 0.95 0.80

6. RGB+LBP loopt loopt 0.88 0.99 0.96 0.86
Table 3

Comparative table of classification results with and without LBP features for SS2
Case o2 Training Classified F1, F1, F1, F1,
Image Image Urban Water Vegetation Bare soil

1. RGB only In In 0.90 0.76 0.61 0.85

1. RGB+LBP 25 In In 0.93 0.79 0.70 0.91

2. RGB only loopT loopt 0.91 0.77 0.66 0.88

2. RGB+LBP loopT loopt 0.93 0.77 0.69 0.90

3. RGB only In In 0.89 0.77 0.57 0.82

3. RGB+LBP 50 In In 0.92 0.80 0.69 0.89

4. RGB only lopt lopt 0.91 e 053 0.86

4. RGB+LBP loopt loopt 0.93 0.78 0.68 0.89

5. RGB only In In 0.88 0.77 0.53 0.79

5. RGB+LBP In In 0.92 0.81 0.67 0.87

6. RGB only 100 loopt loopt 0.89 0.77 0.58 0.83

6. RGB+LBP loopt loopt 0.92 0.79 0.66 0.87




Methods and means of image processing 213
Table 4
Classification results for image SS1
Trainin Classified | Flclass3 | FlclassO | F1class1 F1 class 2.
Case o’ Imageg Image (Urban) (Water) | (Vegetation) | (Bare soil) F1 Total
1 25 In In 0.89 0.99 0.94 0.87 0.96
2 25 In loopt-4 0.84 0.98 0.93 0.80 0.95
3 25 In lgopT 0.84 0.99 0.94 0.80 0.96
4 25 loopt-4 In 0.84 0.97 0.89 0.79 0.93
5 25 loopt-4 loopt-4
6 25 loopT-4 lgopT 0.85 0.99 0.95 0.81 0.96
7 25 lgopT In 0.80 0.97 0.91 0.78 0.94
8 25 loopT loopt-4 0.84 0.99 0.95 0.81 0.96
9 25 loopT lgopT 0.89 0.99 0.96 0.88 0.97
10 |50 In In 0.88 0.99 0.93 0.86 0.96
11 | 50 In loort-4 0.84 0.98 0.91 0.80 0.94
12 | 50 In lgopT 0.84 0.97 0.90 0.78 0.93
13 | 50 looprt-4 In 0.81 0.97 0.89 0.78 0.93
14 50 loopT-4 loopT-4
15 |50 looprt-4 lgopT 0.85 0.99 0.95 0.80 0.96
16 |50 lgopT In 0.81 0.95 0.85 0.76 0.90
17 |50 loopT loort-4 0.84 0.99 0.93 0.79 0.95
18 | 50 lgopT lgopT 0.89 0.99 0.96 0.87 0.97
19 | 100 In In 0.88 0.98 0.92 0.86 0.95
20 | 100 In loort-4 0.83 0.98 0.91 0.78 0.94
21 | 100 In lgopT 0.83 0.84 0.71 0.75 0.80
22 | 100 loopT-4 In 0.83 0.98 0.91 0.78 0.94
23 100 loopT-4 loopT-4
24 | 100 lgopT-4 lgopT 0.83 0.96 0.87 0.77 0.92
25 | 100 lqopT In 0.75 0.93 0.83 0.74 0.88
26 | 100 lgopT loopT-4 0.81 0.96 0.87 0.75 0.91
27 | 100 lgopT lgopT 0.88 0.99 0.96 0.86 0.97
Table 5
Classification results for image SS2
Case | o2 Training Classified | Flclass3 | FlclassO F1 clasg 1 F1 cIass_Z F1
Image Image (Urban) (Water) (Vegetation) | (Bare soil) Total
1 25 | Iy In 0.93 0.79 0.70 0.91 0.88
2 25 | Iy lqoop-4 0.92 0.69 0.63 0.89 0.85
3 25 | Iy lgoor 0.91 0.66 0.62 0.88 0.84
4 25 | lgoor4 In 0.91 0.69 0.61 0.86 0.84
5 25 | lgoor-4 looor-4
6 25 | looop-4 lgoop 0.93 0.76 0.66 0.90 0.87
7 25 | lgoor In 0.88 0.67 0.60 0.81 0.81
8 25 | looor lgoop-4 0.92 0.74 0.64 0.87 0.85
9 25 | looor lgoop 0.93 0.77 0.69 0.90 0.88
10 50 | Iy In 0.92 0.80 0.69 0.89 0.87
11 50 | Iy lqoop-4 0.92 0.71 0.62 0.89 0.85
12 50 | Iy looor 0.90 0.61 0.59 0.86 0.82
13 50 | lgoor4 In 0.91 0.72 0.62 0.87 0.85
14 50 | lgoor-4 looor-4
15 50 | looop-4 lgoop 0.92 0.76 0.65 0.89 0.86
16 50 | lgoor In 0.88 0.64 0.57 0.80 0.79
17 50 | looor looop-4 0.90 0.74 0.60 0.83 0.83
18 50 | lgoor looor 0.93 0.78 0.68 0.89 0.87
19 100 | Iq In 0.92 0.81 0.67 0.87 0.87
20 100 | Iq lgoop-4 0.91 0.79 0.62 0.87 0.86
21 100 | Iq looor 0.90 0.65 0.57 0.84 0.82
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Continuation of the Table 5
Case | o2 Training Classified Flclass3 | FlclassO F1 clas§ 1 F1 class_2 F1
Image Image (Urban) (Water) (Vegetation) | (Bare soil) Total
22 100 | lgoor-4 In 0.91 0.79 0.60 0.86 0.85
23100 [ looors | looors [N NG O RO
24 100 | lgoor-4 lgoop 0.90 0.69 0.59 0.86 0.83
25 100 | lgoor In 0.88 0.72 0.56 0.80 0.80
26 100 | lgoor looor-4 0.89 0.73 0.57 0.81 0.82
27 100 | lgoor lgoop 0.92 0.79 0.66 0.87 0.86

