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SEA ICE EXTENT FORECASTING USING
STATISTICAL AND DEEP LEARNING MODELS

The subject matter of the article is the forecasting of time series of sea ice extent using statistical and deep
learning methods. Sea ice extent is one of the most important indicators of climate change. Today, there are
trends towards melting glaciers, which leads to a rise in sea level and, in turn, creates a significant threat of
flooding of coastal regions around the globe. In addition, melting glaciers affect the flora and fauna of the Arctic
and Antarctic regions, as well as economic stability in the world, covering economic development and food
security. The spheres of agriculture, tourism, logistics are directly dependent on climate change, therefore,
forecasting future changes is critically important for stability and sustainable development. The article analyzes
the main trends in the change in sea ice extent. The goal of the study is to increase the reliability of long-term
forecasting by designing a framework that covers the full forecasting cycle from data analysis to the use of
predictive statistical methods and deep learning techniques. The tasks of the article are to conduct a comparative
analysis of statistical methods and deep learning methods and their evaluation for the task of forecasting the
area of sea ice distribution. The study used forecasting methods based on statistical models and deep learning.
A study was conducted on the use of different approaches to forecasting future changes in a time series based
on statistical methods, deep learning methods and ensemble models. The results obtained allow to evaluate the
performance of models in the short term and an approach to long-term forecasting was formed. The use of
autoregressors and deep learning methods is proposed to create a reliable long-term forecast. The comparison
of the performance of the methods was carried out for the Northern and Southern Hemispheres. Conclusions.
The scientific novelty of the results obtained is as follows: the method of forecasting time series of sea ice
distribution using statistical methods and deep learning methods has been further developed. It was propose a
generalizable forecasting framework that links time-series characteristics to model class selection and ensemble
construction. The use of ensemble approaches allows us to ensure both the consideration of the main trends and
the recognition of hidden patterns. The results obtained allow for a comprehensive assessment of time series for
the Northern and Southern Hemispheres and indicate the feasibility of using both statistical forecasting methods
for data with clearly defined patterns, such as the Arctic region, and deep learning methods to recognize hidden
patterns observed in time series data for the Antarctic region.
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Another important aspect is the rise of Sea level.
The melting of large volumes of sea ice changes the

1. Introduction

1.1. Motivation

According to Copernicus data, the monthly Arctic
Sea Ice Extent reached a record low for the period in Feb-
ruary 2025. The average area was 13.7 million km?, the
lowest monthly value in the 47-year observation pe-
riod [1].

Sea ice has a significant impact on climate pro-
cesses and is one of the key indicators of climate change.
Today, many studies are aimed at the interdependence of
sea ice surface area with weather phenomena in different
parts of the globe. Sea ice also has a significant impact
on ecosystems [2].

The existence of flora and fauna of the Arctic re-
gions is completely dependent on the spread of glaciers
in theregion, as it is a necessary condition for the survival
of certain species.

balance of the hydrosphere, causing a change in the
chemical composition of the water and can cause
flooding of coastal regions. Given that a significant part
of the world’s population lives on the coasts, in
potentially dangerous areas, this can cause climate
migrations.

Melting glaciers pose many challenges to humanity,
including economic losses, directly threatening
agriculture, tourism, etc [3].

Thus, the development planning of many cities is
associated with the risks of flooding as a result of rising
Sea levels, and to create reliable, stable infrastructure,
understanding potential threats is extremely relevant.

The research topic is consistent with the Sustainable
Development Goals, in particular Goal 13 — Climate
Action, SDG 14 — Life Below Water, and SDG 15 — Life
on Land.
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1.2. State-of-the-Art

The task of time series forecasting remains relevant,
especially with the emergence of new forecasting
methods. Artificial intelligence tools, in particular
machine learning and deep learning, are able to capture
patterns quite well and create highly accurate short-term
forecasts [4]. However, many methods experience
attenuation, and as a result, the created model is
unsuitable for long-term forecasting [5, 6]. This problem
is inherent not only to classical machine learning
methods, but also to deep learning methods, although less
pronounced.

At the same time, statistical forecasting methods
capture only general trends and are not always able to
predict complex patterns.

Given the problems, let us analyze the main trends
in  forecasting climate data using statistical
autoregressors, as well as methods based on artificial
intelligence technologies.

The article [7] reveals post-processing methods
based on supervised machine learning for improving the
skill of sea ice concentration forecasts from the TOPAZ4
prediction system. It is used deep learning approach for
short-term forecasting.

The work [8] describes opportunities and chal-
lenges of advancing Arctic Sea Ice Remote Sensing with
Al and Deep Learning.

