
ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 4(116)               ISSN 2663-2012 (online) 
186 

UDC 621.383:629.735.05:004.932  DOI: 10.32620/reks.2025.4.13 
 

Andrii LYSYI1, Anatoliy SACHENKO2,3, Pavlo RADIUK1, Mykola LYSYI4,  

Oleksandr MELNYCHENKO1, Diana ZAHORODNIA2 
 

1 Khmelnitsky National University, Khmelnitsky, 29016, Ukraine 
2 Research Institute for Intelligent Computer Systems, West Ukrainian National University, 

Ternopil, 46009, Ukraine 
3 Department of Informatics and Teleinformatics, Kazimierz Pulaski University of Radom,  

Radom, 26-600, Poland 
4 National Academy of the State Border Service of Ukraine named after Bogdan Khmelnitsky, 

Khmelnitsky, 29007, Ukraine 
 

METHOD OF UAV-BASED INSPECTION OF PHOTOVOLTAIC MODULES  

USING THERMAL AND RGB DATA FUSION 
 

The Subject matter of the article is the design and experimental evaluation of an intelligent edge-cloud cyber-

physical system for automated inspection of photovoltaic (PV) modules in utility-scale solar power plants 

based on multi-palette thermal infrared and RGB imagery acquired by unmanned aerial vehicles (UAVs). The 

Goal of this study is to enhance PV defect detection accuracy and operational efficiency by designing a novel 

method that converts raw, overlapping sensor data into a compact, geo-referenced inventory of actionable 

defects. The goal is achieved by systematically increasing detection mean Average Precision (mAP) and 

reducing false positive rates caused by data redundancy, while simultaneously minimizing bandwidth usage. 

The Tasks to be solved include: developing a palette-invariant thermal representation that suppresses 

dependence on pseudo-color rendering and camera internal parameters; fusing this robust thermal stream 

with contrast-enhanced RGB data using an adaptive gated mechanism that can down-weight unreliable 

modalities; implementing an on-board active perception loop that re-orients the UAV gimbal for additional 
views of ambiguous, small-area anomalies; designing a geo-spatial clustering and de-duplication module that 

merges repeated detections into unique fault events suitable for integration with SCADA and GIS tools; and 

quantifying the benefits of the proposed architecture on public benchmarks and real-world field trials in 

comparison with single-modality baselines. The Methods employed include deep convolutional neural 

networks based on a YOLOv11m-seg instance segmentation backbone trained with a palette-consistency 

regularization term, gated feature-level fusion of thermal and RGB embeddings, Rodrigues-based calculation 

of corrective gimbal rotations for adaptive re-acquisition, density-based spatial clustering with the haversine 

distance metric for geographic de-duplication of detections, and statistical performance analysis using mAP, 

macro-averaged F1-score, recall, and a duplicate-induced false positive indicator. The following Results were 

obtained: on the PVF-10 benchmark the proposed system achieves mAP@0.5 = 0.903, exceeding thermal-only 

and RGB-only detectors by 12–16 percentage points; on the STHS-277 dataset it reaches mAP@0.5 = 0.887; 
palette-invariant training and adaptive re-acquisition together increase small-target recall to 0.86; geo-spatial 

clustering reduces the duplicate-induced false positive rate by 12–15 percentage points; field validation at 

rooftop and ground-mounted plants confirms 96% recall with a low root-mean-square deviation between 

automatic and manual defect counts; and relevance-only telemetry reduces airborne data transmission by 60–

67% while preserving diagnostic fidelity. In Conclusion, the scientific novelty of the results obtained lies in a 

unified palette-invariant, multi-modal edge-cloud cyber-physical architecture that combines UAV sensing, 

active perception, geo-spatial reasoning, and bandwidth-aware reporting into a single operational method for 

photovoltaic module inspection, providing a scalable foundation for condition-based maintenance of large 

solar power plants. 

 

Keywords: photovoltaic modules; UAV inspection; defect detection; thermal infrared imaging; RGB imagery; 
deep learning; multi-modal fusion; palette invariance; geo-spatial clustering. 
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1. Introduction 
 

1.1. Motivation 

 

The global transition toward low-carbon energy 

has positioned solar photovoltaics (PV) as a cornerstone 

of the future power system. Utility-scale PV plants have 

expanded rapidly in both capacity and geographic 

extent, with many installations now covering hundreds 

of acres and comprising hundreds of thousands of 

modules [1, 2]. These assets are long-lived and capital-

intensive; their financial viability depends on 

maintaining high-energy yield over lifetimes of 25–30 

years. Even small percentage losses in performance, 

when aggregated across gigawatt-scale portfolios, 

translate into substantial revenue deficits and can 

undermine the economic case for large PV deployments 

[3]. Reliable monitoring and timely remediation of 

defects are therefore central to Operations and 

Maintenance (O&M) to protect revenue, ensure safe 

operation, and preserve asset lifetimes [1. 

PV modules are continuously exposed to 

environmental and electrical stress, making them 

susceptible to a wide range of degradation mechanisms 

and faults. Electrical anomalies such as hotspots, 

bypass-diode failures, and interconnection faults can 

cause localized overheating, mismatch losses, and 

accelerated aging. Mechanical and material defects, 

including cell cracks, glass breakage, delamination, and 

encapsulant discoloration, can induce irreversible 

damage and may propagate under thermal cycling or 

wind loading [1]. Additional performance losses arise 

from soiling, snail trails, and potential-induced 

degradation (PID), which, although individually subtle, 

collectively yield significant energy deficits [3]. 

Hotspots are especially critical because they not only 

reduce output but can escalate into burn marks or, in 

extreme cases, fire hazards if left uncorrected [2]. 

Traditional inspection workflows rely on technicians 

walking through the plant with handheld thermal 

cameras, electroluminescence equipment, or I–V 

tracers. While suitable for small arrays, these methods 

are slow, labor-intensive, and fundamentally unscalable 

for modern PV fleets. 

Unmanned aerial vehicles (UAVs) have emerged 

as a transformative solution to these scalability 

limitations [4, 5]. Multirotor platforms equipped with 

radiometric thermal infrared and high-resolution Red, 

Green, Blue (RGB) cameras can survey large plants in 

hours, providing repeatable, bird’s-eye coverage while 

keeping personnel off energized infrastructure [6, 7]. 

Thermal imagery reveals temperature anomalies that are 

invisible in the visible spectrum, making it effective for 

detecting electrical faults such as hotspots and substring 

failures, whereas RGB imagery is well suited for 

documenting broken glass, delamination patterns, 

shading, and heavy soiling [3, 8]. Acquisition guidelines 

emphasize adequate ground sampling distance (GSD), 

sufficient along-track and cross-track overlap, and 

careful choice of viewing angles to mitigate glare from 

reflective module surfaces [8, 9]. As a result, UAV-

based thermography has evolved from a niche technique 

into a de facto standard for large-scale PV 

diagnostics [4]. 

 

1.2. State of the art 

 

Research on UAV-based PV inspection 

encompasses several interdependent layers. However, 

converting UAV imagery into actionable maintenance 

decisions remains challenging. Survey flights routinely 

generate tens of thousands of thermal infrared (TIR) and 

RGB frames, and manual post-processing by experts is 

time-consuming, costly, and prone to variability across 

analysts [1]. Deep learning-based object detection 

models offer a promising alternative; however, several 

persistent obstacles complicate their practical 

deployment in operational PV plants. Thermal cameras 

capture radiometric temperature fields rather than color; 

the visualized appearance depends on pseudo-color 

palettes (e.g., ‘Ironbow,’ ‘Rainbow,’ ‘White-hot’) and 

camera-internal settings such as automatic gain control 

[1010]. Models trained on data rendered with one 

palette or vendor configuration often perform poorly 

when applied to imagery acquired with different palettes 

or updated firmware, a phenomenon known as “palette 

bias.” Robust inspection requires methods that remain 

reliable under these representation shifts. 