When training the model on Igoor-4 and evaluating
on lgoor-4 and lgoop, the weighted F1-score decreased as
noise increased for both images (SS1 and SS2). During
training on lgooe, Similar trends were observed.

From the obtained results, it follows that it is best to
use images with approximately the same noise level and
compression factor for both model training and inference.
A significant mismatch in noise levels between training
and classification phases leads to a drop in performance,
as the model learns features that are not present or are
distorted in the test set. Moreover, using compressed im-
ages does not lead to a significant decrease in classifica-
tion accuracy; at 6> = 100 and Q = Qoop, an accuracy of
0.96-0.97 for lqopr-4 and Iqoop Observed, compared with
about 0.95 for I,. This implies that the loss of information
during compression is compensated by the reduction of
noise, which is particularly beneficial for the XGBoost
algorithm.

It is worth noting that, in many cases, we obtained
higher F1-scores than those reported in [18] for a simple
neural network (NN) classifier based on multilayer per-
ceptron (see Tables 6 and 7). XGBoost's decision-tree-
based architecture appears more robust to outliers caused
by noise than the MLP, which can overfit to specific
noise patterns. For SS1, XGBoost outperformed the NN
for all classes except Water and Vegetation, suggesting
that the NN handled the classification of pixels in homo-
geneous regions better. This is likely because the NN can
learn smoother decision boundaries for areas with low

variance. Moreover, using the NN yielded higher F1-
scores for all classes in the scenario where both training
and testing were performed on 1Qoor—4 at 62 = 100. For
SS2, the XGBoost classifier produced a lower F1 for the
Bare soil class, which in this image also corresponds to a
relatively homogeneous area. The NN outperformed
XGBoost in the compressed-and-noisy setting looop-s, 62
= 100. The noise-filtering effect induced by compression
appears to have a stronger positive impact when using the
NN, whereas our classifier is largely insensitive to it, ex-
hibiting only small performance changes —either upward
or downward, depending on the class.