There are several approaches in Time Series fore-
casting including autoregressors, recurrent and convolu-
tional neural networks. Article [9] analyzes the data of
extreme precipitation observed in East Malaysia as a re-
sult of climate change. Article [10] examines the impact
of climate change on dengue disease in Singapore by an-
alyzing a time series. Article [11] is devoted to the study
of short-term forecasting of sea ice concentration. Study
[12] analyzes the opportunities and challenges in the field
of remote sensing of Arctic sea ice using artificial intelli-
gence technologies and, in particular, machine learning.

Paper [13] analyzes the fluctuations in sea ice area
within the Arctic Circle using big data and the SARIMA
model. Paper [14] discusses the forecasting of sea ice ex-
tent using NNAR, SARIMA, and SARIMAX methods.
Study [15] is based on a comparison of the effectiveness
of the SARIMA and SARIMAX maodels for predicting
the time series of particulate carbon on the Sunda Shelf.

Paper [16] evaluates deep learning models for one-
month forecasting of pan-Arctic ice thickness. Paper [17]
considers the use of the long short-term memory method
for the task of predicting sea ice thickness.

The majority of studies use long short-term memory
approach. Also, some articles are investigating Bi-
LSTM, although its use is controversial and debate con-
tinues. Study [18] proposes a WGAN-LSTM deep
learning approach to improve sea ice thickness

forecasting. Paper [19] proposes an optimization of the
LSTM method for predicting sea ice melt.

Thus, in this research it will be appropriate to use
following forecasting methods:

— SARIMA,;

—LSTM;

—Bi-LSTM.

The study [20] examines physics-free neural archi-
tectures versus physics-based statistical models for long-
term Arctic forecasts by employing a Fourier Neural Op-
erator (FNO) and a Convolutional Neural Network
(CNN) together with the seasonal time series model
SARIMAX, which includes physical predictors, includ-
ing temperature anomalies and ice thickness.

The research [21] investigated the thickness of la-
boratory-grown sea ice using linear regression and three
machine learning algorithms: decision trees, random for-
ests, and fully connected neural networks. To compre-
hensively track the growth of thin sea ice using different
parameters, a combination of up to 13 radar and physical
parameters was introduced into four multivariate models
in two time series datasets.

The study [22] presents a comprehensive bench-
marking framework for classifying sea ice types, as the
lack of a standardized benchmark and comparative study
hinders a clear consensus on the best models. Both tradi-
tional and deep learning approaches are considered. Deep
learning models offer a promising direction for improv-
ing the efficiency and consistency of sea ice classifica-
tion.

1.3. Obijective and approach

The purpose of this study is to determine the most
accurate methods for predicting sea ice extent based on
historical data.

In previous work [23] it was provided statistical and
data-driven analysis of Sea Ice Extent data. Based on this
research, the following hypothesis can be formed.

Hypothesis. The time series of sea ice extent in the
Northern Hemisphere is non-stationary and shows a clear
downward trend. Thus, it is advisable to forecast data us-
ing classical autoregression methods taking into account
seasonal patterns. At the same time, the time series cor-
responding to the sea ice extent in the Southern Hemi-
sphere is stationary and may contain hidden patterns. Itis
advisable to use machine learning approaches to forecast
data.

It is determined to provide a research comparing
different approaches and find the best solution to achieve
the highest efficiency of the model. To test the hypothe-
sis, we will consider the following forecasting methods:
SARIMA, LSTM, Bi-LSTM and ensemble models com-
bining SARIMA with LSTM and Bi-LSTM.

The following tasks should be solved for achieving
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our purpose:

— to analyze existing approaches to forecasting Sea
Ice Extent;

— based on previous research, to formulate a
hypothesis regarding the application of different
forecasting methods;

—to conduct a comparative analysis of statistical and
deep learning methods, as well as ensemble models;

— to perform a hypothesis test regarding forecasting
Sea Ice Extent;

—to formulate an approach for long-term forecasting.

Thus, the rest of the paper are structured as follows.
Section 2 describes the dataset and mathematical frame-
work of the study. Statistical forecasting methods and
deep learning methods are analyzed. An approach for
creating ensemble forecasting models is described. Sec-
tion 3 presents the results of the experiments. The data
are presented in tabular and graphical forms for better
visualization. Hypothesis testing is performed and the re-
sults of the study are described. Section 4 presents the
conclusions.

