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METHOD OF UAV-BASED INSPECTION OF PHOTOVOLTAIC MODULES
USING THERMAL AND RGB DATA FUSION

The Subject matter of the article is the design and experimental evaluation of an intelligent edge-cloud cyber-
physical system for automated inspection of photovoltaic (PV) modules in utility-scale solar power plants
based on multi-palette thermal infrared and RGB imagery acquired by unmanned aerial vehicles (UAVS). The
Goal of this study is to enhance PV defect detection accuracy and operational efficiency by designing a novel
method that converts raw, overlapping sensor data into a compact, geo-referenced inventory of actionable
defects. The goal is achieved by systematically increasing detection mean Average Precision (mAP) and
reducing false positive rates caused by data redundancy, while simultaneously minimizing bandwidth usage.
The Tasks to be solved include: developing a palette-invariant thermal representation that suppresses
dependence on pseudo-color rendering and camera internal parameters; fusing this robust thermal stream
with contrast-enhanced RGB data using an adaptive gated mechanism that can down-weight unreliable
modalities; implementing an on-board active perception loop that re-orients the UAV gimbal for additional
views of ambiguous, small-area anomalies; designing a geo-spatial clustering and de-duplication module that
merges repeated detections into unique fault events suitable for integration with SCADA and GIS tools; and
quantifying the benefits of the proposed architecture on public benchmarks and real-world field trials in
comparison with single-modality baselines. The Methods employed include deep convolutional neural
networks based on a YOLOvllm-seg instance segmentation backbone trained with a palette-consistency
regularization term, gated feature-level fusion of thermal and RGB embeddings, Rodrigues-based calculation
of corrective gimbal rotations for adaptive re-acquisition, density-based spatial clustering with the haversine
distance metric for geographic de-duplication of detections, and statistical performance analysis using mAP,
macro-averaged F1-score, recall, and a duplicate-induced false positive indicator. The following Results were
obtained: on the PVF-10 benchmark the proposed system achieves mMAP@0.5 = 0.903, exceeding thermal-only
and RGB-only detectors by 12-16 percentage points; on the STHS-277 dataset it reaches mAP@0.5 = 0.887;
palette-invariant training and adaptive re-acquisition together increase small-target recall to 0.86; geo-spatial
clustering reduces the duplicate-induced false positive rate by 12-15 percentage points; field validation at
rooftop and ground-mounted plants confirms 96% recall with a low root-mean-square deviation between
automatic and manual defect counts; and relevance-only telemetry reduces airborne data transmission by 60—
67% while preserving diagnostic fidelity. In Conclusion, the scientific novelty of the results obtained lies in a
unified palette-invariant, multi-modal edge-cloud cyber-physical architecture that combines UAV sensing,
active perception, geo-spatial reasoning, and bandwidth-aware reporting into a single operational method for
photovoltaic module inspection, providing a scalable foundation for condition-based maintenance of large
solar power plants.

Keywords: photovoltaic modules; UAV inspection; defect detection; thermal infrared imaging; RGB imagery;
deep learning; multi-modal fusion; palette invariance; geo-spatial clustering.
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1. Introduction

1.1. Motivation

The global transition toward low-carbon energy
has positioned solar photovoltaics (PV) as a cornerstone
of the future power system. Utility-scale PV plants have
expanded rapidly in both capacity and geographic
extent, with many installations now covering hundreds
of acres and comprising hundreds of thousands of
modules [1, 2]. These assets are long-lived and capital-
intensive; their financial viability depends on
maintaining high-energy yield over lifetimes of 25-30
years. Even small percentage losses in performance,
when aggregated across gigawatt-scale portfolios,
translate into substantial revenue deficits and can
undermine the economic case for large PV deployments
[3]. Reliable monitoring and timely remediation of
defects are therefore central to Operations and
Maintenance (O&M) to protect revenue, ensure safe
operation, and preserve asset lifetimes [1.

PV  modules are continuously exposed to
environmental and electrical stress, making them
susceptible to a wide range of degradation mechanisms
and faults. Electrical anomalies such as hotspots,
bypass-diode failures, and interconnection faults can
cause localized overheating, mismatch losses, and
accelerated aging. Mechanical and material defects,
including cell cracks, glass breakage, delamination, and
encapsulant discoloration, can induce irreversible
damage and may propagate under thermal cycling or
wind loading [1]. Additional performance losses arise
from soiling, snail trails, and potential-induced
degradation (PID), which, although individually subtle,
collectively vyield significant energy deficits [3].
Hotspots are especially critical because they not only
reduce output but can escalate into burn marks or, in
extreme cases, fire hazards if left uncorrected [2].
Traditional inspection workflows rely on technicians
walking through the plant with handheld thermal
cameras, electroluminescence equipment, or |-V
tracers. While suitable for small arrays, these methods
are slow, labor-intensive, and fundamentally unscalable
for modern PV fleets.

Unmanned aerial vehicles (UAVs) have emerged
as a transformative solution to these scalability
limitations [4, 5]. Multirotor platforms equipped with
radiometric thermal infrared and high-resolution Red,
Green, Blue (RGB) cameras can survey large plants in
hours, providing repeatable, bird’s-eye coverage while
keeping personnel off energized infrastructure [6, 7].
Thermal imagery reveals temperature anomalies that are
invisible in the visible spectrum, making it effective for
detecting electrical faults such as hotspots and substring
failures, whereas RGB imagery is well suited for

documenting broken glass, delamination patterns,
shading, and heavy soiling [3, 8]. Acquisition guidelines
emphasize adequate ground sampling distance (GSD),
sufficient along-track and cross-track overlap, and
careful choice of viewing angles to mitigate glare from
reflective module surfaces [8,9]. As a result, UAV-
based thermography has evolved from a niche technique
into a de facto standard for large-scale PV
diagnostics [4].

1.2. State of the art

Research on UAV-based PV inspection
encompasses several interdependent layers. However,
converting UAV imagery into actionable maintenance
decisions remains challenging. Survey flights routinely
generate tens of thousands of thermal infrared (TIR) and
RGB frames, and manual post-processing by experts is
time-consuming, costly, and prone to variability across
analysts [1]. Deep learning-based object detection
models offer a promising alternative; however, several
persistent  obstacles complicate their practical
deployment in operational PV plants. Thermal cameras
capture radiometric temperature fields rather than color;
the visualized appearance depends on pseudo-color
palettes (e.g., ‘Ironbow,” ‘Rainbow,” ‘White-hot’) and
camera-internal settings such as automatic gain control
[1010]. Models trained on data rendered with one
palette or vendor configuration often perform poorly
when applied to imagery acquired with different palettes
or updated firmware, a phenomenon known as “palette
bias.” Robust inspection requires methods that remain
reliable under these representation shifts.

Further complications arise from the high image
overlap needed for photogrammetric workflows. The
same defect is typically imaged multiple times from
slightly different viewpoints, but naive frame-wise
detection pipelines treat each frame independently and
repeatedly flag the same fault. This inflates defect
counts and forces human operators to consolidate
duplicate alerts manually [11]. In parallel, the
combination of 4K RGB and high-resolution
radiometric TIR data leads to substantial
communication and storage demands. Streaming full-
fidelity data from the UAV to a ground station or cloud
back end is often infeasible over standard wireless links,
particularly at remote sites [12]. Together, these issues
motivate the development of integrated inspection
systems that are robust to palette changes, explicitly
account for data redundancy, and respect bandwidth
constraints.

Early work focused on demonstrating the
feasibility and advantages of UAV thermography over
manual inspections, highlighting significant gains in
speed, coverage, and safety [4, 5]. Subsequent studies
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and reviews examined the choice of airframes, the
trade-offs between flight altitude, coverage, and GSD,
and the comparative benefits of radiometric thermal
imagers for assessing defect severity [3, 10]. Flight-
planning research investigated how altitude, speed,
image overlap, and viewing angle influence the
detectability of minor defects and sensitivity to artifacts
such as glare and shadows [8, 9]. More recent efforts
have begun to explore autonomous navigation and
onboard processing, enabling UAVs to adjust
trajectories or gimbal orientation in response to
preliminary detections [13, 14].