It is also important to report the time spent on train-
ing and classification. Training used image fragments ac-
cording to the provided masks. Each run of feature ex-
traction, training, and classification produced slightly dif-
ferent timings: however, the values were close, and the
differences can be attributed to background processes on
the computation machine. Therefore, we report average
values. Feature extraction for training took 0.18-0.20
seconds for SS1 and 0.1 seconds for SS2, which reflects
the ratio of pixels in the masks. Feature extraction for the
full image prior to classification took about 0.30 seconds
for SS1 and 0.14 seconds for SS2. Model training re-
quired 4.0-4.5 seconds for SS1 and 3.5 seconds for SS2.
Classification — i.e., generating the full image mask —
took 1.2-1.5 seconds for both SS1 and SS2.

Examine the masks for the classified images. For
SS1, the results are shown in Fig. 6.

Table 6

Comparative table of image classification results using a simple neural network (NN) and XGBoost

(RGB+LBP) for SS1

o2 Training Classified F1, F1, F1, Vegetation F1, Bare F1,
Image Image Urban | Water ' soil Total

XGBoost In In 0.89 0.99 0.94 0.87 0.96
NN o5 In In 0.82 0.98 0.89 0.75 0.93
XGBoost |Qoop.4 |Qoop.4 0.89 0.96 0.88 0.97
NN looop-4 looop-4 0.85 1.00 0.96 0.84 0.97
XGBoost In In 0.88 0.99 0.93 0.86 0.96
NN 50 In In 0.81 0.97 0.87 0.71 0.92
XGBoost looop-4 looop-4 0.89 0.87 0.97
NN looop-4 looop-4 0.88 1.00 0.96 0.86 0.97
XGBoost In In 0.88 0.98 0.92 0.86 0.95
NN In In 0.76 0.96 0.83 0.69 0.90
XGBoost 100 looop-4 looop-4

NN lgoop-4 looop-4 0.89 1.00 0.96 0.89 0.97
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Visually the largest number of errors is observed for
the uncompressed image (Case 1). There are many mis-
classifications between the Water and Vegetation classes,
specifically Vegetation pixels being labeled as Water.
The masks for compressed images exhibit fewer obvious
misclassifications, which is particularly noticeable for
the Vegetation class. Thus, using compression at the

OOP — which led to an increase in PSNR — also had a
positive effect on overall classification accuracy. For S2,
the results are presented in Fig. 7. Visually, the classifi-
cation masks for compressed images look better, espe-
cially for homogeneous regions. The Bare soil class
shows fewer false assignments to Vegetation.

Table 7
Comparative table of image classification results using a simple neural network (NN)
and XGBoost (RGB+LBP) for SS2
Trainin Classified F1, F1, . F1,Open | F1, To-

° Imageg Image Urban | Water F1, Vegetation Groulr31d tal
XGBoost In In 0.93 0.79 0.70 0.91 0.88
NN 25 In In 0.90 0.71 0.58 0.86 0.83
XGBoost lgoor-4 lgoor-4 0.93 0.79 0.70 IO 0388 |
NN lgoop-4 lgoop-4 0.92 0.69 0.71 0.93 0.87
XGBoost In In 0.92 0.80 0.69 0.89 0.87
NN 50 In In 0.89 0.71 0.56 0.82 0.81
XGBoost looor-4 looor-4 0.92 0.78
NN looop-4 looop-4 0.92 0.72 0.73 0.93 0.88
XGBoost In In 0.92 0.81 0.67 0.87 0.87
NN In In 0.88 0.75 0.49 0.80 0.80
XGBoost looop-4 lgoop-4
NN looop-4 looop-4 0.93 0.72 0.72