2. Methodology

2.1. Dataset

The dataset [24] published on Kaggle by National
Snow and Ice Data Center [25] provides measurements of
total sea ice extent, defined as the area of ocean with at
least 15% sea ice concentration, covering both the North-
ern (Arctic) and Southern (Antarctic) hemispheres. The
data is derived from satellite passive-microwave radiome-
ters, specifically the Scanning Multichannel Microwave
Radiometer (SMMR) on NASA’s Nimbus 7 satellite
(1978-1987), a sequence of Special Sensor Microwave
Imagers (SSMIs) on DMSP satellites (1987-2007), and
the Special Sensor Microwave Imager Sounder (SSMIS)
on DMSP F17 (2008-2012, with potential updates beyond
this period).

The dataset has some limitations due to the nature of
satellite data, including low spatial resolution, underesti-
mation of thin or new ice, and higher uncertainties during
the summer melt season.

2.2. SARIMA

There are several approaches to time series forecast-
ing. However, given the topic of the study and the need
for long-term forecasting, we will focus on seasonal au-
toregression and deep learning algorithms.

The Seasonal Autoregressive Integrated Moving
Average (SARIMA) model is an extension of the
ARIMA model that explicitly supports univariate time
series data with a seasonal component. This algorithm
can be described as:

SARIMA(p,d, q) x (P,D,Q),, (1)

where:

p — order of the non-seasonal AR (AutoRegressive)
part;

d — degree of non-seasonal differencing;

g — order of the non-seasonal MA (Moving Average)
part;

P — order of the seasonal AR part;

D — degree of seasonal differencing;

Q — order of the seasonal MA part;

s — length of the seasonal cycle (12 for monthly data
with yearly seasonality).

Let’s define Backshift Operator B for compactly ex-

pressing differencing and lag structures:

BXy, = ik @

Differencing Operators are divided into:
— Non-seasonal differencing:

vdy, = (1 - B)%y, 3)
— Seasonal differencing:
4
Voy: = (1 - B%) y,. )

Thus, the fully differenced series can be described

as:
Zy = VdV!s) Yt %)
SARIMA models the differenced series zt as:
Dp(B%)d,(B)z, = 0o (B*)0,4(B)ey, (6)
where:

¢p(B) =1 — ¢;B—... —¢,BP (non-seasonal AR);
04(B) = 1+ 6;B+...+6,B9 (non-seasonal MA);
®p(BS) = 1 — ®,BS—... —®pBP* (seasonal AR);
0q(B%) = 14 0,B%+...+0,B® (seasonal MA)
£,~WN(0, 6%) (white noise error term).

Final equation in expanded form:

®(B*)$(B)VIVDy, = O(B*)0(B)e,. @)

Parameters ¢, 6, @, O are typically estimated via
Maximum Likelihood Estimation (MLE) or non-linear
least squares. Once fitted, SARIMA can be used to gen-
erate forecasts by projecting the model forward using
past data and residuals.

2.3.LSTM

Long Short-Term Memory (LSTM) networks are a
type of recurrent neural network. This type is designed to
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model sequences and store long-term dependencies. The
network architecture solves the problem of gradient
vanishing that is inherent in standard RNNSs. This is done
by implementing a more complex memory structure.

The state of a memory cell passes through the entire
sequence with minimal changes, which allows
information to be stored over time.

An LSTM uses three gates to control the flow of
information into, out of, and within a cell state: forget
gate, input gate and output gate.

The role of forget gate is to Decide what
information from the cell state should be forgotten. The
input gate decides what new information to add to the cell
state. And output gate determines what part of the cell
state becomes the output.

Thus, LSTM is effective for long sequences because
it can capture long-range dependencies in time series.

2.4, Bi-LSTM

A Bidirectional LSTM consists of two separate
LSTMs. One processes the input forward (as in normal
LSTM), the other processes it backward (from t=T to 1).

Forward LSTM can be described as:

Ht = LSTMfya (Xo Ht—l)' (®)

Backward LSTM:
he = LSTMyya(xe hesr ). 9)

Combined output:

—

h, = [hy; hy. (10)
Each output h; is the concatenation of the hidden
states from both directions at time t.

2.5. Ensemble models

In the SARIMA+LSTM ensemble, the LSTM is
typically used to model the non-linear residuals r; from
the SARIMA model, as SARIMA captures linear patterns
but struggles with non-linearities.

Thus, the final forecast is the sum of the SARIMA
forecast and the LSTM residual prediction:

yt — S\,tSARIMA + flthSTM. (11)
The ensemble model can be represented as:
9 = GB)P(BS)(1 = B) y; + 12)

frstm (Tem1) -+ Temi)s

where fistm represents the non-linear function learned by

the LSTM to model residuals.