Further complications arise from the high image 

overlap needed for photogrammetric workflows. The 

same defect is typically imaged multiple times from 

slightly different viewpoints, but naive frame-wise 

detection pipelines treat each frame independently and 

repeatedly flag the same fault. This inflates defect 

counts and forces human operators to consolidate 

duplicate alerts manually [11]. In parallel, the 

combination of 4K RGB and high-resolution 

radiometric TIR data leads to substantial 

communication and storage demands. Streaming full-

fidelity data from the UAV to a ground station or cloud 

back end is often infeasible over standard wireless links, 

particularly at remote sites [12]. Together, these issues 

motivate the development of integrated inspection 

systems that are robust to palette changes, explicitly 

account for data redundancy, and respect bandwidth 

constraints. 

Early work focused on demonstrating the 

feasibility and advantages of UAV thermography over 

manual inspections, highlighting significant gains in 

speed, coverage, and safety [4, 5]. Subsequent studies 
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and reviews examined the choice of airframes, the 

trade-offs between flight altitude, coverage, and GSD, 

and the comparative benefits of radiometric thermal 

imagers for assessing defect severity [3, 10]. Flight-

planning research investigated how altitude, speed, 

image overlap, and viewing angle influence the 

detectability of minor defects and sensitivity to artifacts 

such as glare and shadows [8, 9]. More recent efforts 

have begun to explore autonomous navigation and 

onboard processing, enabling UAVs to adjust 

trajectories or gimbal orientation in response to 

preliminary detections [13, 14]. 

On the algorithmic side, convolutional neural 

networks (CNNs) have become the dominant approach 

for automated defect detection in aerial PV imagery. 

Two-stage detectors such as Faster R-CNN offer high 

accuracy but incur substantial computational overhead, 

making them less attractive for embedded deployments 

[15]. Single-stage detectors from the YOLO and SSD 

families have been widely adopted to satisfy real-time 

or near-real-time requirements in both ground-based 

[16, 17] and on-UAV pipelines [18, 19]. Architectures 

such as EfficientDet provide scalable trade-offs between 

accuracy and efficiency across model sizes, which is 

valuable for resource-constrained edge devices [20]. 

Many studies report promising results for detecting 

hotspots and cracks [21, 22], as well as delamination 

and soiling in both TIR and RGB modalities [23]. 

Nevertheless, most evaluations rely on relatively small, 

site-specific datasets collected with a single palette and 

camera configuration, which raises questions about 

generalization to new plants and acquisition setups 

[24, 25]. 

To improve trust and operational acceptance, 

recent work has explored explainable artificial 

intelligence (XAI) techniques for PV defect detection. 

Visualization tools such as gradient-based saliency 

maps and class activation maps highlight image regions 

that most influence the model’s predictions, allowing 

experts to verify whether the network focuses on 

physically meaningful patterns or spurious features 

[26, 27]. While these methods support interpretability, 

they typically operate on single-modality inputs. This 

study addresses the need for trustworthiness not through 

internal saliency maps, but through an “active 

perception” loop that visually confirms low-confidence 

detections, ensuring the final output is physically 

verifiable. 

Recognizing the complementary strengths of TIR 

and RGB, many authors have investigated multi-modal 

fusion strategies. Thermal imagery excels at revealing 

electrical anomalies through temperature deviations, 

whereas RGB imagery captures fine-grained structural 

damage, soiling, and shading patterns [28, 29]. Fusion 

can occur at the input level (early fusion), at the 

decision level (late fusion), or at intermediate feature 

levels. Feature-level fusion has gained prominence 

because it offers a good balance between expressiveness 

and complexity [30]. Existing fusion schemes often rely 

on straightforward concatenation or averaging of 

features, with limited ability to downweight unreliable 

modalities under adverse conditions such as severe glare 

[8] or low thermal contrast [31]. This motivates more 

flexible fusion mechanisms that can adaptively 

modulate the contribution of each modality. 

At the plant scale, inspection shifts from per-image 

analysis to geospatial asset management. Detected 

defects must be accurately projected from image 

coordinates into geodetic space to support localization 

in the layout, maintenance planning, and integration 

with Supervisory Control and Data Acquisition 

(SCADA) or Geographic Information System (GIS) 

platforms [5, 32]. Prior work has emphasized the value 

of geo-referenced defect databases for long-term asset 

health monitoring and for analyzing spatial patterns 

such as clusters of faults near particular strings or 

environmental features [33]. Yet the consolidation of 

redundant detections caused by image overlap is often 

treated with simple heuristics [11] or neglected 

altogether, leading to inflated defect counts and noisy 

maintenance logs. Parallel advances in digital-twin 

concepts for PV plants envision continuously updated 

virtual replicas that fuse UAV inspection results with 

SCADA and meteorological data to enable predictive 

maintenance and scenario analysis [34, 35]. Such 

platforms require inspection pipelines that output clean, 

non-redundant, and geo-consistent defect inventories. 

 

1.3. Objectives and tasks 

 

The existing literature demonstrates both 

substantial progress and noticeable fragmentation in 

UAV-based inspection of PV plants. Best practices for 

platforms, flight planning, and sensor selection are 

increasingly well established [4, 15], and a wide range 

of deep learning architectures has been successfully 

adapted for defect detection in PV modules [16, 19]. 

However, several specific research gaps still prevent the 

deployment of robust, field-ready systems. 

First, most detection pipelines implicitly assume a 

fixed thermal palette and camera configuration. As a 

result, their performance is sensitive to palette bias and 

representation shifts when imagery is captured using 

different pseudo-color mappings or hardware settings, 

which limits the transferability of trained models across 

sites and missions [10, 24]. 

Second, although multi-modal fusion of TIR and 

RGB data generally improves defect detection, many 

existing approaches treat both modalities symmetrically 

and do not include explicit mechanisms to down-weight 
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[8, 28] or suppress unreliable modalities under 

challenging illumination, noise, or saturation conditions 

[29, 31]. 

Third, the consolidation of detections across 

frames is often implemented as a post-hoc heuristic in 

image space [11], rather than being carried out through 

principled clustering in geographic coordinates that 

represent the true physical proximity of faults on the PV 

field [32, 33]. 

Fourth, bandwidth and onboard compute 

limitations are rarely modeled explicitly, even though 

they have a decisive impact on real-time feasibility, 

system architecture, and the ability to deploy such 

solutions in large-scale industrial scenarios [12]. 

The goal of this study is to enhance PV defect 

detection accuracy and operational efficiency by 

constructing a novel method that converts raw, 

overlapping sensor data into a compact, geo-referenced 

inventory of actionable defects. Specifically, the 

research aims to achieve a measurable increase in 

detection recall and a reduction in duplicate-induced 

false positives compared to single-modality baselines, 

while simultaneously minimizing bandwidth usage 

through relevance-only telemetry and ensuring 

robustness across varying thermal palette 

configurations. 

To achieve this goal, the following research tasks 

are defined: 

1. Development of a palette-invariant thermal–

RGB processing strategy that fuses consistent thermal 

embeddings with visual features using an adaptive gated 

mechanism to modulate modality contributions based on 

reliability. 