* Pl

d)
Fig. 6. Classification results for image SS1, Case 1 (a) and Case 9 (b), Case 18 (c) and Case 27 (d)
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Fig. 7. Classification results for image SS2, Case 1 (a)
and Case 9 (b), Case 18 (c) and Case 27 (d)

4. Conclusions

The study confirmed that the proposed classifica-
tion method — combining LBP, channel features, and the
XGBoost algorithm — is effective for satellite imagery
even under challenging conditions, such as the presence
of noise and compression-induced distortions due to
lossy coding. Using LBP features proved beneficial, as
they improved classification accuracy compared with re-
lying on per-channel information alone. Moreover, LBP
exhibited robustness to noise: evaluation metrics such as
the F1 score were less sensitive to noise level than in the
case of a neural network—based classifier. Importantly,
LBP not only improves classification outcomes but is
also computationally efficient due to its simple mathe-
matical formulation.

Regarding the impact of compression, the model
also proved fully competitive. Although strong compres-
sion somewhat affects the results, overall accuracy re-
mains at an acceptable level even at relatively high Q val-
ues for BPG. A specific issue does arise on homogeneous
surfaces such as water. Despite LBP’s ability to capture
texture characteristics, compressed images exhibited ar-
tifacts stemming from the interaction between BPG com-
pression and LBP. This was especially evident in situa-
tions where texture homogeneity makes the model more
sensitive to compression-induced distortions. Thus, there
is potential to refine the LBP configuration to reduce ar-
tifacts that appear under compression on homogeneous
surfaces.

A comparison with a simple NN has showed that the
XGBoost-based classifier generally exhibits greater sta-
bility and accuracy, especially for texture-rich classes
such as Urban areas, even under challenging noise and
compression conditions. At the same time, the NN
demonstrated an advantage on homogeneous and rela-
tively homogeneous regions — particularly for Water
(SS1) and Bare soil (SS2) — where its accuracy was
higher in some cases.

Adapting LBP parameters and refining approaches
for processing surfaces with different degrees of homo-
geneity may become an important direction for future
work. Promising avenues include incorporating compres-
sion parameters at the model design stage and investigat-
ing how to adapt the classifier to diverse noise types and
image texture regimes.

Contributions of authors: conceptualization,
methodology — Sergii Kryvenko; formulation of tasks,
analysis — Sergii Kryvenko, Maksym Rybnytksyi;
original data preparation Volodymyr Rebrov; develop-
ment of model, software - Maksym Rybnytksyi, verifi-
cation — Volodymyr Lukin, Maksym Rybnytskyi;
analysis of results, visualization — Maksym Rybnytskyi;



Methods and means of image processing

217

writing — original draft preparation — Maksym Rybny-
tskyi, writing — review and editing — Volodymyr Lukin.

Conflict of Interest
The authors declare that they have no conflict of in-
terest in relation to this research, whether financial, per-
sonal, author ship or otherwise, that could affect the re-
search and its results presented in this paper.

Financing
The research has been funded by National Research
Foundation of Ukraine (https://nrfu.org.ua/en/, accessed
on 1 July 2025) within Project No. 2023. 04/0039 “Geo-
spatial monitoring system for the war impact on the agri-
culture of Ukraine based on satellite data” (2024—2025).

Data Availability
Data will be made available upon reasonable
request.

Use of Artificial Intelligence

The authors have used artificial intelligence tech-
nologies within acceptable limits to provide their own
verified data, as described in the research methodology
section.

Acknowledgments
All the authors have read and agreed to the pub-
lished version of this manuscript.

References

1. Li, Z., Chen, B., Wu, S., Su, M., Chen, J. M. and
Xu, B. Deep learning for urban land use category classi-
fication: A review and experimental assessment, Remote
Sensing of Environment, 2024, vol. 311. DOI:
10.1016/j.rse.2024.114290.