On the algorithmic side, convolutional neural
networks (CNNs) have become the dominant approach
for automated defect detection in aerial PV imagery.
Two-stage detectors such as Faster R-CNN offer high
accuracy but incur substantial computational overhead,
making them less attractive for embedded deployments
[15]. Single-stage detectors from the YOLO and SSD
families have been widely adopted to satisfy real-time
or near-real-time requirements in both ground-based
[16, 17] and on-UAV pipelines [18, 19]. Architectures
such as EfficientDet provide scalable trade-offs between
accuracy and efficiency across model sizes, which is
valuable for resource-constrained edge devices [20].
Many studies report promising results for detecting
hotspots and cracks [21, 22], as well as delamination
and soiling in both TIR and RGB modalities [23].
Nevertheless, most evaluations rely on relatively small,
site-specific datasets collected with a single palette and
camera configuration, which raises questions about
generalization to new plants and acquisition setups
[24, 25].

To improve trust and operational acceptance,
recent work has explored explainable artificial
intelligence (XAIl) techniques for PV defect detection.
Visualization tools such as gradient-based saliency
maps and class activation maps highlight image regions
that most influence the model’s predictions, allowing
experts to verify whether the network focuses on
physically meaningful patterns or spurious features
[26, 27]. While these methods support interpretability,
they typically operate on single-modality inputs. This
study addresses the need for trustworthiness not through
internal saliency maps, but through an “active
perception” loop that visually confirms low-confidence
detections, ensuring the final output is physically
verifiable.

Recognizing the complementary strengths of TIR
and RGB, many authors have investigated multi-modal
fusion strategies. Thermal imagery excels at revealing
electrical anomalies through temperature deviations,
whereas RGB imagery captures fine-grained structural
damage, soiling, and shading patterns [28, 29]. Fusion
can occur at the input level (early fusion), at the

decision level (late fusion), or at intermediate feature
levels. Feature-level fusion has gained prominence
because it offers a good balance between expressiveness
and complexity [30]. Existing fusion schemes often rely
on straightforward concatenation or averaging of
features, with limited ability to downweight unreliable
modalities under adverse conditions such as severe glare
[8] or low thermal contrast [31]. This motivates more
flexible fusion mechanisms that can adaptively
modulate the contribution of each modality.

At the plant scale, inspection shifts from per-image
analysis to geospatial asset management. Detected
defects must be accurately projected from image
coordinates into geodetic space to support localization
in the layout, maintenance planning, and integration
with  Supervisory Control and Data Acquisition
(SCADA) or Geographic Information System (GIS)
platforms [5, 32]. Prior work has emphasized the value
of geo-referenced defect databases for long-term asset
health monitoring and for analyzing spatial patterns
such as clusters of faults near particular strings or
environmental features [33]. Yet the consolidation of
redundant detections caused by image overlap is often
treated with simple heuristics [11] or neglected
altogether, leading to inflated defect counts and noisy
maintenance logs. Parallel advances in digital-twin
concepts for PV plants envision continuously updated
virtual replicas that fuse UAV inspection results with
SCADA and meteorological data to enable predictive
maintenance and scenario analysis [34, 35]. Such
platforms require inspection pipelines that output clean,
non-redundant, and geo-consistent defect inventories.

1.3. Objectives and tasks

The existing literature  demonstrates  both
substantial progress and noticeable fragmentation in
UAV-based inspection of PV plants. Best practices for
platforms, flight planning, and sensor selection are
increasingly well established [4, 15], and a wide range
of deep learning architectures has been successfully
adapted for defect detection in PV modules [16, 19].
However, several specific research gaps still prevent the
deployment of robust, field-ready systems.

First, most detection pipelines implicitly assume a
fixed thermal palette and camera configuration. As a
result, their performance is sensitive to palette bias and
representation shifts when imagery is captured using
different pseudo-color mappings or hardware settings,
which limits the transferability of trained models across
sites and missions [10, 24].

Second, although multi-modal fusion of TIR and
RGB data generally improves defect detection, many
existing approaches treat both modalities symmetrically
and do not include explicit mechanisms to down-weight



Methods and means of image processing

189

[8,28] or suppress unreliable modalities under
challenging illumination, noise, or saturation conditions
[29, 31].

Third, the consolidation of detections across
frames is often implemented as a post-hoc heuristic in
image space [11], rather than being carried out through
principled clustering in geographic coordinates that
represent the true physical proximity of faults on the PV
field [32, 33].

Fourth, bandwidth and onboard compute
limitations are rarely modeled explicitly, even though
they have a decisive impact on real-time feasibility,
system architecture, and the ability to deploy such
solutions in large-scale industrial scenarios [12].

The goal of this study is to enhance PV defect
detection accuracy and operational efficiency by
constructing a novel method that converts raw,
overlapping sensor data into a compact, geo-referenced
inventory of actionable defects. Specifically, the
research aims to achieve a measurable increase in
detection recall and a reduction in duplicate-induced
false positives compared to single-modality baselines,
while simultaneously minimizing bandwidth usage
through relevance-only telemetry and ensuring
robustness  across  varying  thermal palette
configurations.

To achieve this goal, the following research tasks
are defined:

1. Development of a palette-invariant thermal—
RGB processing strategy that fuses consistent thermal
embeddings with visual features using an adaptive gated
mechanism to modulate modality contributions based on
reliability.

2. Implementation of an adaptive re-acquisition
controller that utilizes Rodrigues rotation updates to re-
center and verify low-confidence detections, thereby
increasing recall for small or ambiguous targets.

3. Construction of a geospatial deduplication
module using DBSCAN and haversine distance to
project and cluster per-frame detections into a
consolidated, unique defect inventory suitable for
SCADA and GIS integration.

4. Validation of the integrated method through
comparative analysis on public datasets and real-world
UAV field trials, quantifying improvements in detection
accuracy, inventory quality, and bandwidth efficiency.

The scientific novelty of this work lies in the
formulation of a universally applicable, palette-invariant
feature  embedding  strategy.  Unlike  ad-hoc
augmentation techniques, this approach mathematically
forces the network to learn thermal representations
independent of pseudo-color mapping, making the
method robust across different camera vendors and
visualization settings without retraining.

The paper is structured as follows: Section 2

describes the materials and methods, including the
problem formulation, palette-invariant embedding, and
geospatial clustering. Section 3 presents the
experimental results on benchmark datasets and field
trials. Section 4 discusses the findings, operational
advantages, and limitations. Section 5 concludes the
article by summarizing the key findings and outlining
prospects for future research.

2. Materials and methods

In response to the above-mentioned challenges and
tasks, this paper introduces an integrated end-to-end
method for UAV-based PV defect detection and
reporting that jointly addresses palette bias, multi-modal
fusion, adaptive re-acquisition, geo-spatial de-
duplication, and bandwidth-aware processing. The
technical realization of this method is organized around:
(i) a multi-palette thermal-RGB ensembling and gated
fusion strategy, (ii) an adaptive re-acquisition controller
driven by detection confidence and Rodrigues-based
gimbal updates, and (iii) a geo-spatial clustering and
summarization module that exports a consolidated
defect inventory in standard JSON and KML formats. A
detailed schematic representation of the proposed
method and its algorithmic steps is shown in Fig. 1.

2.1. Problem formulation and data
preprocessing

The problem statement is formally defined as
follows. Given a UAV survey mission that produces a
time-sequenced stream of sensor data packets

S:{(Ri,T P)}Nl, where for each time step |,

(R =
R, e R™*"%**® s the RGB image, T, e R""™ is the
radiometric thermal image containing raw sensor
values, and P, is the comprehensive pose and metadata

packet. This packet includes the UAV’s precise geodetic
coordinates (latitude, longitude, altitude) from an RTK-
GPS unit, its orientation (roll, pitch, yaw) from an IMU,
the gimbal’s orientation, and the camera’s intrinsic
parameters (focal length, principal point). The objective
is to process this stream S and produce a minimal, de-

duplicated set of unique defect detections D = {dj};(,y

where each detection dj is a structured object

containing a semantic class label, a confidence score, a
precise WGS84 geo-spatial polygon, and associated
metadata such as peak temperature.