Advantages of this approach are following:
SARIMA captures linear trends and seasonality, LSTM
captures non-linear patterns in the residuals, improving
forecast accuracy for complex time series.

The SARIMA+BI-LSTM ensemble is similar to
SARIMA+LSTM, but replaces the LSTM with a Bi-
LSTM to capture bidirectional dependencies in the resid-
uals or input sequence.

Prediction combining provides as:

& — OSARIMA | 2Bi—LSTM
=Vi + Ty ,

Y (13)

Thus, this ensemble model can be represented as:

9o = bBOEI(A B -By gy

+ fgiLstm (-1
where fgi.Lstm IS the non-linear function learned by the
Bi-LSTM, incorporating both forward and backward
temporal dependencies.

Advantages of this approach are following: Bi-
LSTM’s bidirectional processing captures more complex
patterns, especially in time series with strong dependen-
cies in both past and future directions. It is suitable for
datasets where context from future time steps (within the
input window) improves residual modeling.

In  summary, the SARIMA+LSTM and
SARIMA+BIi-LSTM ensembles combine the linear mod-
eling of SARIMA with the non-linear, sequential learn-
ing of LSTM or Bi-LSTM. The key mathematical differ-
ence lies in the bidirectional processing of Bi-LSTM,
which enhances the model’s ability to capture complex
temporal dependencies. Both ensembles are powerful for
time series forecasting, with the choice depending on the
data’s complexity and computational constraints.

3. Case study and results

Metrics were used to evaluate the performance of
the models, namely, the mean absolute error, the mean
square error, the weighted mean square error, and the R?
estimate. The data were divided into training and valida-
tion samples. The model was trained on data from Octo-
ber 1978 to January 2026. The model was validated on
data from January 2024 to January 2026.

Figures 1-5 demonstrate forecasting methods eval-
uation on validation set for North Hemisphere.

Figure 6 and Table 1 show comparison of models’
performance metrics.

Due to the lack of long-term observation data, it is
only possible to assess the short-term forecast. However,
to assess the use of the proposed methods for long-term
forecasting, forecast data up to 2100 were analyzed for
the presence of attenuation or convergence to a constant
value.
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North: Short-Term Forecast by SARIMA
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Fig. 1. SARIMA forecast evaluation for North Hemisphere
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Fig. 2. LSTM forecast evaluation for North Hemisphere
North: Short-Term Forecast by Bi-LSTM
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Fig. 3. Bi-LSTM forecast evaluation for North Hemisphere
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North: Short-Term Forecast by SARIMA+LSTM
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Fig. 4. SARIMA + LSTM forecast evaluation for North Hemisphere

North: Short-Term Forecast by SARIMA+Bi-LSTM
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Fig. 5. SARIMA+BI-LSTM forecast evaluation for North Hemisphere

The experimental results for the Northern Hemi-
sphere demonstrate that the SARIMA model predicts the
time series values with high accuracy. The observed de-
viations are minimal. At the same time, the forecast cre-
ated by a recurrent neural network with a long short-term
memory architecture is less accurate. The deviations, alt-
hough insignificant in the scale of the predicted values,
are larger compared to the SARIMA forecast. The LSTM
model also has a smaller amplitude compared to the ob-
servational data, which may indicate potential damping
when creating a long-term forecast. The model with the
Bi-LSTM architecture demonstrates a highly accurate
short-term forecast, outperforming the LSTM model, alt-
hough slightly inferior to SARIMA.. Both ensemble mod-
els produce a highly accurate short-term forecast. As ex-
pected, the SARIMA+BI-LSTM ensemble model outper-
forms the SARIMA+LSTM model. Despite the low er-
rors, both ensemble models are slightly inferior to
SARIMA.

Overall, all models demonstrate high accuracy in
predicting sea ice extent in the short term. Although the
error metrics for LSTM are higher than those of other
models, they are acceptable. Thus, the proposed models
can be used to predict time series of Sea Ice Extent.

The best performance was demonstrated by
SARIMA model. The result of the experiment confirmed
the first part of the formed hypothesis, namely, that for
forecasting the time series of the sea ice extent in the
Northern Hemisphere, it is advisable to use classical
autoregressors taking into account seasonal patterns.