2. Kussul N.M., Shelestov, A. Y., Lavreniuk, A.
M., Yailymov, B. Ya., Yailymova, H. O., Kolotii, A. V.,
Drozd, S. Yu., Savin, V. V., Mikava, P. V., Kyrylenko, I.
A., Yavorskyi, O. A., Okhrimenko, A. O., Parkhomchuk,
O. M., Khar, D. F. and Volkova, E. A. Metody
komp 'juternogho zoru i ghlybynnykh nejronnykh merezh
dlja ekologho-ekonomichnogho analizu. Kyyiv: Nau-
kova dumka, 2024, 474 p.

3. DeJong, S. and Meer, F. Remote Sensing Image
Analysis: Including The Spatial Domain. Springer Dor-
drecht, 2007, 359 p. DOI: 10.1007/978-1-4020-2560-0.

4. West, H., Quinn, N. and Horswell, M. Remote
sensing for drought monitoring & impact assessment:
Progress, past challenges and future opportunities, Re-
mote Sensing of Environment, 2019, vol. 232. DOI:
10.1016/j.rse.2019.111291.

5. Ma, X. High-resolution image compression al-
gorithms in remote sensing imaging, Displays, 2023, vol.
79. DOI: 10.1016/j.displa.2023.102462.

6. Abramova, V., Lukin, V., Abramov, S,
Abramov, K. and Bataeva, E. Analysis of Statistical and
Spatial Spectral Characteristics of Distortions in Lossy
Image Compression, in 2022 IEEE 2nd Ukrainian Micro-
wave Week (UkrMW), 2022, pp 644-649. DOI:
10.1109/UkrMW58013.2022.10036949.

7. Firat, H., Asker, M. E., Bayindir, M. 1. and Han-
bay, D. Spatial-spectral classification of hyperspectral re-
mote sensing images using 3D CNN based LeNet-5 ar-
chitecture, Infrared Physics & Technology, 2022, vol.
127. DOI: 10.1016/j.infrared.2022.104470.

8. Proskura, G., Vasilyeva, I. and Lukin, V. Anal-
ysis of Improvement of Noisy Multichannel Image Con-
trolled Pixel-by-Pixel Classification by Post-Classifica-
tion Processing, in 2020 IEEE 15th International Confer-
ence on Advanced Trends in Radioelectronics, Telecom-
munications and Computer Engineering (TCSET), 2020,
pp 1-6. DOI: 10.1109/TCSET49122.2020.235488.

9. Cheng, G., Han, J. and Lu, X. Remote Sensing
Image Scene Classification: Benchmark and State of the
Art, Proceedings of the IEEE, 2017, vol. 105, no. 10, pp
1865-1883. DOI: 10.1109/JPROC.2017.2675998.

10. Bioucas-Dias, J. M., Plaza, A., Camps-Valls, G.,
Scheunders, P., Nasrabadi, N. and Chanussot, J. Hyper-
spectral Remote Sensing Data Analysis and Future Chal-
lenges, IEEE Geoscience and Remote Sensing Magazine,
2013, wvol. 1, no. 2, pp 6-36. DOl
10.1109/MGRS.2013.2244672.

11.S, P. Image Classification Using Machine
Learning Approaches, INTERNATIONAL JOURNAL OF
CREATIVE RESEARCH THOUGHTS, 2023, vol. 11, pp
B816-B819.

12. Kovalenko, B., Lukin, V., Kryvenko, S., Nau-
menko, V. and Vozel, B. Prediction of parameters in op-
timal operation point for BPG-based lossy compression
of noisy images, Ukrainian journal of remote sensing,
2022, vol. 9, no. 2, pp 4-12.

13.Radosavljevi¢, M., Brklja¢, B., Lugonja, P.,
Crnojevi¢, V., Trpovski, Z., Xiong, Z. and Vukobratovic,
D. Lossy Compression of Multispectral Satellite Images
with Application to Crop Thematic Mapping: A HEVC
Comparative Study, Remote Sensing, 2020, vol. 12, no.
10. DOI: 10.3390/rs12101590.