To develop and validate the proposed method, two
publicly available datasets were utilized, which undergo
a standardized preprocessing pipeline:
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Fig. 1. Schematic representation of the proposed method that consists of four phases: (1) palette-invariant
thermal-RGB feature extraction; (11) adaptive gated fusion for reliability-based weighting; (111) active perception
loop using Rodrigues updates for re-acquisition; and (1) Haversine-DBSCAN geospatial clustering for redundancy
filtering and telemetry generation

1. PVF-10 [24]: This is a large-scale, high-
resolution UAV thermal dataset, featuring 5,579
annotated crops of individual solar panels from eight
distinct power plants. Its key strength is the fine-grained
taxonomy of 10 different fault classes, including various
types of hotspots, diode issues, and cell defects,
enabling a nuanced evaluation of classification
performance.

2. STHS-277 [25]: This dataset contains 277 full-
frame thermographic images specifically capturing
snail-trail and hotspot defects, accompanied by valuable
environmental metadata. The existing annotations were
extended to include bounding boxes for all panel
instances, which allows for training and evaluating end-
to-end object detection models

The preprocessing pipeline is designed to
homogenize these diverse inputs. The raw radiometric

values in the thermal frames T, are converted into

I
absolute temperature maps in degrees Celsius (°C). This
is a critical step for quantitative analysis and is achieved
using the sensor-specific calibration parameters
provided in the image metadata. To create a rich set of
inputs for the palette-invariance module, each
temperature map was rendered into M =4 distinct

colorized versions, {Cm (T; )}:1

_,» using a selection of

common thermal palettes: ‘ironbow,” ‘whitehot,’
‘rainbow,” and ‘sepia.” The original single-channel
temperature map is also retained as a normalized

grayscale image. The corresponding RGB frames R,

are treated with Contrast Limited Adaptive Histogram
Equalization (CLAHE). Unlike global histogram
equalization, CLAHE operates on small, tiled regions of
the image, which is highly effective at enhancing local
contrast and revealing details in areas that are either in
deep shadow or affected by specular glare, common
issues in PV imagery. All associated metadata from the
P, packet is carefully parsed and preserved, as it is

essential for the downstream geo-tagging and de-
duplication stages.

2.2. Palette-invariant thermal embedding
and fusion

The core of the detection model is a novel fusion
architecture designed to be robust to the pervasive issue
of thermal palette bias. The central hypothesis of this
study is that by forcing a neural network to learn a
representation that is consistent across different color
visualizations of the same underlying thermal data, the
network will learn to focus on the intrinsic thermal
patterns rather than spurious color features.

Let TeR™" represent a normalized temperature
map of a single crop. Its M colorized variants are

denoted by {Cm (T)eRHXW”}:ﬂ. A shared CNN
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encoder f,(-) is employed with parameters 6 to map
each of these variants into a high-dimensional latent
feature vector, z, =f,(C, (T)). An EfficientNet-B1

architecture was chosen as the backbone, pre-trained on
ImageNet, for its excellent balance of performance and
computational efficiency, making it suitable for
potential onboard deployment. To enforce palette
invariance, a custom loss function is introduced to
minimize the variance among the feature vectors
generated from the different palette renderings of the

same input. The palette-invariance loss, L, is

formulated as the mean squared error between each
individual embedding and their centroid, as shown in
Equation 1:

gL 2
Epal :Ménzm - Z||2, @

1 M
where Z=—>» z .
2
By minimizing this loss during training, the
encoder f, was compeled to produce a canonical,

palette-agnostic embedding, Z, which captures the
essential thermal information, independent of its visual
representation.

In parallel, the corresponding RGB image crop, R,
is processed by a separate but architecturally similar

CNN encoder, g, (-), with parameters ¢, to generate

an RGB feature embedding, r=g¢(R). The palette-

invariant thermal embedding Z and the RGB
embedding R are then fused using a gated fusion unit.
This mechanism adaptively controls the contribution of
each modality, allowing the network to dynamically
prioritize the more reliable source of information for
any given input. The fused feature vector u is computed
as follows:

u=goz+(1-g)or, &)

where g = G(Wg [EH r} + bg) .

L1I]

concatenation, W and bg are the learnable weights

In  Equation (2), denotes  feature

and biases of a linear gating layer, o is the element-
wise sigmoid activation function which outputs a gate
vector ¢ with values between 0 and 1, and O
represents element-wise multiplication. This gated
attention mechanism effectively learns a soft mask to

decide how much information to draw from the thermal
versus the visual stream for each feature dimension.

The final fused feature vector u is passed to a
lightweight, anchor-free detector head. This head
consists of two branches: a classification branch that
predicts the probability of each defect class, and a
regression branch that predicts the bounding box
coordinates. The complete model is trained end-to-end
by minimizing a composite loss function, as follows:

Lo = L (P, P) + MpoxLoox (B’ B) + kpalﬁpal )

where P and P represent the ground-truth and predicted

class probabilities, and B and B are the ground-truth

and predicted bounding box coordinates, respectively.
Focal Loss for £, is used in Equation (3) to

handle the class imbalance inherent in defect detection
tasks, and the Generalized Intersection over Union

(GloU) loss for L, as it provides a more stable
training signal for bounding box regression compared to
traditional L1/L2 losses. A, and A, are scalar

hyperparameters that balance the contribution of each
loss component.

box

2.3. Adaptive re-acquisition
via rodrigues updates

A common failure mode in automated inspection is
missing small defects or being uncertain about
ambiguous signatures, leading to a trade-off between
recall and precision. The proposed adaptive re-
acquisition controller addresses this by transforming the
detection system into an active perception loop.

When the model produces a detection with a
confidence score below a specified threshold, t,,, and

the detected area is small, the system flags it as a
candidate for verification instead of immediately
accepting or rejecting it. The goal is to re-orient the
UAV’s gimbal to capture a new, higher-resolution
image with the object of interest centered. This is
achieved through a precise geometric calculation.

Given the detection’s pixel coordinates

p= [u,v,l]T , it is back-projected into the camera’s 3D

coordinate system. This is done by transforming it into a

unit vector v representing its direction relative to the
-1

K™'p
-1
<]
camera’s intrinsic matrix. This vector V is then

transformed from the camera’s reference frame to the
global world frame (e.g., North-East-Down) using the

camera’s optical center: v = , Where K is the
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camera’s rotation matrix R, ,onq. Which is derived
from the UAV’s IMU and gimbal encoder data:
C=RmwongV - The vector c represents the current
line-of-sight to the target in world coordinates.

To center the target, a rotation is computed to align
¢ with the camera’s principal axis (typically the Z-axis
in the camera frame). This desired new line-of-sight is
denoted c’'. The minimal rotation required to move
from ¢ to ¢’ is defined by a rotation axis k and an

cxc'

d
exe] ™

angle ©. These are found by: k=

@ =arccos(c-c’). The corrective rotation is then

applied using the Rodrigues rotation formula, a
computationally efficient method for rotating a vector,
as follows:

Cpew =€C0S(60)+ (k xC)sin(6)+

+k(k-c)(1—cos(6)). @

This computed rotation in Equation (4) is
decomposed into pitch and yaw commands that are sent
to the gimbal controller. After the gimbal stabilizes, a
new frame is captured. The detection model re-evaluates
this new, higher-quality view, leading to a more
confident confirmation or rejection of the initial
ambiguous detection.