A visualization of the long-term forecast is shown
in Fig. 7. The long-term forecast shows a steady
downward trend. Under current climate conditions,
starting in 2080, the sea ice extent in the summer months
will approach critical values, indicating such dangerous
phenomena as the first ice-free day and the first ice-free
month in the Arctic. Given that the study used only
monthly average data, the first ice-free day may occur
somewhat earlier.
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North: Model Performance Metrics
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Table 1
Model evaluation for North Hemisphere
Metrics
Model
R? MAE MSE RMSE
SARIMA 0.9953 0.1932 0.0512 0.2263
LSTM 0.9758 0.4557 0.2658 0.5156
Bi-LSTM 0.9884 0.2887 0.1275 0.3571
SARIMA+LSTM 0.9943 0.2078 0.063 0.251
SARIMA+Bi-LSTM 0.9948 0.205 0.0573 0.2393

The long-term forecast generated by the LSTM and
Bi-LSTM models for the Northern Hemisphere is not
reliable, since the LSTM model exhibits a gradual decay,
which confirms the assumption made during the analysis
of the short-term forecast. The Bi-LSTM model decays
much faster than the LSTM and converges to a constant
value.

Figures 8-12 demonstrate forecasting methods
evaluation on validation set for South Hemisphere.

Figure 13 and Table 2 show comparison of models’
performance metrics.

The results of the experiment for the Southern
Hemisphere differ from those obtained for the Northern
Hemisphere. The SARIMA model also predicts the time
series values for the Antarctic region with high accuracy,
but the error metrics are higher than when predicting for the

Arctic region. At the same time, the R? metric is also higher.
This is due to the fact that the Southern Hemisphere data do
not have clearly expressed patterns, compared to the
Northern Hemisphere data.

The forecast created by the LSTM maodel is inferior
to the SARIMA model forecast, similar to what is
observed in the Northern Hemisphere. The Bi-LSTM
model demonstrates high accuracy and is minimally
inferior to SARIMA. The use of the SARIMA+LSTM
ensemble model allowed to improve the SARIMA
metrics. Thus, the use of both methods in the ensemble
model allows to take into account both seasonal patterns
and hidden patterns, which contributes to the creation of
a highly accurate forecast.

The ensemble model SARIMA+BI-LSTM also
performs highly accurate forecasting in the short term,



178 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)
but is inferior to both the ensemble model trend, but not as steeply as in the Arctic region. The

SARIMA+LSTM and the SARIMA model.

The best performance was demonstrated by
ensemble SARIMA+LSTM model. The result of the
experiment confirmed the second part of the formed
hypothesis, namely, that for forecasting the time series of
the sea ice extent in the South Hemisphere, it is advisable
to use machine learning approach to to reveal hidden
patterns.

A visualization of the long-term forecast is shown
in Fig. 14. The long-term forecast also has a downward

forecasted values can be divided into two parts. The first
is the period from 2020 to 2030, where stability in values
is observed.

All deviations are insignificant. After 2030, there is
a tendency to a gradual decrease. Although the minimum
values approach critical closer to the end of the century,
the maximum values remain high. This indicates that the
Antarctic region, due to its geographical features, is more
resistant to climate change than the Arctic.

North: SARIMA Long-Term Forecast to 2100
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Fig. 7. Long-term forecast by SARIMA
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Fig. 8. SARIMA forecast evaluation for South Hemisphere
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South: Short-Term Forecast by LSTM
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Fig. 9. LSTM forecast evaluation for South Hemisphere

Analysis of the long-term forecast of all methods for
the Southern Hemisphere showed similar results to those
observed in the Northern Hemisphere. In particular, for
the LSTM method, a decay of the forecast was observed
with a gradual decrease in amplitude. Bi-LSTM shows a
sharp decay, after which the forecast converges to a
constant value.

The study confirmed the hypothesis that the time
series data of the Sea Ice Extent of the Northern
Hemisphere is better predicted by statistical methods, at
the same time, for the forecast of the sea ice extent in the
Southern Hemisphere, it is advisable to use artificial

intelligence technologies and, in particular, deep learning
to identify hidden trends and patterns.

Depending on the tasks, the proposed approaches
can be implemented in predictive information systems.
Short-term forecasting by all models is performed with
high accuracy for both hemispheres. Long-term
forecasting cannot be fully assessed due to the lack of
historical observation data. However, the assessment of
the long-term forecast allows to determine the presence
of attenuation or approximation of the forecast to a
constant value.

South: Short-Term Forecast by Bi-LSTM
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Fig. 10. LSTM forecast evaluation for South Hemisphere
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South: Short-Term Forecast by SARIMA+LSTM
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Fig. 11. SARIMA+LSTM forecast evaluation for South Hemisphere
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Fig. 12. SARIMA+BI-LSTM forecast evaluation for South Hemisphere

The study allows us to assess the main climatic
trends that have formed in the Arctic and Antarctic
regions. Estimating future values of Sea Ice Extent is
critically important for implementing the necessary
measures to preserve the flora and fauna of the polar
regions, as well as for the sustainable development of
cities and communities not only in the polar regions, but
also in coastal regions around the world, since the
melting of glaciers is directly related to the rise in the Sea
level.