2. Implementation of an adaptive re-acquisition 

controller that utilizes Rodrigues rotation updates to re-

center and verify low-confidence detections, thereby 

increasing recall for small or ambiguous targets. 

3. Construction of a geospatial deduplication 

module using DBSCAN and haversine distance to 

project and cluster per-frame detections into a 

consolidated, unique defect inventory suitable for 

SCADA and GIS integration. 

4. Validation of the integrated method through 

comparative analysis on public datasets and real-world 

UAV field trials, quantifying improvements in detection 

accuracy, inventory quality, and bandwidth efficiency. 

The scientific novelty of this work lies in the 

formulation of a universally applicable, palette-invariant 

feature embedding strategy. Unlike ad-hoc 

augmentation techniques, this approach mathematically 

forces the network to learn thermal representations 

independent of pseudo-color mapping, making the 

method robust across different camera vendors and 

visualization settings without retraining. 

The paper is structured as follows: Section 2 

describes the materials and methods, including the 

problem formulation, palette-invariant embedding, and 

geospatial clustering. Section 3 presents the 

experimental results on benchmark datasets and field 

trials. Section 4 discusses the findings, operational 

advantages, and limitations. Section 5 concludes the 

article by summarizing the key findings and outlining 

prospects for future research. 

 

2. Materials and methods 
 

In response to the above-mentioned challenges and 

tasks, this paper introduces an integrated end-to-end 

method for UAV-based PV defect detection and 

reporting that jointly addresses palette bias, multi-modal 

fusion, adaptive re-acquisition, geo-spatial de-

duplication, and bandwidth-aware processing. The 

technical realization of this method is organized around: 

(i) a multi-palette thermal–RGB ensembling and gated 

fusion strategy, (ii) an adaptive re-acquisition controller 

driven by detection confidence and Rodrigues-based 

gimbal updates, and (iii) a geo-spatial clustering and 

summarization module that exports a consolidated 

defect inventory in standard JSON and KML formats. A 

detailed schematic representation of the proposed 

method and its algorithmic steps is shown in Fig. 1. 

 

2.1. Problem formulation and data 

preprocessing 

 

The problem statement is formally defined as 

follows. Given a UAV survey mission that produces a 

time-sequenced stream of sensor data packets 

  
N

i i i i 1
S R ,T ,


 P , where for each time step i, 

R RH W 3

iR
 

  is the RGB image, T TH W

iT


  is the 

radiometric thermal image containing raw sensor 

values, and iP  is the comprehensive pose and metadata 

packet. This packet includes the UAV’s precise geodetic 

coordinates (latitude, longitude, altitude) from an RTK-

GPS unit, its orientation (roll, pitch, yaw) from an IMU, 

the gimbal’s orientation, and the camera’s intrinsic 

parameters (focal length, principal point). The objective 

is to process this stream S and produce a minimal, de-

duplicated set of unique defect detections  
K

j j 1
D d


 , 

where each detection jd  is a structured object 

containing a semantic class label, a confidence score, a 

precise WGS84 geo-spatial polygon, and associated 

metadata such as peak temperature. 

To develop and validate the proposed method, two 

publicly available datasets were utilized, which undergo 

a standardized preprocessing pipeline: 
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Fig. 1. Schematic representation of the proposed method that consists of four phases: (I) palette-invariant  

thermal–RGB feature extraction; (II) adaptive gated fusion for reliability-based weighting; (III) active perception 

loop using Rodrigues updates for re-acquisition; and (IV) Haversine-DBSCAN geospatial clustering for redundancy 

filtering and telemetry generation 

 

1. PVF-10 [24]: This is a large-scale, high-

resolution UAV thermal dataset, featuring 5,579 

annotated crops of individual solar panels from eight 

distinct power plants. Its key strength is the fine-grained 

taxonomy of 10 different fault classes, including various 

types of hotspots, diode issues, and cell defects, 

enabling a nuanced evaluation of classification 

performance. 

2. STHS-277 [25]: This dataset contains 277 full-

frame thermographic images specifically capturing 

snail-trail and hotspot defects, accompanied by valuable 

environmental metadata. The existing annotations were 

extended to include bounding boxes for all panel 

instances, which allows for training and evaluating end-

to-end object detection models 

The preprocessing pipeline is designed to 

homogenize these diverse inputs. The raw radiometric 

values in the thermal frames iT  are converted into 

absolute temperature maps in degrees Celsius (°C). This 

is a critical step for quantitative analysis and is achieved 

using the sensor-specific calibration parameters 

provided in the image metadata. To create a rich set of 

inputs for the palette-invariance module, each 

temperature map was rendered into M 4  distinct 

colorized versions,   
4

m i m 1
C T


, using a selection of 

common thermal palettes: ‘ironbow,’ ‘whitehot,’ 

‘rainbow,’ and ‘sepia.’ The original single-channel 

temperature map is also retained as a normalized 

grayscale image. The corresponding RGB frames iR  

are treated with Contrast Limited Adaptive Histogram 

Equalization (CLAHE). Unlike global histogram 

equalization, CLAHE operates on small, tiled regions of 

the image, which is highly effective at enhancing local 

contrast and revealing details in areas that are either in 

deep shadow or affected by specular glare, common 

issues in PV imagery. All associated metadata from the 

iP  packet is carefully parsed and preserved, as it is 

essential for the downstream geo-tagging and de-

duplication stages. 

 

2.2. Palette-invariant thermal embedding  

and fusion 

 

The core of the detection model is a novel fusion 

architecture designed to be robust to the pervasive issue 

of thermal palette bias. The central hypothesis of this 

study is that by forcing a neural network to learn a 

representation that is consistent across different color 

visualizations of the same underlying thermal data, the 

network will learn to focus on the intrinsic thermal 

patterns rather than spurious color features. 

Let 
H WT   represent a normalized temperature 

map of a single crop. Its M colorized variants are 

denoted by   
M

H W 3

m m 1
C T  


 . A shared CNN 
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encoder  f   is employed with parameters   to map 

each of these variants into a high-dimensional latent 

feature vector,   m mz f C T . An EfficientNet-B1 

architecture was chosen as the backbone, pre-trained on 

ImageNet, for its excellent balance of performance and 

computational efficiency, making it suitable for 

potential onboard deployment. To enforce palette 

invariance, a custom loss function is introduced to 

minimize the variance among the feature vectors 

generated from the different palette renderings of the 

same input. The palette-invariance loss, pal , is 

formulated as the mean squared error between each 

individual embedding and their centroid, as shown in 

Equation 1: 

 

 
M

2

pal m 2
m 1

1
z z ,

M 

   (1) 

 

where 
M

m

m 1

1
z z

M 

  . 

By minimizing this loss during training, the 

encoder f  was compeled to produce a canonical, 

palette-agnostic embedding, z , which captures the 

essential thermal information, independent of its visual 

representation. 

In parallel, the corresponding RGB image crop, R, 

is processed by a separate but architecturally similar 

CNN encoder,  g  , with parameters  , to generate 

an RGB feature embedding,  r g R . The palette-

invariant thermal embedding z  and the RGB 

embedding R are then fused using a gated fusion unit. 

This mechanism adaptively controls the contribution of 

each modality, allowing the network to dynamically 

prioritize the more reliable source of information for 

any given input. The fused feature vector u is computed 

as follows: 

 

  u z 1 r,  g g  (2) 

 

where  g gW z r b 
 

 g . 