2.4. Geo de-duplication
with Haversine-DBSCAN

To address the challenge of data redundancy from
overlapping images, a robust geo-spatial de-duplication
module is developed. This module operates on the set of
all confirmed detections from an entire survey flight.
The first step is to project each detection’s bounding
box polygon from 2D pixel space into real-world
WGS84 (latitude, longitude) coordinates. This complex
projection requires the full camera model, including its
intrinsic parameters, and the precise six-degree-of-
freedom pose (position and orientation) of the UAV and
its gimbal at the exact moment of image capture. The
accuracy of this step is critically dependent on the
availability of an RTK-GPS unit.

Once all detection polygons and their centroids are
in a common geographic reference frame, a method is
applied to cluster detections that correspond to the same
physical object. Since these coordinates lie on the
Earth’s curved surface, using a simple Euclidean
distance metric would be inaccurate, especially over
larger distances. The pairwise geodesic distance is

computed between any two detection centroids (¢;, ;)

and (cpj,x,.) using the haversine equation as follows:

d. =2R

xarcsin(\/sin2 (%}+cos((pi )cos(; )sin’ (A—;jJ (5)

where Ap=0¢;—¢;, Ah=A;—-2,;, and R

mean radius of the Earth.

Equation 5 provides an accurate great-circle
distance between points.

With this distance metric, the Density-Based
Spatial Clustering of Applications with  Noise
(DBSCAN) algorithm is employed. DBSCAN is
exceptionally well-suited for this task for three reasons:
it does not require the number of clusters to be specified
in advance, it can identify arbitrarily shaped clusters
(useful if a large defect is detected in a fragmented
way), and it has a built-in concept of noise, allowing it
to isolate single, non-overlapping detections. The
algorithm is configured with two parameters: a distance
threshold & (e.g., 1.0 meter, chosen to be slightly larger
than the expected maximum GSD), and a minimum
number of points to form a cluster, ‘minPts’ (set to 2,
since any pair of overlapping detections should be
merged). All detections that fall into the same DBSCAN
cluster are then merged into a single, canonical defect
event. The final geo-spatial polygon for this event is
computed as the geometric union of all constituent
polygons, and its confidence score is the maximum or
confidence-weighted average of its members.

X

artn 1S the

2.5. Onboard relevance-only telemetry

To solve the bandwidth problem, the system
completely eschews the continuous streaming of raw
video or imagery. Instead, it operates on a “relevance-
only” or “exception-reporting” basis. The entire
detection and de-duplication pipeline is designed to be
lightweight enough to run on an onboard companion
computer. Only the final, processed output, the list of
unique, consolidated defect events, is transmitted over
the wireless link.

These events are serialized into a highly compact
and structured JSON format, as exemplified in Fig. 2.

Each JSON object contains all the critical
information needed for downstream analysis and
integration with asset management platforms like a
SCADA system. Optionally, the data can also be
formatted as a KML file for direct visualization in GIS
tools like Google Earth. This strategy reduces the
required data throughput by several orders of
magnitude, from megabytes per second to kilobytes per
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alert, making real-time monitoring over standard LTE or
other low-bandwidth links not only feasible but also
highly reliable. The full onboard process is outlined in
Algorithm 1.

{
"site_id": "PV-PLANT-08",
"uav": "M300 RTK",
"ts_utc": "2025-09-30T10:12:33Z2",
"detections": [
{
"id": "clu_o12a",
"class": "hotspot_single"”,
"conf":0.91,
"temp_C": 82.4,
"centroid_wgs84": [49.407251, 26.984173],
"polygon_wgs84": [
[49.407249, 26.984170],
[49.407252, 26.984175],

])
"media": {
"rgb": "gs://bucket/vid123_03456.jpg",
"tiff": "gs://bucket/vid123_03456.tif"
1}
Fig. 2. Example of the compact, SCADA-ready JSON

payload transmitted from the UAV

Algorithm 1: Onboard detection, confirmation,
and reporting pipeline within the proposed method.

1: Input: RGB frame R, thermal frame T, UAV
pose & camera intrinsics.

2: Render M palette variants C_ (T) from the
thermal frame T.

3: Compute thermal embeddings
z,=f,(C,(T)) and the mean embedding
- 1
Z:Msz.

4: Compute RGB embedding r=g¢(R) and fuse

with Z to obtain feature vector u.
5:Run detector D(u) to get a set of initial

detections.
6: for each detection b do:

7. if conf(b) <1, andarea of b is small then
8: Compute line-of-sight vector ¢ and solve
for corrective rotation (K,0).

9: Issue
command.

10:  Re-acquire frame and re-evaluate detection
confidence for b.

11: Map all confirmed detection polygons to
WGS84 coordinates.

12: Compute pairwise haversine distances dij

Rodrigues-based gimbal update

between detections.
13: Cluster detections using DBSCAN with metric

14: Merge detections within each cluster and
serialize results to JSON/KML.

15: Output: publish consolidated data payload via
MQTT or HTTPS.

2.6. Experimental setup

Field experiments were conducted using a DJI
Matrice 300 RTK drone [36], an industrial platform
providing precise autonomous navigation via its GPS-
RTK positioning system. The drone was equipped with
a DJI Zenmuse H20T gimbal camera [37], a hybrid
payload integrating thermal, zoom, and wide-angle
sensors to capture comprehensive multi-modal imagery.
For real-time, onboard data processing, an NVIDIA
Jetson AGX Orin 32GB module [38] is utilized as the
primary edge computer. This setup ran on Ubuntu
20.04.6 LTS (Focal Fossa) [39], with ROS Noetic
Ninjemys [40] serving as the middleware to coordinate
sensing and control tasks. Low-level interfacing with
the drone’s flight controller and gimbal was managed
through DJI’s Onboard SDK v4.1.0 [41] and Payload
SDK v3.12.0 [42], which enabled custom flight
behaviors and precise camera control.

The custom software, developed in Python 3 [43],
was structured into modular ROS nodes, including
OpenCV v4.9.0 [44] for computer vision tasks and
NumPy v2.3.0 [45] for numerical computations. The
deep learning pipeline was built using PyTorch v2.0
[46]. At its heart, the system employs a custom fusion
model based on the YOLOv11m-seg architecture [47], a
powerful instance segmentation network selected for its
high accuracy in detecting small and irregularly shaped
defects common on solar panels. The model was
initialized with pre-trained weights and fine-tuned on
the curated dataset of PV imagery, with the Jetson’s
GPU accelerating inference to achieve real-time
performance during flight.

To facilitate communication, the onboard Jetson
module streamed data to a ground station over a 5.8
GHz Wi-Fi link. ZeroMQ v4.3.5 [48] was employed as
a high-performance messaging library to transmit
telemetry and condensed detection results. This data
was then ingested by a cloud backend hosted on
Microsoft Azure [49] for long-term storage,
visualization, and further analysis by remote operators.
For direct operational integration, critical defect alerts
were transmitted from the drone to the solar farm’s
SCADA system. This link was established using a
ZigBee wireless module [50], enabling automated
logging of panel faults and the triggering of immediate
maintenance alarms within the plant’s existing
monitoring infrastructure.

To ensure a fair and scientifically sound
comparison, all experiments were conducted using a
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consistent methodology. The datasets were partitioned
into 80% for training, 10% for validation, and 10% for
testing, using a fixed random seed across all models to
guarantee that they were trained and evaluated on
identical data splits. The primary performance metrics
adhere to the established standards in the object
detection community [51]. These include mean Average
Precision at an Intersection over Union (loU) threshold
of 0.5 (MAP@0.5), which assesses general detection
quality, and mAP averaged over loU thresholds from
0.5 to 0.95 in steps of 0.05 (MAP@[0.5:0.95]), which
provides a stricter measure of localization accuracy.
Macro-averaged Fl-score and overall recall were also
reported. To specifically evaluate the de-duplication
module, the Duplicate-induced False Positive (Dup-FP)
rate is defined as the proportion of false positives that
are attributable solely to multiple detections of a single
ground-truth object. This metric is reported both before
and after the application of the geo-de-duplication
process. For all baseline models, the same backbone
architecture and training schedule were used to ensure
that any observed performance differences are directly
attributable to the proposed novelties.