Thus, the data obtained are critically important for
politicians and planners of a number of countries that are
vulnerable to climate change in the polar regions.

4. Discussion

Sea Ice Extent forecasting for Arctic and Antarctic
regions is crucial for understanding climate change,
ecosystems, navigation, and geopolitics. Accurate Sea
Ice Extent forecasts are crucial for maritime navigation,
infrastructure planning, risk management, ecosystem
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protection, and policy decision-making on climate
change mitigation. Uncertainty in forecasts complicates
these processes. Climate models have historically
underestimated the rate of Arctic Sea Ice loss. While
many models now predict an “ice-free” summer in the
Arctic in the coming years, the exact timing and
dynamics of this process are still a matter of debate.

The situation with Antarctic sea ice is even more
complex. For a long time, there has been little growth or
stability in the extent of ice, which contradicts some
predictions. However, a sharp decline began in 2016, and
record lows were recorded in 2023. This sudden and
significant decrease indicates the imperfection of existing
forecasting systems.

Recent studies indicate a possible role for increased
salinity of the waters around Antarctica in this process,
which creates a paradox, since melting ice usually leads
to desalination. Thus, the process of sea ice loss is
complex and requires a comprehensive analysis. Further
research may reveal additional factors that should be
taken into account in forecasting models.

Although satellite observations have significantly
improved our understanding of sea ice dynamics since
1979, there are still gaps in the data. This is particularly
true for ice thickness, as area-based analysis alone does
not provide a complete picture of the situation.

The data limitations are due to the fact that

collecting data directly in polar regions is difficult and
expensive due to the harsh conditions.

Nowadays, there are different approaches to
forecasting. Physical models try to simulate the physical
processes that drive ice dynamics. They are complex and
require significant computing resources. Their accuracy
depends on the correct representation of all interactions.

At the same time, statistical models and machine
learning use historical data and statistical relationships to
make forecasts. They are faster and more efficient for
short-term forecasts, but may have limitations in
predicting unprecedented events or long-term changes.
There are attempts to combine both approaches, in
particular, using machine learning to correct errors in
dynamic models.

The approach presented in the study allows creating
a long-term forecast by combining statistical models and
machine learning methods to recognize hidden patterns.
Although the models demonstrated high performance
indicators, due to the lack of long-term observational
data, the models were evaluated only for the short term.

The proposed framework provides a comprehensive
analysis and forecasting of time series data of sea ice
extent from statistical methods and data mining to
forecasting. Methods and approaches for forecasting the
sea ice extent of the Arctic and Antarctic regions are
proposed.

South: Model Performance Metrics

Metric Value

Model

Fig. 13. Performance metrics
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Table 2
Model evaluation for South Hemisphere
Metrics
Model
R? MAE MSE RMSE
SARIMA 0.9965 0.2814 0.1119 0.3345
LSTM 0.986 0.5404 0.447 0.6686
Bi-LSTM 0.993 0.3827 0.2261 0.4755
SARIMA+LSTM 0.9967 0.2685 0.1069 0.327
SARIMA+BI-LSTM 0.9948 0.3459 0.1674 0.4092
South: Long-Term Forecast to 2100 by SARIMA+LSTM
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Fig. 14. Long-term forecast by SARIMA+LSTM

To create a highly accurate system, it is advisable to
use the principles of dynamic forecasting and the
reinforcement learning paradigm, which will allow for
prompt correction of the forecast, as well as capture
potential model errors or natural anomalies.

Another common approach in such tasks is the use
of the federated learning approach. The application of
federated learning for the considered task is in principle
possible, since sea ice data comes from several
observation platforms and agencies.

However, in this problem it is impractical.
Federated learning is primarily designed for scenarios
involving data confidentiality restrictions, limited data
exchange, or decentralized data ownership. Instead,
global sea ice records are openly available, centrally
curated, and already integrated into unified reanalysis
products.

Therefore, predicting sea ice in polar regions
remains an active and complex area of research, with new

challenges and issues of debate constantly emerging,
especially given the unprecedented changes observed in
recent years, particularly in Antarctic region.