14.Jiao, W., Hao, X. and Qin, C. The Image Clas-
sification Method with CNN-XGBoost Model Based on
Adaptive Particle Swarm Optimization, Information,
2021, vol. 12, no. 4. DOI: 10.3390/info12040156.

15. Boonprong, S., Cao, C., Chen, W., Ni, X., Xu,
M. and Acharya, B. K. The Classification of Noise-Af-
flicted Remotely Sensed Data Using Three Machine-
Learning Techniques: Effect of Different Levels and
Types of Noise on Accuracy, ISPRS International Jour-
nal of Geo-Information, 2018, vol. 7, no. 7. DOI:
10.3390/ijgi7070274.

16. Ahmed, T. S., Sayed, A. N., Youssef, A,
Shaker, G. and Elbahnasawy, M. Assessing Noise Effects
on UAV Classification Accuracy With Deep Learning
and FPGA Real-Time Processing: A Study Utilizing Ra-
dar Digital Twins, IEEE Sensors Journal, 2025, vol. 25,
no. 12, pp 22850-22862. DOI: 10.1109/JSEN.2025.


https://nrfu.org.ua/en/

218 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)
3566651. and Chanussot, J. Hyperspectral Image Classification—

17.Proskura, G., Vasilyeva, 1., Li, F. and Lukin, V.
Classification of Compressed Multichannel Images and
Its Improvement, in 2020 30th International Conference
Radioelektronika (RADIOELEKTRONIKA), 2020, pp 1-
6. DOI: 10.1109/RADIOELEKTRONIKA49387.2020.
9092371.

18.Rebrov, V., Proskura, G. and Lukin, V. Classi-
fication of Compressed Noisy Three-Channel Noisy Im-
ages: Comparison of Several Approaches, Integrated
Computer Technologies in Mechanical Engineering -
2024. 1ICTM 2024 [Preprint], 2025.

19.Vawda, M. I, Lottering, R., Mutanga, O.,
Peerbhay, K. and Sibanda, M. Comparing the Utility of
Artificial Neural Networks (ANN) and Convolutional
Neural Networks (CNN) on Sentinel-2 MSI to Estimate
Dry Season Aboveground Grass Biomass, Sustainability,
2024, vol. 16, no. 3. DOI: 10.3390/su16031051.

20. Chugh, R., Bhatia, V., Khanna, K. and Bhatia,
V. A Comparative Analysis of Classifiers for Image
Classification, in, 2020, pp 248-253. DOI: 10.1109/Con-
fluence47617.2020.9058042.

21. Chakraborty, D. and Elzarka, H. Advanced ma-
chine learning techniques for building performance sim-
ulation: a comparative analysis, Journal of Building Per-
formance Simulation, 2018, vol. 12, pp 1-15. DOI:
10.1080/19401493.2018.1498538.

22.Song, Y., Zhang, J., Liu, Z., Xu, Y., Quan, S.,
Sun, L., Bi, J. and Wang, X. Deep learning for hyperspec-
tral image classification: A comprehensive review and
future predictions, Information Fusion, 2025, vol. 123.
DOI: 10.1016/j.inffus.2025.103285.

23. Ahmad, M., Shabbir, S., Roy, S. K., Hong, D.,
Wu, X., Yao, J., Khan, A. M., Mazzara, M., Distefano, S.

Traditional to Deep Models: A Survey for Future Pro-
spects, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 2022, vol. 15, pp
968-999. DOI: 10.1109/JSTARS.2021.3133021.

24. Pietikdinen, M., Hadid, A., Zhao, G. and Aho-
nen, T. Computer Vision Using Local Binary Patterns,
2011. DOI: 10.1007/978-0-85729-748-8.

25. XGBoost Documentation — xgboost 3.0.2 doc-
umentation. Available at: https://xgboost.readthedocs.io/
en/stable/ (accessed 05.06.2025).

26.BPG Image format. Available at: https://bel-
lard.org/bpg/ (accessed 13.07.2025).