In Equation (2),      denotes feature 

concatenation, gW  and gb  are the learnable weights 

and biases of a linear gating layer,   is the element-

wise sigmoid activation function which outputs a gate 

vector g  with values between 0 and 1, and  

represents element-wise multiplication. This gated 

attention mechanism effectively learns a soft mask to 

decide how much information to draw from the thermal 

versus the visual stream for each feature dimension. 

The final fused feature vector u is passed to a 

lightweight, anchor-free detector head. This head 

consists of two branches: a classification branch that 

predicts the probability of each defect class, and a 

regression branch that predicts the bounding box 

coordinates. The complete model is trained end-to-end 

by minimizing a composite loss function, as follows: 

 

    total cls box box pal palP,P B,B ,    (3) 

 

where P and P  represent the ground-truth and predicted 

class probabilities, and B and B  are the ground-truth 

and predicted bounding box coordinates, respectively. 

Focal Loss for 
cls

 is used in Equation (3) to 

handle the class imbalance inherent in defect detection 

tasks, and the Generalized Intersection over Union 

(GIoU) loss for box  as it provides a more stable 

training signal for bounding box regression compared to 

traditional L1/L2 losses. box  and pal  are scalar 

hyperparameters that balance the contribution of each 

loss component. 

 

2.3. Adaptive re-acquisition  

via rodrigues updates 

 

A common failure mode in automated inspection is 

missing small defects or being uncertain about 

ambiguous signatures, leading to a trade-off between 

recall and precision. The proposed adaptive re-

acquisition controller addresses this by transforming the 

detection system into an active perception loop. 

When the model produces a detection with a 

confidence score below a specified threshold, ra , and 

the detected area is small, the system flags it as a 

candidate for verification instead of immediately 

accepting or rejecting it. The goal is to re-orient the 

UAV’s gimbal to capture a new, higher-resolution 

image with the object of interest centered. This is 

achieved through a precise geometric calculation. 

Given the detection’s pixel coordinates 

 
T

u,v,1p , it is back-projected into the camera’s 3D 

coordinate system. This is done by transforming it into a 

unit vector v  representing its direction relative to the 

camera’s optical center: 

1

1

K

K






p
v

p
, where K is the 

camera’s intrinsic matrix. This vector v  is then 

transformed from the camera’s reference frame to the 

global world frame (e.g., North-East-Down) using the 
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camera’s rotation matrix 
cam worldR 

, which is derived 

from the UAV’s IMU and gimbal encoder data: 

cam worldR c v . The vector c  represents the current 

line-of-sight to the target in world coordinates. 

To center the target, a rotation is computed to align 

c  with the camera’s principal axis (typically the Z-axis 

in the camera frame). This desired new line-of-sight is 

denoted c . The minimal rotation required to move 

from c  to c  is defined by a rotation axis k  and an 

angle  . These are found by: 





c c
k

c c
 and 

 arccos   c c . The corrective rotation is then 

applied using the Rodrigues rotation formula, a 

computationally efficient method for rotating a vector, 

as follows: 

 

 
     

    
new cos sin

1 cos .

     

   

c c k c

k k c
 (4) 

 

This computed rotation in Equation (4) is 

decomposed into pitch and yaw commands that are sent 

to the gimbal controller. After the gimbal stabilizes, a 

new frame is captured. The detection model re-evaluates 

this new, higher-quality view, leading to a more 

confident confirmation or rejection of the initial 

ambiguous detection. 

 

2.4. Geo de-duplication  

with Haversine–DBSCAN 

 

To address the challenge of data redundancy from 

overlapping images, a robust geo-spatial de-duplication 

module is developed. This module operates on the set of 

all confirmed detections from an entire survey flight. 

The first step is to project each detection’s bounding 

box polygon from 2D pixel space into real-world 

WGS84 (latitude, longitude) coordinates. This complex 

projection requires the full camera model, including its 

intrinsic parameters, and the precise six-degree-of-

freedom pose (position and orientation) of the UAV and 

its gimbal at the exact moment of image capture. The 

accuracy of this step is critically dependent on the 

availability of an RTK-GPS unit. 

Once all detection polygons and their centroids are 

in a common geographic reference frame, a method is 

applied to cluster detections that correspond to the same 

physical object. Since these coordinates lie on the 

Earth’s curved surface, using a simple Euclidean 

distance metric would be inaccurate, especially over 

larger distances. The pairwise geodesic distance is 

computed between any two detection centroids  i i,   

and  j j,   using the haversine equation as follows: 

 

ij earthd 2R   

   2 2

i jarcsin sin cos cos sin ,
2 2

    
            

 (5) 

 

where j i  , j i    , and 
earthR  is the 

mean radius of the Earth. 

Equation 5 provides an accurate great-circle 

distance between points. 

With this distance metric, the Density-Based 

Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm is employed. DBSCAN is 

exceptionally well-suited for this task for three reasons: 

it does not require the number of clusters to be specified 

in advance, it can identify arbitrarily shaped clusters 

(useful if a large defect is detected in a fragmented 

way), and it has a built-in concept of noise, allowing it 

to isolate single, non-overlapping detections. The 

algorithm is configured with two parameters: a distance 

threshold   (e.g., 1.0 meter, chosen to be slightly larger 

than the expected maximum GSD), and a minimum 

number of points to form a cluster, ‘minPts’ (set to 2, 

since any pair of overlapping detections should be 

merged). All detections that fall into the same DBSCAN 

cluster are then merged into a single, canonical defect 

event. The final geo-spatial polygon for this event is 

computed as the geometric union of all constituent 

polygons, and its confidence score is the maximum or 

confidence-weighted average of its members. 

 

2.5. Onboard relevance-only telemetry 

 

To solve the bandwidth problem, the system 

completely eschews the continuous streaming of raw 

video or imagery. Instead, it operates on a “relevance-

only” or “exception-reporting” basis. The entire 

detection and de-duplication pipeline is designed to be 

lightweight enough to run on an onboard companion 

computer. Only the final, processed output, the list of 

unique, consolidated defect events, is transmitted over 

the wireless link. 

These events are serialized into a highly compact 

and structured JSON format, as exemplified in Fig. 2. 

Each JSON object contains all the critical 

information needed for downstream analysis and 

integration with asset management platforms like a 

SCADA system. Optionally, the data can also be 

formatted as a KML file for direct visualization in GIS 

tools like Google Earth. This strategy reduces the 

required data throughput by several orders of 

magnitude, from megabytes per second to kilobytes per 
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alert, making real-time monitoring over standard LTE or 

other low-bandwidth links not only feasible but also 

highly reliable. The full onboard process is outlined in 

Algorithm 1. 
 

{ 

  "site_id": "PV-PLANT-08", 

  "uav": "M300 RTK", 

  "ts_utc": "2025-09-30T10:12:33Z", 

  "detections": [ 

    { 

      "id": "clu_012a", 

      "class": "hotspot_single", 

      "conf": 0.91, 

      "temp_C": 82.4, 

      "centroid_wgs84": [49.407251, 26.984173], 

      "polygon_wgs84": [ 

        [49.407249, 26.984170], 

        [49.407252, 26.984175], 

        ... 

      ], 

      "media": { 

        "rgb": "gs://bucket/vid123_03456.jpg", 

        "tiff": "gs://bucket/vid123_03456.tif" 

      }}]} 

Fig. 2. Example of the compact, SCADA-ready JSON 

payload transmitted from the UAV 

 

Algorithm 1: Onboard detection, confirmation, 

and reporting pipeline within the proposed method. 