3. Results

Extensive experiments were performed to
rigorously evaluate the proposed method, quantifying its
overall performance and the specific contributions of its
constituent components. The evaluation was conducted
on the PVF-10 [24] and STHS-277 [25] benchmarks.

3.1. Overall detection accuracy

The primary results, summarized in Table 1,
unequivocally demonstrate the superior performance of
the integrated multi-modal system created based on the
proposed method. On the PVF-10 dataset, which
features 10 fine-grained defect classes, the proposed
model achieved a mAP@0.5 of 0.903. This represents a

substantial improvement of +12.3 percentage points
over the thermal-only baseline (0.780) and a massive
+16.3 points over the RGB-only baseline (0.740). The
per-class breakdown on PVF-10, shown in Fig. 3,
confirms that the proposed fusion approach consistently

provides superior performance across all defect
categories.
The performance gains were even more

pronounced under the stricter mAP@][0.5:0.95] metric,
where the model’s score of 0.598 shows its ability to
produce more precisely localized bounding boxes.
Similar success was observed on the STHS-277 dataset,
where the model reached a mAP@0.5 of 0.887,
outperforming the thermal-only and RGB-only
baselines by +6.7 and +19.7 points, respectively.

PVF-10 per-class AP@0.5

in 1.0

o

I

- 0.8

°

£

© 0.6-

S

£

-

3041 I

= I Thermal-only

go.z == RGB-only

® I Ours (T+RGB)

&00, N N N D O
Cl C2 C3 C4 C5 C6 C7 C8 C(C9 cC10

Fig. 3. Per-class Average Precision (AP@0.5)
on the PVF-10 dataset

The consistent improvements across all reported
metrics, including macro-F; and recall, underscore the
comprehensive benefits of the proposed approach. The
precision-recall curves in Fig.4 provide a visual
confirmation of this dominance, showing that the fusion
model (blue curve) consistently achieves higher
precision at every level of recall compared to the single-
modality baselines. This indicates a more robust and
reliable detector across different confidence thresholds.

Table 1

Overall detection performance on the PVF-10 and STHS-277 test sets. The proposed system consistently
and significantly outperforms single-modality baselines across all key metrics. The geo-de-duplication (d-dup)
step drastically reduces the Dup-FP rate, a critical factor for operational deployment

mAP@ Dup-FP Dup-FP

Dataset Method MmAP@0.5 [0.5:0.95] Macro-F; Recall (rgw) ( d-zup)
Thermal-only 0.780 0.530 0.840 0.830 0.24 0.08
PVF-10 RGB-only 0.740 0.470 0.800 0.790 0.24 0.09
Ours 0.903 0.598 0.888 0.902 0.22 0.07
Thermal-only 0.820 0.560 0.840 0.860 0.20 0.06
STHS-277 RGB-only 0.690 0.380 0.720 0.750 0.18 0.07
Ours 0.887 0.571 0.892 0.914 0.17 0.05
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PVF-10: Precision vs. recall
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Fig. 4. Precision—recall curves on the a) PVF-10 and b) STHS-277 datasets. The proposed palette-aware
Thermal+RGB fusion model (blue) demonstrates superior performance by maintaining higher precision across
all recall levels compared to the thermal-only (orange) and RGB-only (green) baselines

To validate the statistical significance of the
obtained results, a paired bootstrap test was conducted
over three independent training runs. The 95% bootstrap
confidence interval for the model’s mAP@0.5 on PVF-
10 was a tight [0.895, 0.911], and on STHS-277 it was
[0.865, 0.910]. The test confirmed that the performance
difference between the fused model and the best-
performing single-modality baseline was statistically
significant, rejecting the null hypothesis of equal
performance with p < 0.01 for both datasets.

3.2. Ablation study: dissecting component
contributions

To understand the individual impact of the core
methodological novelties, i.e., palette invariance and
adaptive re-acquisition, a detailed ablation study was
performed on the PVF-10 dataset. The process began
with single-mode baselines and the gradual addition of
components to the synthesis model. The results,
presented in Table 2 and Fig.5, reveal a clear
synergistic effect. Simply fusing the thermal and RGB
streams without the advanced techniques (T+RGB w/o
pal-inv) already provides a significant performance
boost, raising the mAP@0.5 to 0.846.

However, the introduction of the palette-invariance

loss (L,,) during training yielded the single most

substantial improvement, adding another +4.6 points to
the mAP@0.5. This obtained result validates the initial
hypothesis ~ that  learning a  palette-agnostic
representation is crucial for robust thermal-based
detection. Notably, this component also improved the
recall of small targets from 0.80 to 0.84.

Table 2

Ablation study results on the PVF-10 dataset. This table

systematically dissects the performance gains from each
of the system’s core components.

Variant mAP@0.5 | Small-target
recall
Thermal-only 0.780 0.77
RGB-only 0.740 0.69
T+RGB w/o pal- 0.846 0.80

inv
T+RGB + pal-inv 0.892 0.84
T+RGB + pal-inv + 0.903 0.86
re-acq

PVF-10 ablation: component contributions
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Fig. 5. Component-wise contribution to performance on
the PVF-10 dataset. The bar chart visually represents
the data from Table 2, showing the progressive increase
in mMAP@0.5 (blue) and small-target recall (orange) as
each key component of the system is added.



196

Radioelectronic and Computer Systems, 2025, no. 4(116)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Finally, enabling the adaptive re-acquisition
controller (re-acq) delivered an additional +1.1 point
gain in mAP and, as designed, specifically pushed the
small-target recall to a high of 0.86, demonstrating its
effectiveness in actively verifying and confirming
ambiguous, hard-to-detect anomalies.

3.3. Effectiveness of geo-spatial de-duplication

The practical utility of an inspection system
depends not only on its accuracy but also on the clarity
and actionability of its output. The geo-de-duplication
module is designed to transform a raw stream of
potentially redundant detections into a clean list of
unique faults. Fig. 6 shows its profound impact. On the
PVF-10 dataset, the de-duplication module reduced the
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Dup-FP rate for the model from 0.22 to 0.07, an
absolute reduction of 15 percentage points. A similar
effect was observed on STHS-277, where the rate for
the model dropped from 0.17 to 0.05, a 12-point
reduction. In practical terms, this means that for every
100 false alarms in the raw output, the system prevents
between 12 and 15 of them that are purely due to
redundancy, greatly reducing the cognitive load on
human operators and increasing their trust in the system.
A sensitivity analysis of the DBSCAN radius parameter,
shown in Fig. 7, confirmed that the chosen value of
€=1.0 meter provides an excellent trade-off,
effectively merging true duplicates without over-
merging distinct defects that happen to be in close
proximity.
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Fig. 6. The impact of geo de-duplication on the rate of Dup-FP. The module significantly reduces redundant alerts
on both a) PVF-10 and b) STHS-277 datasets
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Fig. 7. Sensitivity analysis of the DBSCAN radius parameter (€ ) on the final Dup-FP rate for the a) PVF-10
and b) STHS-277 datasets. An epsilon value of 1.0 meter provides the optimal trade-off
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3.4. Case study

To bridge the gap between benchmark
performance and real-world applicability, a field
validation study was conducted at two operational sites:
the Khmelnytskyi National University (KhNU) rooftop

i

J!]J"'*:,‘I |

§is

ll_l“l,h 14

installation and a commercial ground-based solar plant.
The experimental setup, illustrated in Fig. 8, involved
deploying a UAV equipped with the sensor suite to
perform an automated survey, alongside technicians
using portable thermal cameras and pyrometers for
manual ground-truth data collection.

d)

Fig. 8. Overview of the field validation setup: a) monitoring interface displaying real-time data from the survey;
b) on-site manual inspection with portable thermal equipment for ground-truth verification; c) aerial view of the
solar power plant under survey by the UAV; d) close-up of inverter and connection hardware being inspected

Table 3

Results of the comparative analysis of defect detection from the field study, showing a strong correlation between
automatically detected defects and manually verified ground truth over 20 modules.