5. Conclusions

The application of the SARIMA model to long-term
forecasting demonstrated its ability to capture persistent
trends and generate stable projections based on historical
dynamics. In contrast, deep learning models proved ef-
fective in identifying hidden nonlinear patterns and ex-
hibited high predictive performance in short-term fore-
casting. However, for long-term horizons, deep learning
models tend to exhibit forecast degradation, with predic-
tions converging toward a limiting value. This behavior
can be attributed to overfitting and to the limited capacity
of purely data-driven models to extrapolate long-term
trends.
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To address this limitation, ensemble models were
developed that integrate seasonal autoregressive compo-
nents with deep learning architectures. This combination
enables the simultaneous representation of large-scale
trend dynamics and hidden nonlinear variability.

The experimental results confirm the hypothesis
formulated during exploratory data analysis and demon-
strate that the proposed model selection and ensemble
construction strategy provides improved robustness and
forecasting accuracy across different temporal regimes.

Future research. Based on the experiments con-
ducted, a basis has been formed for further research, in
particular:

— Development of an information system for Sea
Ice Extent forecasting using the proposed approaches;

— Research into the impact of sea ice extent on
other climate indicators and related threats, including sea
level rise and the risk of coastal flooding;

— Research into time series of other climate pa-
rameters, evaluation of machine learning technologies
for their forecasting.

To increase the reliability of the results obtained, it
is planned to use the reinforcement learning paradigm for
dynamic model adjustment in the future.
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IMPOTHO3YBAHHJ IIJIOII TIOWPEHHA MOPCBKOTI'O JIbOAY 3 BUKOPUCTAHHSM
CTATUCTUYHHUX METOAIB TA I'"IMBOKOI'O HABUAHHSA

T. O. I'oeopywenxo, O. O. Ilasnosa, B. O. Anekceiiko

IIpeameTom BUBUCHHS CTATTi € IPOrHO3YBaHHS YaCOBUX PAIIB IUIOLII MTOIIMPEHHI MOPCHKOTO JIbOY CTATHCTH-

YHAMH METOJJAMH Ta METOJaMH MIMOOKOro HaB4aHHsL. [11011a MOPCHKOTO JIbOY € OJHUM 13 HAWBAXKIIMBIIINX MOKA3-
HUKIB 3MiHH KiiMaTy. ChOTOJHI CIIOCTEPIraloThCs TEHICHIIII 1O TaHSHHS JHOJOBHKIB, IO MPHU3BOIWUTE 1O ITiJBH-

IICHHS PiBHA MOpS, i, B CBOIO YepTy, CTBOPIOE 3HAUHY 3arpo3y 3aTOILICHHS MPUOEPEKHUX PETiOHIB MO BCii 3eMHIN

Kyini. KpiM TOro, TAaHEHHS JTbOIOBHKIB BIUTUBAE HA GIIOpY Ta PayHy apKTHIHOTO Ta aHTAPKTHYHOTO PETiOHIB, a TAKOXK


https://doi.org/10.2166/aqua.2024.132
https://doi.org/10.1080/09603123.2024.2337827
https://doi.org/10.1080/09603123.2024.2337827
https://doi.org/10.5194/tc-18-2161-2024
https://doi.org/10.5194/tc-18-2161-2024
https://doi.org/10.3390/rs16203764
https://doi.org/10.3390/rs16203764
https://doi.org/10.1109/EDPEE61724.2024.00077
https://doi.org/10.1007/s44288-025-00113-w
https://doi.org/10.1016/j.rsma.2024.103863
https://doi.org/10.1016/j.rsma.2024.103863
https://doi.org/10.1007/s00376-023-3259-3
https://doi.org/10.1007/s00376-023-3259-3
https://doi.org/10.1007/s10479-024-06457-9
https://doi.org/10.3390/w17091263
https://doi.org/10.4236/acs.2024.144026
https://doi.org/10.4236/acs.2024.144026
https://doi.org/10.3390/glacies2040012
https://doi.org/10.3390/glacies2040012
https://doi.org/10.3390/rs17173002
https://doi.org/10.3390/rs17173002
https://doi.org/10.3390/rs17091646
https://doi.org/10.3390/rs17091646
https://www.kaggle.com/datasets/nsidcorg/daily-sea-ice-extent-data
https://www.kaggle.com/datasets/nsidcorg/daily-sea-ice-extent-data
https://nsidc.org/home