1: Input: RGB frame R, thermal frame T, UAV 

pose & camera intrinsics. 

2: Render M palette variants  mC T  from the 

thermal frame T. 

3: Compute thermal embeddings 

  m mz Tf C  and the mean embedding 

m

1
z z

M
  . 

4: Compute RGB embedding  r Rg  and fuse 

with z  to obtain feature vector u. 

5: Run detector  u  to get a set of initial 

detections. 

6: for each detection b do: 

7:    if   raconf  b  and area of b is small then 

8:        Compute line-of-sight vector c  and solve 

for corrective rotation  ,k . 

9:        Issue Rodrigues-based gimbal update 

command. 

10:      Re-acquire frame and re-evaluate detection 

confidence for b. 

11: Map all confirmed detection polygons to 

WGS84 coordinates. 

12: Compute pairwise haversine distances ijd  

between detections. 

13: Cluster detections using DBSCAN with metric 

ijd . 

14: Merge detections within each cluster and 

serialize results to JSON/KML. 

15: Output: publish consolidated data payload via 

MQTT or HTTPS. 

 

2.6. Experimental setup 

 

Field experiments were conducted using a DJI 

Matrice 300 RTK drone [36], an industrial platform 

providing precise autonomous navigation via its GPS-

RTK positioning system. The drone was equipped with 

a DJI Zenmuse H20T gimbal camera [37], a hybrid 

payload integrating thermal, zoom, and wide-angle 

sensors to capture comprehensive multi-modal imagery. 

For real-time, onboard data processing, an NVIDIA 

Jetson AGX Orin 32GB module [38] is utilized as the 

primary edge computer. This setup ran on Ubuntu 

20.04.6 LTS (Focal Fossa) [39], with ROS Noetic 

Ninjemys [40] serving as the middleware to coordinate 

sensing and control tasks. Low-level interfacing with 

the drone’s flight controller and gimbal was managed 

through DJI’s Onboard SDK v4.1.0 [41] and Payload 

SDK v3.12.0 [42], which enabled custom flight 

behaviors and precise camera control. 

The custom software, developed in Python 3 [43], 

was structured into modular ROS nodes, including 

OpenCV v4.9.0 [44] for computer vision tasks and 

NumPy v2.3.0 [45] for numerical computations. The 

deep learning pipeline was built using PyTorch v2.0 

[46]. At its heart, the system employs a custom fusion 

model based on the YOLOv11m-seg architecture [47], a 

powerful instance segmentation network selected for its 

high accuracy in detecting small and irregularly shaped 

defects common on solar panels. The model was 

initialized with pre-trained weights and fine-tuned on 

the curated dataset of PV imagery, with the Jetson’s 

GPU accelerating inference to achieve real-time 

performance during flight. 

To facilitate communication, the onboard Jetson 

module streamed data to a ground station over a 5.8 

GHz Wi-Fi link. ZeroMQ v4.3.5 [48] was employed as 

a high-performance messaging library to transmit 

telemetry and condensed detection results. This data 

was then ingested by a cloud backend hosted on 

Microsoft Azure [49] for long-term storage, 

visualization, and further analysis by remote operators. 

For direct operational integration, critical defect alerts 

were transmitted from the drone to the solar farm’s 

SCADA system. This link was established using a 

ZigBee wireless module [50], enabling automated 

logging of panel faults and the triggering of immediate 

maintenance alarms within the plant’s existing 

monitoring infrastructure. 

To ensure a fair and scientifically sound 

comparison, all experiments were conducted using a 
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consistent methodology. The datasets were partitioned 

into 80% for training, 10% for validation, and 10% for 

testing, using a fixed random seed across all models to 

guarantee that they were trained and evaluated on 

identical data splits. The primary performance metrics 

adhere to the established standards in the object 

detection community [51]. These include mean Average 

Precision at an Intersection over Union (IoU) threshold 

of 0.5 (mAP@0.5), which assesses general detection 

quality, and mAP averaged over IoU thresholds from 

0.5 to 0.95 in steps of 0.05 (mAP@[0.5:0.95]), which 

provides a stricter measure of localization accuracy. 

Macro-averaged F1-score and overall recall were also 

reported. To specifically evaluate the de-duplication 

module, the Duplicate-induced False Positive (Dup-FP) 

rate is defined as the proportion of false positives that 

are attributable solely to multiple detections of a single 

ground-truth object. This metric is reported both before 

and after the application of the geo-de-duplication 

process. For all baseline models, the same backbone 

architecture and training schedule were used to ensure 

that any observed performance differences are directly 

attributable to the proposed novelties. 

 

3. Results 
 

Extensive experiments were performed to 

rigorously evaluate the proposed method, quantifying its 

overall performance and the specific contributions of its 

constituent components. The evaluation was conducted 

on the PVF-10 [24] and STHS-277 [25] benchmarks. 

 

3.1. Overall detection accuracy 

 

The primary results, summarized in Table 1, 

unequivocally demonstrate the superior performance of 

the integrated multi-modal system created based on the 

proposed method. On the PVF-10 dataset, which 

features 10 fine-grained defect classes, the proposed 

model achieved a mAP@0.5 of 0.903. This represents a  

substantial improvement of +12.3 percentage points 

over the thermal-only baseline (0.780) and a massive 

+16.3 points over the RGB-only baseline (0.740). The 

per-class breakdown on PVF-10, shown in Fig. 3, 

confirms that the proposed fusion approach consistently 

provides superior performance across all defect 

categories. 

The performance gains were even more 

pronounced under the stricter mAP@[0.5:0.95] metric, 

where the model’s score of 0.598 shows its ability to 

produce more precisely localized bounding boxes. 

Similar success was observed on the STHS-277 dataset, 

where the model reached a mAP@0.5 of 0.887, 

outperforming the thermal-only and RGB-only 

baselines by +6.7 and +19.7 points, respectively. 

 

 

Fig. 3. Per-class Average Precision (AP@0.5)  

on the PVF-10 dataset 

 

The consistent improvements across all reported 

metrics, including macro-F₁  and recall, underscore the 

comprehensive benefits of the proposed approach. The 

precision-recall curves in Fig. 4 provide a visual 

confirmation of this dominance, showing that the fusion 

model (blue curve) consistently achieves higher 

precision at every level of recall compared to the single-

modality baselines. This indicates a more robust and 

reliable detector across different confidence thresholds. 

 

Table 1 

Overall detection performance on the PVF-10 and STHS-277 test sets. The proposed system consistently  

and significantly outperforms single-modality baselines across all key metrics. The geo-de-duplication (d-dup)  

step drastically reduces the Dup-FP rate, a critical factor for operational deployment 

Dataset Method mAP@0.5 
mAP@ 

[0.5:0.95] 
Macro-F1 Recall 

Dup-FP 

(raw) 

Dup-FP 

(d-dup) 

PVF-10 

Thermal-only 0.780 0.530 0.840 0.830 0.24 0.08 

RGB-only 0.740 0.470 0.800 0.790 0.24 0.09 

Ours 0.903 0.598 0.888 0.902 0.22 0.07 

STHS-277 

Thermal-only 0.820 0.560 0.840 0.860 0.20 0.06 

RGB-only 0.690 0.380 0.720 0.750 0.18 0.07 

Ours 0.887 0.571 0.892 0.914 0.17 0.05 
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a) b) 

Fig. 4. Precision–recall curves on the a) PVF-10 and b) STHS-277 datasets. The proposed palette-aware 

Thermal+RGB fusion model (blue) demonstrates superior performance by maintaining higher precision across  

all recall levels compared to the thermal-only (orange) and RGB-only (green) baselines 

 

To validate the statistical significance of the 

obtained results, a paired bootstrap test was conducted 

over three independent training runs. The 95% bootstrap 

confidence interval for the model’s mAP@0.5 on PVF-

10 was a tight [0.895, 0.911], and on STHS-277 it was 

[0.865, 0.910]. The test confirmed that the performance 

difference between the fused model and the best-

performing single-modality baseline was statistically 

significant, rejecting the null hypothesis of equal 

performance with p < 0.01 for both datasets. 