Module Auto- Manuall . Auto- Manuall .
ID Detected Verifiedy Difference | Module ID Detected Verifiedy Difference
1 2 2 0 11 4 4 0
2 3 3 0 12 3 3 0
3 1 1 0 13 7 7 0
4 5 5 0 14 3 3 0
5 10 9 1 15 8 8 0
6 6 6 0 16 10 10 0
7 1 1 0 17 2 5 3
8 2 2 0 18 4 4 0
9 4 4 0 19 8 8 0
10 3 3 0 20 2 2 0
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The output of the implemented automated system
was compared against the meticulous manual
inspection. The quantitative results of this comparison
for 20 sample modules are detailed in Table 3. The
system demonstrated exceptional agreement with the
ground truth. Overall, a recall of 96% was calculated for
defect identification. The Root Mean Square Error
(RMSE) between the number of defects detected
automatically and those verified manually was only
0.71, indicating a very low and predictable error margin.

To provide qualitative insight, Fig. 9 showcases
samples of true positive detections, where the system

correctly identified various thermal anomalies.
Furthermore, the 96% recall suggests that while the
system is highly effective, it occasionally misses very
subtle defects, often related to minor soiling, which do
not present a strong thermal or visual signature.
Critically, the system also proved robust against false
positives; Fig. 10 displays examples of complex thermal
patterns from shadows or reflections that were correctly
ignored by the algorithm. These qualitative and
quantitative results strongly support the system’s
readiness for deployment as a reliable tool for large-
scale, operational O&M workflows.

c)

Fig. 9. Examples of multi-palette thermal signatures for different PV anomalies: a) a severe multi-cell hotspot
defect; b) minor thermal irregularities indicating potential soiling or early-stage cell failure; c) an elongated hotspot
affecting a string of cells; d) a localized hotspot near the panel’s edge, potentially indicating a junction box problem

b)

c) : d)

Fig. 10. Examples of challenging thermal patterns correctly classified as non-defective: a) specular reflections from
the sun; b) faint thermal gradients and temporary shadows; c) strong thermal reflections from overhead structures; d)
environmental artifacts, including shadows from vegetation and thermal signatures from the panel’s metal frame
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3.5. Robustness to flight envelope parameters

To assess the system’s performance under realistic
and varying operational conditions, its sensitivity was
analyzed to changes in flight altitude and speed. The
results, depicted in Fig. 11 and detailed in Table 4,
provide valuable insights for mission planning.
Detection accuracy is optimal at lower altitudes (5-10
meters), where the higher GSD allows the sensors to
capture fine details. As the altitude increases to 15
meters, the mAP@0.5 drops noticeably to 0.780, as

Detection vs. altitude (speed 5 m/s)
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smaller defects become indistinguishable. Similarly,
flight speed has a significant impact. While slower
speeds (2 m/s) yield the highest accuracy (0.920 mAP),
a speed of 5 m/s provides a near-optimal balance
between data quality (0.900 mAP) and survey
efficiency. Increasing the speed to 10 m/s introduces
motion blur, which degrades performance to 0.840
mAP. These findings suggest that an optimal flight
protocol would involve flying at approximately 10
meters altitude and a speed of 5 m/s to maximize both
detection performance and area coverage rate.

Detection vs. speed (altitude 10 m)
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Fig. 11. System robustness to flight parameters: a) detection accuracy (mAP@0.5) as a function of UAV altitude;
b) accuracy as a function of UAV speed. Performance is optimal around 5-10 m altitude and 2-5 m/s speed

Table 4

Effect of flight envelope parameters on mAP@0.5. The results indicate an optimal trade-off between survey
efficiency and detection accuracy

Condition Setting mAP@0.5
Altitude sweep (at 5 m/s) 5m/10m/15m 0.912/0.900/0.780
Speed sweep (at 10 m alt.) 2m/s/5m/s/ 10 m/s 0.920/0.900/0.840

3.6. Bandwidth impact and comparison
with prior work

The relevance-only telemetry strategy delivers
dramatic savings in communication bandwidth, a
critical factor for enabling real-time operations. As
shown in Fig. 12, by transmitting only the final,
compact JSON reports instead of high-resolution
imagery, the average data rate was reduced from 14.5
MB/min to 5.4 MB/min on the PVF-10 mission profile,
a 63% reduction.

Based on Fig. 12, one could conclude that the
savings were even more substantial for the STHS-277
profile, with bandwidth usage dropping from 13.2
MB/min to 4.3 MB/min, a 67% decrease. This
efficiency transforms the communication requirements
from needing a dedicated, high-throughput link to being

able to operate reliably over a standard 4G/LTE cellular
connection.

Telemetry bandwidth

[ PVF-10
[ STHS-277

14500

13200

5400

4300
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Fig. 12. Bandwidth savings achieved by the relevance-
only telemetry approach
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Finally, to situate the work within the broader
landscape of deep learning detectors, a comparative
analysis was conducted against several well-known
methods. For a fair comparison, each model was re-
trained on the PVF-10 dataset using an identical training
budget. The results in Table 5 are telling. The system
achieves a significantly higher mAP@0.5 (0.903) than
all competitors and does so with a remarkably efficient
model. With only 8.2 million parameters, it is far more
compact than the heavyweight YOLOvV3 (61.9M) and
achieves the fastest inference speed on an embedded
NVIDIA Jetson platform at 24 frames per second (FPS).
This combination of superior accuracy and high
efficiency underscores its suitability for deployment on
resource-constrained onboard computers.

Table 5
Comparison with representative detection methods
on the PVF-10 dataset

Method g{g\z P?Er)ns (JeFtZSn)
(s | 070 | 1e | 12
voLovifie | %0 | oo | 18
Eﬁé)cliertg;et- 0.820 6.6 22

T ? L;ercS;B) 0.903 o2 “
4. Discussion

4.1. Interpretation of findings
and system novelty

The core novelty of this study lies in its integrated
approach to intelligent, multi-modal data fusion and
robust feature engineering. The most significant finding
is the profound impact of enforcing palette invariance in
the thermal feature encoding stage. The +4.6 percentage
point gain in mAP@0.5 attributable to this component
(see Table 2) is not merely a statistical improvement; it
represents a fundamental step toward creating a reliable
diagnostic system. By forcing the network to learn a
canonical representation that is stable across different
color maps, a robust thermal feature was produced to
serve as a consistent input for the fusion stage. This
contrasts sharply with conventional models that are
implicitly tied to specific camera settings and palettes,
making them brittle in heterogeneous hardware
environments [10].

This robust feature engineering enables the second
pillar of this study’s success: the intelligent fusion of
thermal and visual data. The gated fusion mechanism

provides a more sophisticated approach than simple
feature concatenation, allowing the model to learn a
dynamic, context-dependent weighting of the two
modalities. For instance, in a scene with heavy solar
glare, the gate can learn to down-weight corrupted RGB
features and rely more heavily on stable thermal data.
This is crucial because by fusing thermal data with
visual evidence, the system can better differentiate
between different types of anomalies (e.g., hotspots
caused by soiling versus those linked to physical
damage like cracks), achieving a level of analytical
depth absent in single-modality solutions. This multi-
modal, cross-validating approach moves beyond the
static analysis paradigm common in the literature
[15,16] toward a more dynamic and intelligent
inspection workflow.

4.2. Operational advantages
and O&M optimization

The most operationally significant contribution of
this study is the transformation of raw, redundant
detections into clean, actionable intelligence. While
academic research often focuses on per-frame metrics
like mAP, O&M teams in the field prioritize the
identification and localization of unique, actionable
problems. The geo-spatial de-duplication module,
detailed in Section 2.4, directly addresses this need. The
12-15 percentage point reduction in Dup-FPs (see Fig.
6) translates directly into saved man-hours and
increased operator trust. This provides a robust
algorithmic solution to the data redundancy problem,
validating the high-level mapping concepts discussed in
prior works [32, 33].