Machine learning and intelligent systems 185

HAa CKOHOMIYHY CTaOUTRHICTE V CBITi, OXOILTIOIOYH EKOHOMIYHUI PO3BUTOK Ta MPOAOBOIBYY Oe3meky. ChepH CUThCh-
KOT'0 TOCIIO/IapCTBa, TYPU3MY, JIOTICTHKHU HAIIPSIMY 3aJIKATh BiJl KITIMAaTHYHUX 3MiH, TOMY IPOTHO3YBaHHS MaiiOyTHIX
3MiH € KPUTHYHO BaKJIMBUM TSI CTAOIJIBHOCTI Ta CTAJOro PO3BHUTKY. Y CTAaTTi MPOAHAII30BaHO OCHOBHI TE€H/CHII]
3MiHH IUIOIII MOPCHKOTO Jh0Ty. MeTOo10 JOCITiDKEHHS € aHali3 CTATUCTUYHUX METOJIIB Ta METO/IB IIIMOOKOro HaB-
YaHHS B KOHTEKCTI CTBOPEHHSI BHCOKOTOYHOT'O JIOBTOCTPOKOBOT'O IIPOTHO3Y. 3aBJAHHSIMH CTaTTi € MPOBEICHHS 10~
PIBHSUTBHOTO aHANI3y CTaTHCTHYHHUX METOJIB Ta METOAIB TJIMOOKOr0 HABYAHHS Ta iX OI[HKA IS 3a7adi MPOrHO3Y-
BaHHS IUIONI MOMIMPEHHSI MOPCHKOTO JILOAY. B ociikeHHI BUKOPUCTAaHO MeTOXM TIPOrHO3YBaHHS Ha OCHOBI CTa-
TUCTUYHHUX MOJEJIeH Ta TIIMOOKOro HaBuaHHs. [IpoBeneHO TOCHiPKEHHS, 010 BUKOPUCTAHHS Pi3HUX IIIXOIB 10
MIPOTHO3yBaHHS MaOYTHIX 3MiH YaCOBOT'O PsITy HA OCHOBI CTATHCTUYHUX METOJIiB, METO/IB IIINOOKOr0 HAaBYaHHS Ta
aHcamOieBux Mojeneid. OneprkaHi pe3yIbTaTH JI03BOJISIOTH OLIIHUTH POOOTY Moieiell Y KOpOTKOCTPOKOBI# nepcrie-
KTHUBI Ta C)OPMOBAHO IiIXiJ] 10 JOBrOCTPOKOBOI'O IPOrHO3YBaHHS. 3allPOIIOHOBAHO BUKOPHCTaHHS aBTOPETPECOPIB
Ta METO/iB ITIMOOKOI'0 HABYaHHS JUIsl CTBOPEHHS Ha/liHOTO JOBTOCTPOKOBOTO MpOorHo3y. [lopiBHSHHS poOOTH MeTo-
niB Oyino mposeneno s [liBHiuHoi Ta [liBgenHoi miBkyns. BucHoBku. HaykoBa HOBH3HA ofiep)KaHUX Pe3yJIbTaTiB
TIOJIATA€ B HACTYITHOMY: HaOYB IMOJAJILIIOr0 PO3BUTKY METO]] MPOTHO3yBAHHS YACOBHX PSIB TUIONII MOIIMPEHHS MOP-
CBKOT'O JIbO/1y 3 BUKOPUCTAHHSAM CTAaTUCTUYHUX METOMIB Ta METOJIB I'NIMOOKOTO HaB4aHHA. Ha ocHOBI mpoBeneHnx
€KCIIEpUMEHTIB BU3HAYE€HO HAWTOYHImI MeToau. BukoprcranHs aHcaMOieBHX MiIXOMIB JA03BOJISIE 3a0€3MEUNTH SIK
BpaxyBaHHS! OCHOBHHX TEHJICHIIIf, TaK i pO3ITi3HaBaHHS MPUXOBAHUX 3aKOHOMipHOCTEeW. OTprMaHi pe3yJIbTaTH IaI0Th
3MOT'y KOMIIJIEKCHO OI[IHUTH YacoBi psian uist [liBHiuHOI Ta [liBaeHHOT MiBKY/b Ta BKA3yIOTh Ha AOLUIBHICTE BUKOPH-
CTaHHS SIK CTATUCTUYHUX METOIB POrHO3yBaHHS JUISA IAHHUX 3 YITKO BU3HAUYCHUMH 3aKOHOMIPHOCTSIMH Ha MTPUKIIaIi
APKTUYHOT'O perioHy, Tak i METOJ(IB IJIMOOKOr0 HaBYaHHS 331 PO3Mi3HABaHHS ITPUXOBAHUX 3aKOHOMIPHOCTEH, 110
CIOCTEPIraloThCs B JaHUX YaCOBOT'O PSAY AHTAPKTUUHOIO PETIOHY.

Kuio4oBi ciioBa: miola nommpeHHs: MOPChbKOT'0 JIbOAY; MPOrHO3YBAaHHS; aBTOPErPECOpPH; TIIMOOKE HABYAaHHS,
aHcam0J1eBi MoJIeri.
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