 

3.2. Ablation study: dissecting component 

contributions 

 

To understand the individual impact of the core 

methodological novelties, i.e., palette invariance and 

adaptive re-acquisition, a detailed ablation study was 

performed on the PVF-10 dataset. The process began 

with single-mode baselines and the gradual addition of 

components to the synthesis model. The results, 

presented in Table 2 and Fig. 5, reveal a clear 

synergistic effect. Simply fusing the thermal and RGB 

streams without the advanced techniques (T+RGB w/o 

pal-inv) already provides a significant performance 

boost, raising the mAP@0.5 to 0.846. 

However, the introduction of the palette-invariance 

loss ( pal ) during training yielded the single most 

substantial improvement, adding another +4.6 points to 

the mAP@0.5. This obtained result validates the initial 

hypothesis that learning a palette-agnostic 

representation is crucial for robust thermal-based 

detection. Notably, this component also improved the 

recall of small targets from 0.80 to 0.84. 

 

 

Table 2 

Ablation study results on the PVF-10 dataset. This table 

systematically dissects the performance gains from each 

of the system’s core components. 

Variant mAP@0.5 Small-target 

recall 

Thermal-only 0.780 0.77 

RGB-only 0.740 0.69 

T+RGB w/o pal-

inv 

0.846 0.80 

T+RGB + pal-inv 0.892 0.84 

T+RGB + pal-inv + 

re-acq 

0.903 0.86 

 

 

 

Fig. 5. Component-wise contribution to performance on 

the PVF-10 dataset. The bar chart visually represents 

the data from Table 2, showing the progressive increase 

in mAP@0.5 (blue) and small-target recall (orange) as 

each key component of the system is added. 
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Finally, enabling the adaptive re-acquisition 

controller (re-acq) delivered an additional +1.1 point 

gain in mAP and, as designed, specifically pushed the 

small-target recall to a high of 0.86, demonstrating its 

effectiveness in actively verifying and confirming 

ambiguous, hard-to-detect anomalies. 

 

3.3. Effectiveness of geo-spatial de-duplication 

 

The practical utility of an inspection system 

depends not only on its accuracy but also on the clarity 

and actionability of its output. The geo-de-duplication 

module is designed to transform a raw stream of 

potentially redundant detections into a clean list of 

unique faults. Fig. 6 shows its profound impact. On the 

PVF-10 dataset, the de-duplication module reduced the 

Dup-FP rate for the model from 0.22 to 0.07, an 

absolute reduction of 15 percentage points. A similar 

effect was observed on STHS-277, where the rate for 

the model dropped from 0.17 to 0.05, a 12-point 

reduction. In practical terms, this means that for every 

100 false alarms in the raw output, the system prevents 

between 12 and 15 of them that are purely due to 

redundancy, greatly reducing the cognitive load on 

human operators and increasing their trust in the system. 

A sensitivity analysis of the DBSCAN radius parameter, 

shown in Fig. 7, confirmed that the chosen value of 

1.0   meter provides an excellent trade-off, 

effectively merging true duplicates without over-

merging distinct defects that happen to be in close 

proximity. 

 

  
a) b) 

 

Fig. 6. The impact of geo de-duplication on the rate of Dup-FP. The module significantly reduces redundant alerts 

on both a) PVF-10 and b) STHS-277 datasets 

 

 

 
 

a) b) 

 

Fig. 7. Sensitivity analysis of the DBSCAN radius parameter (  ) on the final Dup-FP rate for the a) PVF-10  

and b) STHS-277 datasets. An epsilon value of 1.0 meter provides the optimal trade-off 
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3.4. Case study 

 

To bridge the gap between benchmark 

performance and real-world applicability, a field 

validation study was conducted at two operational sites: 

the Khmelnytskyi National University (KhNU) rooftop 

installation and a commercial ground-based solar plant. 

The experimental setup, illustrated in Fig. 8, involved 

deploying a UAV equipped with the sensor suite to 

perform an automated survey, alongside technicians 

using portable thermal cameras and pyrometers for 

manual ground-truth data collection. 

 

  
a) b) 

  
c) d) 

 

Fig. 8. Overview of the field validation setup: a) monitoring interface displaying real-time data from the survey;  

b) on-site manual inspection with portable thermal equipment for ground-truth verification; c) aerial view of the 

solar power plant under survey by the UAV; d) close-up of inverter and connection hardware being inspected 

 

Table 3 

Results of the comparative analysis of defect detection from the field study, showing a strong correlation between 

automatically detected defects and manually verified ground truth over 20 modules. 

Module 

ID 

Auto-

Detected 

Manually 

Verified 
Difference Module ID 

Auto-

Detected 

Manually 

Verified 
Difference 

1 2 2 0 11 4 4 0 

2 3 3 0 12 3 3 0 

3 1 1 0 13 7 7 0 

4 5 5 0 14 3 3 0 

5 10 9 1 15 8 8 0 

6 6 6 0 16 10 10 0 

7 1 1 0 17 2 5 3 

8 2 2 0 18 4 4 0 

9 4 4 0 19 8 8 0 

10 3 3 0 20 2 2 0 
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The output of the implemented automated system 

was compared against the meticulous manual 

inspection. The quantitative results of this comparison 

for 20 sample modules are detailed in Table 3. The 

system demonstrated exceptional agreement with the 

ground truth. Overall, a recall of 96% was calculated for 

defect identification. The Root Mean Square Error 

(RMSE) between the number of defects detected 

automatically and those verified manually was only 

0.71, indicating a very low and predictable error margin. 

To provide qualitative insight, Fig. 9 showcases 

samples of true positive detections, where the system 

correctly identified various thermal anomalies. 

Furthermore, the 96% recall suggests that while the 

system is highly effective, it occasionally misses very 

subtle defects, often related to minor soiling, which do 

not present a strong thermal or visual signature. 

Critically, the system also proved robust against false 

positives; Fig. 10 displays examples of complex thermal 

patterns from shadows or reflections that were correctly 

ignored by the algorithm. These qualitative and 

quantitative results strongly support the system’s 

readiness for deployment as a reliable tool for large-

scale, operational O&M workflows. 

 

    

    

a) b) c) d) 

Fig. 9. Examples of multi-palette thermal signatures for different PV anomalies: a) a severe multi-cell hotspot 

defect; b) minor thermal irregularities indicating potential soiling or early-stage cell failure; c) an elongated hotspot 

affecting a string of cells; d) a localized hotspot near the panel’s edge, potentially indicating a junction box problem 

 

    

    

a) b) c) d) 

Fig. 10. Examples of challenging thermal patterns correctly classified as non-defective: a) specular reflections from 

the sun; b) faint thermal gradients and temporary shadows; c) strong thermal reflections from overhead structures; d) 

environmental artifacts, including shadows from vegetation and thermal signatures from the panel’s metal frame 
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3.5. Robustness to flight envelope parameters 

 

To assess the system’s performance under realistic 

and varying operational conditions, its sensitivity was 

analyzed to changes in flight altitude and speed. The 

results, depicted in Fig. 11 and detailed in Table 4, 

provide valuable insights for mission planning. 