27.Proskura, G., Naumenko, V. and Lukin, V. Clas-
sification of BPG-Based Lossy Compressed Noisy Im-
ages, Ukrainian journal of remote sensing, 2024, vol. 11,
no. 3, pp 13-25. DOI: 10.36023/ujrs.2024.11.3.266.

28. Local Binary Pattern for texture classification
— skimage 0.25.2 documentation. Available at:
https://scikit-image.org/docs/0.25.x/auto_examples/fea-
tures_detection/plot_local_binary_pattern.html (ac-
cessed 08.08.2025).

29.Ojala, T., Pietikainen, M. and Maenpaa, T. Mul-
tiresolution gray-scale and rotation invariant texture clas-
sification with local binary patterns, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2002, vol.
24, no. 7, pp 971-987. DOl:
10.1109/TPAMI.2002.1017623.

30. Punia, R. How to Measure the Performance of
Your Machine Learning Models: Precision, Recall, Ac-
curacy, and F1 score, Medium. Available at: https://rs-
punia.medium.com/how-to-measure-the-performance-
of-your-machine-learning-models-precision-recall-accu-
racy-and-f1-855702df048b (accessed 10.01.2025).

Received 28.08.2025, Received in revised form 15.09.2025
Accepted date 03.11.2026, Published date 08.12.2025

KOMBIHOBAHMIA IMIZAXIJ O MKCEIBHOI KJACH®IKALIT CYITYTHUKOBHX 30BPAKEHb
HA OCHOBI LBP, ICEBJIOKOJIbOPOBUX OCOBJIMBOCTEM TA XGBOOST