Although gradient-based XAl methods were not
the focus of this study, the system enhances operator
trustworthiness through “‘operational explainability.” By
transmitting the specific high-resolution RGB image
that confirmed a thermal anomaly (via the re-acquisition
loop), the system provides the operator with the visual
evidence (the “reason”) for the alert, effectively
bridging the gap between black-box Al detections and
human verification requirements.

Furthermore, the automated classification of
specific defect types significantly enhances O&M
efficiency. Traditional alarm systems may simply
indicate that a module is underperforming. The
proposed system provides immediately actionable
intelligence, such as identifying a hotspot defect
consistent with soiling or a crack defect at specific
coordinates. This allows the O&M manager to dispatch
the correct resource immediately; for example, a
cleaning crew for the former or a technical team with
replacement modules for the latter. This targeted
response minimizes module downtime, reduces wasted
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labor, and effectively transitions the O&M strategy from
a reactive model to a highly efficient, condition-based,
and predictive model. When combined with relevance-
only telemetry (Section 2.5), the result is a system that
is accurate, efficient, and capable of producing outputs
directly consumable by asset management platforms.

4.3. Limitations, challenges,
and mitigation strategies

Despite its significant strengths, the proposed
Despite significant strengths, the proposed system has
certain limitations that warrant careful consideration.
The accuracy of the geo-projection and de-duplication is
critically dependent on high-quality UAV pose
metadata, ideally from an RTK-enabled GPS. In
environments where GPS signals are degraded,
projection errors could lead to incorrect clustering. A
mitigation strategy involves integrating visual-inertial
odometry or SLAM-based localization to supplement or
replace GPS data, thereby improving navigational
robustness.

Technically, system performance is fundamentally
capped by the quality of input data and the underlying
Al model’s accuracy, adhering to the principle that
output quality depends on input quality. Poorly
calibrated sensors or an inadequately trained Al model
will lead to flawed decisions. This necessitates rigorous
sensor calibration protocols and a continuous machine
learning operations cycle, including periodic retraining
with new, verified data to prevent model drift.
Furthermore, the field study noted that the few missed
detections (contributing to the 96% recall) were often
related to subtle soiling, suggesting that future fusion
models could benefit from incorporating additional
sensor modalities or explicitly modeling environmental
factors.

In terms of functional safety, the deployment of
autonomous UAVs for close-proximity inspection
introduces risks related to battery reliability and flight
over energized infrastructure. While the proposed
method optimizes the logical inspection process, it does
not inherently address the physical safety constraints
defined in standards such as IEC 62443 or specific
aviation regulations. Future implementations must
integrate the proposed active perception loop with
certified collision avoidance systems and battery health
monitoring to ensure safe operation in gigawatt-scale
plants.

5. Conclusions and future work

This study successfully validated an integrated
method for UAV-based PV inspection, achieving the
stated goal of enhancing detection fidelity while
optimizing  bandwidth. The primary scientific

contribution is the palette-invariant thermal embedding,
which creates a universal representation robust to sensor
variations. Experimental results confirmed a measurable
improvement, with mAP@0.5 reaching 0.903 on the
PVF-10  benchmark, exceeding single-modality
baselines by 12—-16 percentage points. Additionally, the
Haversine-DBSCAN geo-spatial de-duplication module
reduced the duplicate-induced false positive rate by 12—
15%, directly addressing the data redundancy challenge.
Field validation confirmed a high 96% recall rate, while
the relevance-only telemetry policy reduced bandwidth
requirements by over 60%, delivering a clean, actionable
defect inventory. However, the method's performance is
currently limited by its dependence on high-precision
RTK-GPS data for accurate geo-projection and the
absence of integrated functional safety mechanisms for
autonomous close-proximity flight.

Future research will focus on integrating historical
data from SCADA systems to dynamically adjust
detection thresholds based on seasonality and module
age. Additionally, incorporating survival analysis
networks into the pipeline will enable the transition
from defect detection to predictive remaining useful life
(RUL) forecasting.
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METO/J IHCIIEKTYBAHHSA ®OTOEJIEKTPUYHUX MOJYJIIB 3 BIIJIA
I3 BAKOPUCTAHHSM 3JIMTTS TEIUIOBIBIMHUX TA RGB-TAHUX