Detection accuracy is optimal at lower altitudes (5-10 

meters), where the higher GSD allows the sensors to 

capture fine details. As the altitude increases to 15 

meters, the mAP@0.5 drops noticeably to 0.780, as 

smaller defects become indistinguishable. Similarly, 

flight speed has a significant impact. While slower 

speeds (2 m/s) yield the highest accuracy (0.920 mAP), 

a speed of 5 m/s provides a near-optimal balance 

between data quality (0.900 mAP) and survey 

efficiency. Increasing the speed to 10 m/s introduces 

motion blur, which degrades performance to 0.840 

mAP. These findings suggest that an optimal flight 

protocol would involve flying at approximately 10 

meters altitude and a speed of 5 m/s to maximize both 

detection performance and area coverage rate. 

 

  
a) b) 

Fig. 11. System robustness to flight parameters: a) detection accuracy (mAP@0.5) as a function of UAV altitude;  

b) accuracy as a function of UAV speed. Performance is optimal around 5-10 m altitude and 2-5 m/s speed 

 

Table 4 

Effect of flight envelope parameters on mAP@0.5. The results indicate an optimal trade-off between survey 

efficiency and detection accuracy 

Condition Setting mAP@0.5 

Altitude sweep (at 5 m/s) 5 m / 10 m / 15 m 0.912 / 0.900 / 0.780 

Speed sweep (at 10 m alt.) 2 m/s / 5 m/s / 10 m/s 0.920 / 0.900 / 0.840 

 

3.6. Bandwidth impact and comparison  

with prior work 

 

The relevance-only telemetry strategy delivers 

dramatic savings in communication bandwidth, a 

critical factor for enabling real-time operations. As 

shown in Fig. 12, by transmitting only the final, 

compact JSON reports instead of high-resolution 

imagery, the average data rate was reduced from 14.5 

MB/min to 5.4 MB/min on the PVF-10 mission profile, 

a 63% reduction. 

Based on Fig. 12, one could conclude that the 

savings were even more substantial for the STHS-277 

profile, with bandwidth usage dropping from 13.2 

MB/min to 4.3 MB/min, a 67% decrease. This 

efficiency transforms the communication requirements 

from needing a dedicated, high-throughput link to being 

able to operate reliably over a standard 4G/LTE cellular 

connection. 

 

 

Fig. 12. Bandwidth savings achieved by the relevance-

only telemetry approach 
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Finally, to situate the work within the broader 

landscape of deep learning detectors, a comparative 

analysis was conducted against several well-known 

methods. For a fair comparison, each model was re-

trained on the PVF-10 dataset using an identical training 

budget. The results in Table 5 are telling. The system 

achieves a significantly higher mAP@0.5 (0.903) than 

all competitors and does so with a remarkably efficient 

model. With only 8.2 million parameters, it is far more 

compact than the heavyweight YOLOv3 (61.9M) and 

achieves the fastest inference speed on an embedded 

NVIDIA Jetson platform at 24 frames per second (FPS). 

This combination of superior accuracy and high 

efficiency underscores its suitability for deployment on 

resource-constrained onboard computers. 

 

Table 5 

Comparison with representative detection methods  

on the PVF-10 dataset 

Method 
mAP 

@0.5 

Params 

(M) 

FPS 

(Jetson) 

Region-CNN 

(Aerial) [15] 
0.760 14.8 12 

IR-only 

YOLOv3 [16] 
0.800 61.9 18 

EfficientDet-

D1 [20] 
0.820 6.6 22 

Ours 

(T + RGB) 
0.903 8.2 24 

 

4. Discussion 
 

4.1. Interpretation of findings  

and system novelty 

 

The core novelty of this study lies in its integrated 

approach to intelligent, multi-modal data fusion and 

robust feature engineering. The most significant finding 

is the profound impact of enforcing palette invariance in 

the thermal feature encoding stage. The +4.6 percentage 

point gain in mAP@0.5 attributable to this component 

(see Table 2) is not merely a statistical improvement; it 

represents a fundamental step toward creating a reliable 

diagnostic system. By forcing the network to learn a 

canonical representation that is stable across different 

color maps, a robust thermal feature was produced to 

serve as a consistent input for the fusion stage. This 

contrasts sharply with conventional models that are 

implicitly tied to specific camera settings and palettes, 

making them brittle in heterogeneous hardware 

environments [10]. 

This robust feature engineering enables the second 

pillar of this study’s success: the intelligent fusion of 

thermal and visual data. The gated fusion mechanism 

provides a more sophisticated approach than simple 

feature concatenation, allowing the model to learn a 

dynamic, context-dependent weighting of the two 

modalities. For instance, in a scene with heavy solar 

glare, the gate can learn to down-weight corrupted RGB 

features and rely more heavily on stable thermal data. 

This is crucial because by fusing thermal data with 

visual evidence, the system can better differentiate 

between different types of anomalies (e.g., hotspots 

caused by soiling versus those linked to physical 

damage like cracks), achieving a level of analytical 

depth absent in single-modality solutions. This multi-

modal, cross-validating approach moves beyond the 

static analysis paradigm common in the literature 

[15, 16] toward a more dynamic and intelligent 

inspection workflow. 
 

4.2. Operational advantages  

and O&M optimization 
 

The most operationally significant contribution of 

this study is the transformation of raw, redundant 

detections into clean, actionable intelligence. While 

academic research often focuses on per-frame metrics 

like mAP, O&M teams in the field prioritize the 

identification and localization of unique, actionable 

problems. The geo-spatial de-duplication module, 

detailed in Section 2.4, directly addresses this need. The 

12–15 percentage point reduction in Dup-FPs (see Fig. 

6) translates directly into saved man-hours and 

increased operator trust. This provides a robust 

algorithmic solution to the data redundancy problem, 

validating the high-level mapping concepts discussed in 

prior works [32, 33]. 

Although gradient-based XAI methods were not 

the focus of this study, the system enhances operator 

trustworthiness through “operational explainability.” By 

transmitting the specific high-resolution RGB image 

that confirmed a thermal anomaly (via the re-acquisition 

loop), the system provides the operator with the visual 

evidence (the “reason”) for the alert, effectively 

bridging the gap between black-box AI detections and 

human verification requirements. 

Furthermore, the automated classification of 

specific defect types significantly enhances O&M 

efficiency. Traditional alarm systems may simply 

indicate that a module is underperforming. The 

proposed system provides immediately actionable 

intelligence, such as identifying a hotspot defect 

consistent with soiling or a crack defect at specific 

coordinates. This allows the O&M manager to dispatch 

the correct resource immediately; for example, a 

cleaning crew for the former or a technical team with 

replacement modules for the latter. This targeted 

response minimizes module downtime, reduces wasted 
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labor, and effectively transitions the O&M strategy from 

a reactive model to a highly efficient, condition-based, 

and predictive model. When combined with relevance-

only telemetry (Section 2.5), the result is a system that 

is accurate, efficient, and capable of producing outputs 

directly consumable by asset management platforms. 
 