M. A. Puonuuskuit, C. C. Kpueenko, B. B. Jlykin, B. C. Peopoe

IIpenmeToM CTaTTi € MoOMiKCeNbHA KIacu(iKalis CyITyTHUKOBHX 300pakeHb Sentinel-2, mpeacTaBieHux sK TpH-
KaHaJbHI aHi, mpuBeneHi A0 npoctopy RGB mis 3pyuHoi Bi3yamizaiii, 3 0COOIMBOIO yBaroo 10 BUKIHKIB, 3yMOB-
JICHUX CEHCOPHUM LIYMOM i apTe(akTaMy CTUCHEHHS 3 BTpaTaMH, THIOBHMH JUIS CYITyTHHUKOBHX NaHUX. MeTa 11o-
nsTae y po3pobieHHi Ta Bamigamnii miaxony 1o Kracudikaiiii, skuit 30epirae BUCOKY TOUHICTH 32 YMOB 3HAYHOTO IIIyMY
Ta CTHCHEHHS, MTOEIHYIOUH TeKCTypHi peckpuntopu Local Binary Patterns (LBP) i3 ceBaokonsopoBUMHU 0O3HAKaMHU
Ta BUKOPHCTOBYIOUYM e(peKTUBHMI aHCaMOIeBHil kinacudikarop. 3aBAaHHs, SKi HEOOX1THO BUPIIIUTH: CIIPOEKTYBATH
KOMIIaKTHE MMOJaHHs O3HAaK, IO IHTErpye TEKCTYpHY iH(popMarito Ha ocHOBi LBP i3 mceBgokomsopoM; HABUUTH Ta
HamamryBatu kinacudikarop XGBoost Ha IMX 03HAKAaX 1 MOPIBHATH HOro podoTy 3 6a30BUMU MiAXOIAMH, SKi BUKO-
PHUCTOBYIOTH JTHIIE TICEBIOKOIHOPOBY iH(OPMAIIiFO, a TAKOXK 13 MPOCTHMH MOJEISIMH HEHPOHHUX MEPEXkK; OLIHUTH
CTIMKICTB IO MIyMy Ta apTe(aKTiB CTUCHEHHs B Jiala3oHi piBHIB KoMIpecii. BukoprcraHi MeToaM BKIIIOYAIOThH BU-
my4deHHs neckpuntopis LBP as dikcarii mokaapHAX TEKCTypHUX ITa0I0HIB, POPMYBAHHS IICEBIOKOIHOPOBHUX O3HAK
i3 kaHamB Sentinel-2, BimoOpaxxennx y RGB, Ta moeqHaHHS IUX TECKPUTITOPIB Yy CHiIBHI BEKTOPH 03HAK. [y mo0y-
JOBU Mozieni knacudikarii 3acrocoBano anroputm XGBoost. EdektuBHICTE Mozeni OmiHIOeThCS 32 MeTpukoro F1 sk
OCHOBHOIO, 32 PI3HHX YMOB LIIyMY Ta CTHCHEHHs. [l0IaTKOBO BUKOPHCTOBYETHCS Bi3yaJ bHHI aHaJI3 OTPUMAaHUX KIla-
cudikamiifHuX Mam IS MiATBEPKSHHS KUTBKICHUX Pe3yNbTaTiB i aHaNi3y MPOCTOPOBOI Y3TOPKEHOCTI Ta TMPODiTio
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noMuIoK. BucHoBku. HaykoBa HOBH3HA OTPUMAHUX PE3yJIbTaTiB MOJIATAE B HACTYITHOMY. BIIEpIIE IS 3a/1a4i IO~
KcenpHOI knacudikarii Sentinel-2 cucremMHo nocmimpkeHo i oOrpyHToBano BHKopuctanHs LBP y moennanHi 3
XGBoost y cuenapisix ctucHenHs 3 BrpataMu BPG npu po6oTi B ontiuManbHii pobodiit Touni (OPT) abo mobmusy
Hel; eKCIIepUMEHTAIIbHO BCTAHOBJIEHO CYTTEBHM MPHUPICT Y TOYHOCTI eKiIacudikamii A1t HEOQHOPIAHMX Kiacis (ypbOa-
Hi30BaHi TepPUTOPIi, POCINHHICTD, BIAKPUTHUI IPYHT) 1 0OOMEKEHHI — JUIsl OMHOPIAHUX (BOJa), a TAKOX 3a(hiKCOBAHO
apredakt B3aemonii BPG+LBP na omHOpimHMX MOBEpXHAX 1 OKpecieHo HampsM ananraiii napamerpiB LBP s
IXHBOTO 3MEHIIIEHHS; II0Ka3aHO 00U CIIOBAILHY IPUIATHICTD MiIX0My (4ac BUIJICHHS 03HAK, HABYaHHS Ta Kinacui-
Kalii) Juist onepauiifHnX KOHBEEPiB; POBEICHO MOPIBHSIHHS 3 TIPOCTOI0 HEMPOHHOIO MEPEXEI0 1 IPOAEMOHCTPOBAHO
BHUIIY cTaOLIBHICT 3aIIPOIIOHOBAHOTO MiIXOAY Ha TEKCTYPHO HACHMYEHHUX KJlacaxX 3a YMOB LIYMY Ta CTUCHEHHS, 110
3aJ1a€ MeKi 3aCTOCOBHOCTI aJlbTEPHATHUBHUX METOAIB. J{OCIiPKEHHS TaKOXK MTOKA3Yye, M0 BpaXyBaHHs €(eKTiB CTHC-
HEHHS1 BXKIIUBE JJIsI ONepallifHNX KOHBEEPiB OOPOOKH: CTUCHEHHS 300pakeHb JI0 ONTUMAaIIbHOI poO0Y0Tl TOUKH MOXKE
3MEHIIUTH 00CAT MaHuX 1, y JAESKUX BUIIAJKaX, TPOXU MOJIMIINTH TOYHICTH Kiacudikamii 3aBAsSKy MocaaOlIeHHIo
IyMmy.

Karwuogi cioBa: knacudikariist; cynmyTHUKOBI 300paxkennst; Local Binary Patterns; XGBoost; 1irym; CTHCHEHHSL.
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