A. M. JIucuii, A. O. Cauenxo, I1. M. Paoroxk, M. I. Jlucuii,
O. B. Menvnuuenxo, /. I. 3azopoonsa

[IpenmeToM CTATTi € MPOEKTYBaHHS Ta EKCIIEPHMEHTAJbHE OLIHIOBAHHS 1HTENEKTyaJIbHOI rpaHUYHO-XMapHOI
Kibep(i3MUHOI CHCTEMH aBTOMATH30BAaHOTO iHCIEKTYBaHHS (oToeneKTprmdHuX MonyiiB (PEM) Ha mpoMHCIOBHX
COHSYHMX EJIEKTPOCTAHIIIAX HAa OCHOBI MYJBTHIANITPOBUX TEIDIOBi3iiHUX iH(ppadepBoHnx Ta RGB-300pakeHs,
OTPHMAaHHUX 32 JOMOMOror Oe3miyoTHuX JitanbHux anaparti (BITJIA). Meroro 1ibOro IOCHiIKEeHHS € TIiABUIICHHS
TO4YHOCTI BUsBIeHHs AedextiB DEM Ta onepamiiiHoi eeKTUBHOCTI Yepe3 po3po0IeHHSI HOBOIO METOAY, SIKMU Tie-
PETBOPIOE aHi CEHCOpiB 13 MEPEKPUTTAM Ha KOMIIAKTHHM, TCOMPUB’I3aHUI PeecTp NedeKTiB, M0 MiUIATaloTh YCy-
HEHHI0. MeTy IOCHiKEeHHS TOCATHYTO depe3 OTpUMaHe MiJBUINEHHS CepelHbOi TOYHOCTI BHsABIeHHSA (MAP) Ta
3HIDKEHHSI 9aCTOTH XHOHUX CHpAaIlbOBYBaHb, IO CIPWYMHEHI HAJAMIPHICTIO JaHUX, 3 OJHOYACHOIO MiHIMIi3aIli€ro
BHUKOPHCTAHHS MIPOMYCKHOI 3IaTHOCTI KaHaTy 3B’SA3Ky. 3aBJaHHSA, SIKi PO3B’sA3aHO B poOOTi: po3po0iIeHo iHBapiaHT-
HE JI0 TAJITPU TEIUIOBE TOJAHHS, [0 YCYBAa€ 3aJICKHICTh BiJ] IICEBIOKOIHOPOBOI Bi3yalli3allii Ta BHYTPIIIHIX mapa-
METpiB KamepH; 00’€HAHO CTIHKWI TETUIOBHU TOTIK i3 KOHTPACTHO MokpameHuMu RGB-maHuMu 3a TOMOMOTr 010
aalITUBHOT'O MEXaHI3MYy LIIF030BAHOTO 3JIUTTS, 3ATHOTO 3HWKYBATH Bary HEHaIIHHHX MOJAJIbHOCTEH; peasi3oBa-
HO OOPTOBHUII KOHTYp aKTUBHOTO CIIPUHHATTS, iKWl mepeopienTye miaBic BIUIA mis otpuMaHHS TOJATKOBHAX paKy-
PCiB HEOIHO3HAYHMX aHOMAJIiH MaJoi TUIOIIi; PO3pOOICHO MOIYIh TEOIMPOCTOPOBOI KIacTepu3arii Ta JeIyorikarii,
mo 00’ €Hy€E TOBTOPHI BHUSABIICHHS B YHIKAaIbHI MOAIl HECIPaBHOCTEH, MPHUOATHI JUIA iHTErpallii 3 IHCTpyMEHTaMu
SCADA Ta I'IC; KinbKiCHO OIIIHEHO TIEpEeBary 3alpOIOHOBAHOI apXITEKTypH Ha IyOivyHMX Habopax JAaHUX Ta B
peasbHUX MOJIHOBUX BUIPOOYBAHHSX y MOPIBHAHHI 3 OJHOMOJATFHUMH 0a30BHMHU ITiIX0JaMu. BukopucraHi B goc-
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JDKEHI METOM BKIIIOYAIOTh TIIMOOKI 3rOPTKOBI HEWPOHHI MEpeXi Ha OCHOBI MaricTpaii ceMaHTHYHOI CerMEHTaIlil
YOLOv11lm-seg, HaBueHOI i3 WIEHOM peryispu3alii KOHCUCTEHTHOCTI MaliTpH, [IUTI030BAaHE 3JIUTTS TEIUIOBUX Ta
RGB-em0enuHriB Ha piBHI 03HAaK, PO3PAaXyHOK KOPHTyBaJbHUX ITOBOPOTIB Mi/BiCY Ha OcHOBI opmynu Poxpireca
JUTSL aJJalITHBHOTO ITOBTOPHOTO 3aXOIUIEHHS, IIUIBHICHY MPOCTOPOBY KJIACTEPH3alil0 3 METPUKOIO I'aBEPCUHYCA JUIS
reorpadivHoi JAeayOITikamii BUSBICH, 2 TAKOXK CTATHCTHYHUH aHaNi3 e(eKTUBHOCTI 3 BUKOPUCTaHHAM MAP, mak-
po-ycepenueHoi F1-mipy, IOBHOTH Ta iHIMKAaTOpa XMOHUX CIIPallbOBYBaHb, 110 CIPUYHMHEHI ayOmoBaHHAM. OTpH-
MaHO TaKi pe3yabTaTd: Ha Habopi nanux PVF-10 3ampomnonoBaHa cuctema nocsirac mAP@0.5 = 0.903, nmepeBunry-
104M Juire Teriosi Ta ymme RGB-nerexropu Ha 12—16 BinCOTKOBMX NMyHKTIB; Ha HaOopi mannx STHS-277 Bona
nocsirae mAP@Q0.5 = 0.887; iHBapiaHTHE 10 JITPH HABYAHHS Pa3oM 3 a/IAllTUBHUM HOBTOPHHUM 3aXOIUICHHSM ITiJI-
BHUIIYIOTH TIOBHOTY BUSIBJIEHHS ManuXx Iiseit 1o 0.86; reornpocropoBa KiacTepu3allisi 3HIKYE 4acTOTy XHOHUX crpa-
LLOBYBaHb yepe3 AyOmoBaHHs Ha 12—15 BiICOTKOBMX MYHKTIB; IOJbOBA BaJi/allis Ha JaXOBUX Ta HA3EMHHX €JICKT-
POCTaHLIAX MATBEpIKYE 96 % MOBHOTH 3 HU3BKHUM CEPEAHBOKBAJAPATUYHUM BIIXWICHHSM MK aBTOMAaTHYHHM Ta
PYYHHUM ITiAPaxXyHKOM JIe(eKTiB; a Tepeaada BUKIIOYHO PEIEBAHTHOI TelneMeTpii 3MeHIye o0csT nepeaanux i3 6op-
Ty nanux Ha 60—67 % mpu 30epexeHH] AilarHOCTMYHOI TOYHOCTI. Y MiJICyMKY, HayKOBa HOBHM3HA OTPUMAaHHUX pe-
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pauepBoHa 3itomka; RGB-300pakeHHs; rIMOOKe HaBYaHHS; MYJIbTUMOZAJIbHE 3JIUTTS; 1HBAPIaHTHICTH 10 MANITPH;
reoIpoCTOPOBA KIIACTEPU3ALLisL.

Jlucuii Angpiii MukonaiioBuu — acrn. kad. KoMI'IOTepHOI iHkeHepii Ta iH(QOpMAaIWHUX CHCTEM,
XMenbHUIBKUI HalllOHAJILHUI YHIBEPCUTET, XMENbHUIIBKUN, Y KpaiHa.

Cavenko Anarouiii OuiekciiioBUY — 1-p TexH. Hayk, npod., aupexktop HaykoBo-1OCHIIHOTO IHCTUTYTY
IHTEJIEKTYaIbHUX KOMIT IOTEPHUX CHUCTEM, 3aXiHOYKpaiHCbKHMM HalllOHaJbHUI YyHiBepcuTeT, TepHoriib, YKpaiHa;
Pagomcekwmii yHiBepeuret imeni Kasimerxa [ynacekoro, Pagom, Tlonbina.

Pagiok IlaBao MuxaigoBud — ja-p ¢inoc., jgou. Kad. KOMITIOTEpHHX HayK, XMeEIbHHUIBKHNA
HAaIlIOHANIBHUN YHIBEpCHUTET, XMEJIbHUIIbKHHA, YKpaiHa.

Jlucuit Muxona IBaHoBMY — 11-p TexH. Hayk, npo¢., HamioHanbHa akamemisi Jlep»aBHOI MPUKOPIOHHOT
ciyx0u Ykpainu iMeni bornana XmenbpHunbkoro, XMelbHUIBKUHA, YKpaiHa.

Menbandyenko Ouiexcanap BikropoBuu — 1-p dinmoc., crapmr. BHKI. Kad. KOMITIOTEpHOI 1HXXeHepii
Ta iH}opMarLiitHux cucreM, XMeNbHULKUN HAI[IOHATLHUI YHIBEpCUTET, XMEIbHUIBKHUN, Y KpaiHa.

3aropoans /liana IBaniBHA — KaHJ. TeXH. HAyK, JIOL., JOI. Kad. iHPOPMAIiHHO-O0YHUCITIOBAIBHUX CHUCTEM 1
yIIpaBJIiHHS, 3aX1IHOYKpaiHChKHUI HAIllOHAJILHUI YHIBepcUTeT, TepHOMmiiab, YKpaiHa.

Andrii Lysyi — PhD Student, the Department of Computer Engineering and Information Systems, Khmelny-
tskyi National University, Khmelnytskyi, Ukraine,
e-mail: Andrii.lysyil@gmail.com, ORCID: 0009-0001-0065-9740, Scopus Author ID: 59475081500.

Anatoliy Sachenko — Doctor of Technical Sciences, Professor, Director of the Research Institute for Intelli-
gent Computer Systems, West Ukrainian National University, Ternopil, Ukraine; Kazimierz Pulaski University of
Radom, Radom, Poland,
e-mail: as@wunu.edu.ua, ORCID: 0000-0002-0907-3682, Scopus Author ID: 35518445600.

Pavlo Radiuk — PhD in Computer Science, Associate Professor, the Department of Computer Science,
Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: radiukp@khmnu.edu.ua, ORCID: 0000-0003-3609-112X, Scopus Author ID: 57216894492,

Mykola Lysyi — Doctor of Technical Sciences, Professor, Bohdan Khmelnytskyi National Academy of the
State Border Guard Service of Ukraine, Khmelnytskyi, Ukraine,
e-mail: lisiy3152@ukr.net, ORCID: 0000-0002-9858-706X, Scopus Author ID: 59482244100.

Oleksandr Melnychenko — PhD in Computer Science, Senior Lecturer, the Department of Computer Engi-
neering and Information Systems, Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: melnychenko@khmnu.edu.ua, ORCID: 0000-0001-8565-7092, Scopus Author ID: 45961382900.

Diana Zahorodnia — Candidate of Technical Sciences, Associate Professor, Associate Professor at the De-
partment of Information and Computing Systems and Control, West Ukrainian National University, Ternopil,
Ukraine,
e-mail: dza@wunu.edu.ua, ORCID: 0000-0002-9764-3672, Scopus Author ID: 54421527700.


mailto:Andrii.lysyi1@gmail.com
mailto:as@wunu.edu.ua
mailto:radiukp@khmnu.edu.ua
mailto:lisiy3152@ukr.net
mailto:melnychenko@khmnu.edu.ua
mailto:dza@wunu.edu.ua