4.3. Limitations, challenges,  

and mitigation strategies 
 

Despite its significant strengths, the proposed 

Despite significant strengths, the proposed system has 

certain limitations that warrant careful consideration. 

The accuracy of the geo-projection and de-duplication is 

critically dependent on high-quality UAV pose 

metadata, ideally from an RTK-enabled GPS. In 

environments where GPS signals are degraded, 

projection errors could lead to incorrect clustering. A 

mitigation strategy involves integrating visual-inertial 

odometry or SLAM-based localization to supplement or 

replace GPS data, thereby improving navigational 

robustness. 

Technically, system performance is fundamentally 

capped by the quality of input data and the underlying 

AI model’s accuracy, adhering to the principle that 

output quality depends on input quality. Poorly 

calibrated sensors or an inadequately trained AI model 

will lead to flawed decisions. This necessitates rigorous 

sensor calibration protocols and a continuous machine 

learning operations cycle, including periodic retraining 

with new, verified data to prevent model drift. 

Furthermore, the field study noted that the few missed 

detections (contributing to the 96% recall) were often 

related to subtle soiling, suggesting that future fusion 

models could benefit from incorporating additional 

sensor modalities or explicitly modeling environmental 

factors. 

In terms of functional safety, the deployment of 

autonomous UAVs for close-proximity inspection 

introduces risks related to battery reliability and flight 

over energized infrastructure. While the proposed 

method optimizes the logical inspection process, it does 

not inherently address the physical safety constraints 

defined in standards such as IEC 62443 or specific 

aviation regulations. Future implementations must 

integrate the proposed active perception loop with 

certified collision avoidance systems and battery health 

monitoring to ensure safe operation in gigawatt-scale 

plants. 
 

5. Conclusions and future work 
 

This study successfully validated an integrated 

method for UAV-based PV inspection, achieving the 

stated goal of enhancing detection fidelity while 

optimizing bandwidth. The primary scientific 

contribution is the palette-invariant thermal embedding, 

which creates a universal representation robust to sensor 

variations. Experimental results confirmed a measurable 

improvement, with mAP@0.5 reaching 0.903 on the 

PVF-10 benchmark, exceeding single-modality 

baselines by 12–16 percentage points. Additionally, the 

Haversine-DBSCAN geo-spatial de-duplication module 

reduced the duplicate-induced false positive rate by 12–

15%, directly addressing the data redundancy challenge. 

Field validation confirmed a high 96% recall rate, while 

the relevance-only telemetry policy reduced bandwidth 

requirements by over 60%, delivering a clean, actionable 

defect inventory. However, the method's performance is 

currently limited by its dependence on high-precision 

RTK-GPS data for accurate geo-projection and the 

absence of integrated functional safety mechanisms for 

autonomous close-proximity flight. 

Future research will focus on integrating historical 

data from SCADA systems to dynamically adjust 

detection thresholds based on seasonality and module 

age. Additionally, incorporating survival analysis 

networks into the pipeline will enable the transition 

from defect detection to predictive remaining useful life 

(RUL) forecasting. 
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МЕТОД ІНСПЕКТУВАННЯ ФОТОЕЛЕКТРИЧНИХ МОДУЛІВ З БПЛА  

ІЗ ВИКОРИСТАННЯМ ЗЛИТТЯ ТЕПЛОВІЗІЙНИХ ТА RGB-ДАНИХ 

А. М. Лисий, А. О. Саченко, П. М. Радюк, М. І. Лисий,  

О. В. Мельниченко, Д. І. Загородня 

Предметом статті є проєктування та експериментальне оцінювання інтелектуальної гранично-хмарної 

кіберфізичної системи автоматизованого інспектування фотоелектричних модулів (ФЕМ) на промислових 

сонячних електростанціях на основі мультипалітрових тепловізійних інфрачервоних та RGB-зображень, 

отриманих за допомогою безпілотних літальних апаратів (БПЛА). Метою цього дослідження є підвищення 

точності виявлення дефектів ФЕМ та операційної ефективності через розроблення нового методу, який пе-

ретворює дані сенсорів із перекриттям на компактний, геоприв’язаний реєстр дефектів, що підлягають усу-

ненню. Мету дослідження досягнуто через отримане підвищення середньої точності виявлення (mAP) та 

зниження частоти хибних спрацьовувань, що спричинені надмірністю даних, з одночасною мінімізацією 

використання пропускної здатності каналу зв’язку. Завдання, які розв’язано в роботі: розроблено інваріант-

не до палітри теплове подання, що усуває залежність від псевдокольорової візуалізації та внутрішніх пара-

метрів камери; об’єднано стійкий тепловий потік із контрастно покращеними RGB-даними за допомогою 

адаптивного механізму шлюзованого злиття, здатного знижувати вагу ненадійних модальностей; реалізова-

но бортовий контур активного сприйняття, який переорієнтує підвіс БПЛА для отримання додаткових раку-

рсів неоднозначних аномалій малої площі; розроблено модуль геопросторової кластеризації та дедублікації, 

що об’єднує повторні виявлення в унікальні події несправностей, придатні для інтеграції з інструментами 

SCADA та ГІС; кількісно оцінено переваги запропонованої архітектури на публічних наборах даних та в 

реальних польових випробуваннях у порівнянні з одномодальними базовими підходами. Використані в дос-
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ліджені методи включають глибокі згорткові нейронні мережі на основі магістралі семантичної сегментації 

YOLOv11m-seg, навченої із членом регуляризації консистентності палітри, шлюзоване злиття теплових та 

RGB-ембедингів на рівні ознак, розрахунок коригувальних поворотів підвісу на основі формули Родрігеса 

для адаптивного повторного захоплення, щільнісну просторову кластеризацію з метрикою гаверсинуса для 

географічної дедублікації виявлень, а також статистичний аналіз ефективності з використанням mAP, мак-

ро-усередненої F1-міри, повноти та індикатора хибних спрацьовувань, що спричинені дублюванням. Отри-

мано такі результати: на наборі даних PVF-10 запропонована система досягає mAP@0.5 = 0.903, перевищу-

ючи лише теплові та лише RGB-детектори на 12–16 відсоткових пунктів; на наборі даних STHS-277 вона 

досягає mAP@0.5 = 0.887; інваріантне до палітри навчання разом з адаптивним повторним захопленням під-

вищують повноту виявлення малих цілей до 0.86; геопросторова кластеризація знижує частоту хибних спра-

цьовувань через дублювання на 12–15 відсоткових пунктів; польова валідація на дахових та наземних елект-

ростанціях підтверджує 96 % повноти з низьким середньоквадратичним відхиленням між автоматичним та 

ручним підрахунком дефектів; а передача виключно релевантної телеметрії зменшує обсяг переданих із бор-

ту даних на 60–67 % при збереженні діагностичної точності. У підсумку, наукова новизна отриманих ре-

зультатів полягає в уніфікованій, інваріантній до палітри, мультимодальній гранично-хмарній кіберфізичній 

архітектурі, яка поєднує сенсорику БПЛА, активне сприйняття, геопросторовий аналіз та передачу даних з 

урахуванням пропускної здатності в єдиний операційний метод інспектування фотоелектричних модулів, 

створюючи масштабовану основу для обслуговування великих сонячних електростанцій за технічним ста-

ном. 

Ключові слова: фотоелектричні модулі; інспектування з БПЛА; виявлення дефектів; тепловізійна інф-

рачервона зйомка; RGB-зображення; глибоке навчання; мультимодальне злиття; інваріантність до палітри; 

геопросторова кластеризація. 
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