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The subject matter of the article is the forecasting of time series of sea ice extent using statistical and deep 
learning methods. Sea ice extent is one of the most important indicators of climate change. Today, there are 

trends towards melting glaciers, which leads to a rise in sea level and, in turn, creates a significant threat of 

flooding of coastal regions around the globe. In addition, melting glaciers affect the flora and fauna of the Arctic 

and Antarctic regions, as well as economic stability in the world, covering economic development and food 

security. The spheres of agriculture, tourism, logistics are directly dependent on climate change, therefore, 

forecasting future changes is critically important for stability and sustainable development. The article analyzes 

the main trends in the change in sea ice extent. The goal of the study is to increase the reliability of long-term 

forecasting by designing a framework that covers the full forecasting cycle from data analysis to the use of 

predictive statistical methods and deep learning techniques. The tasks of the article are to conduct a comparative 

analysis of statistical methods and deep learning methods and their evaluation for the task of forecasting the 

area of sea ice distribution. The study used forecasting methods based on statistical models and deep learning. 
A study was conducted on the use of different approaches to forecasting future changes in a time series based 

on statistical methods, deep learning methods and ensemble models. The results obtained allow to evaluate the 

performance of models in the short term and an approach to long-term forecasting was formed. The use of 

autoregressors and deep learning methods is proposed to create a reliable long-term forecast. The comparison 

of the performance of the methods was carried out for the Northern and Southern Hemispheres. Conclusions. 

The scientific novelty of the results obtained is as follows: the method of forecasting time series of sea ice 

distribution using statistical methods and deep learning methods has been further developed. It was propose a 

generalizable forecasting framework that links time-series characteristics to model class selection and ensemble 

construction. The use of ensemble approaches allows us to ensure both the consideration of the main trends and 

the recognition of hidden patterns. The results obtained allow for a comprehensive assessment of time series for 

the Northern and Southern Hemispheres and indicate the feasibility of using both statistical forecasting methods 

for data with clearly defined patterns, such as the Arctic region, and deep learning methods to recognize hidden 
patterns observed in time series data for the Antarctic region. 
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1. Introduction 
 

1.1. Motivation 
 

According to Copernicus data, the monthly Arctic 

Sea Ice Extent reached a record low for the period in Feb-

ruary 2025. The average area was 13.7 million km2, the 

lowest monthly value in the 47-year observation pe-

riod [1]. 

Sea ice has a significant impact on climate pro-

cesses and is one of the key indicators of climate change. 

Today, many studies are aimed at the interdependence of 

sea ice surface area with weather phenomena in different 

parts of the globe. Sea ice also has a significant impact 

on ecosystems [2]. 

The existence of flora and fauna of the Arctic re-

gions is completely dependent on the spread of glaciers 

in the region, as it is a necessary condition for the survival 

of certain species. 

Another important aspect is the rise of Sea level. 

The melting of large volumes of sea ice changes the 

balance of the hydrosphere, causing a change in the 

chemical composition of the water and can cause 

flooding of coastal regions. Given that a significant part 

of the world’s population lives on the coasts, in 

potentially dangerous areas, this can cause climate 

migrations. 

Melting glaciers pose many challenges to humanity, 

including economic losses, directly threatening 

agriculture, tourism, etc [3]. 

Thus, the development planning of many cities is 

associated with the risks of flooding as a result of rising 

Sea levels, and to create reliable, stable infrastructure, 

understanding potential threats is extremely relevant. 

The research topic is consistent with the Sustainable 

Development Goals, in particular Goal 13 – Climate 

Action, SDG 14 – Life Below Water, and SDG 15 – Life 

on Land. 
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1.2. State-of-the-Art 
 

The task of time series forecasting remains relevant, 

especially with the emergence of new forecasting 

methods. Artificial intelligence tools, in particular 

machine learning and deep learning, are able to capture 

patterns quite well and create highly accurate short-term 

forecasts [4]. However, many methods experience 

attenuation, and as a result, the created model is 

unsuitable for long-term forecasting [5, 6]. This problem 

is inherent not only to classical machine learning 

methods, but also to deep learning methods, although less 

pronounced. 

At the same time, statistical forecasting methods 

capture only general trends and are not always able to 

predict complex patterns. 

Given the problems, let us analyze the main trends 

in forecasting climate data using statistical 

autoregressors, as well as methods based on artificial 

intelligence technologies. 

The article [7] reveals post-processing methods 

based on supervised machine learning for improving the 

skill of sea ice concentration forecasts from the TOPAZ4 

prediction system. It is used deep learning approach for 

short-term forecasting. 

The work [8] describes opportunities and chal-

lenges of advancing Arctic Sea Ice Remote Sensing with 

AI and Deep Learning. 

There are several approaches in Time Series fore-

casting including autoregressors, recurrent and convolu-

tional neural networks. Article [9] analyzes the data of 

extreme precipitation observed in East Malaysia as a re-

sult of climate change. Article [10] examines the impact 

of climate change on dengue disease in Singapore by an-

alyzing a time series. Article [11] is devoted to the study 

of short-term forecasting of sea ice concentration. Study 

[12] analyzes the opportunities and challenges in the field 

of remote sensing of Arctic sea ice using artificial intelli-

gence technologies and, in particular, machine learning. 

Paper [13] analyzes the fluctuations in sea ice area 

within the Arctic Circle using big data and the SARIMA 

model. Paper [14] discusses the forecasting of sea ice ex-

tent using NNAR, SARIMA, and SARIMAX methods. 

Study [15] is based on a comparison of the effectiveness 

of the SARIMA and SARIMAX models for predicting 

the time series of particulate carbon on the Sunda Shelf.  

Paper [16] evaluates deep learning models for one-

month forecasting of pan-Arctic ice thickness. Paper [17] 

considers the use of the long short-term memory method 

for the task of predicting sea ice thickness. 

The majority of studies use long short-term memory 

approach. Also, some articles are investigating Bi-

LSTM, although its use is controversial and debate con-

tinues. Study [18] proposes a WGAN-LSTM deep 

learning approach to improve sea ice thickness 

forecasting. Paper [19] proposes an optimization of the 

LSTM method for predicting sea ice melt. 

Thus, in this research it will be appropriate to use 

following forecasting methods:  

– SARIMA; 

– LSTM; 

– Bi-LSTM. 

The study [20] examines physics-free neural archi-

tectures versus physics-based statistical models for long-

term Arctic forecasts by employing a Fourier Neural Op-

erator (FNO) and a Convolutional Neural Network 

(CNN) together with the seasonal time series model 

SARIMAX, which includes physical predictors, includ-

ing temperature anomalies and ice thickness. 

The research [21] investigated the thickness of la-

boratory-grown sea ice using linear regression and three 

machine learning algorithms: decision trees, random for-

ests, and fully connected neural networks. To compre-

hensively track the growth of thin sea ice using different 

parameters, a combination of up to 13 radar and physical 

parameters was introduced into four multivariate models 

in two time series datasets. 

The study [22] presents a comprehensive bench-

marking framework for classifying sea ice types, as the 

lack of a standardized benchmark and comparative study 

hinders a clear consensus on the best models. Both tradi-

tional and deep learning approaches are considered. Deep 

learning models offer a promising direction for improv-

ing the efficiency and consistency of sea ice classifica-

tion. 

 

1.3. Objective and approach 
 

The purpose of this study is to determine the most 

accurate methods for predicting sea ice extent based on 

historical data. 

In previous work [23] it was provided statistical and 

data-driven analysis of Sea Ice Extent data. Based on this 

research, the following hypothesis can be formed. 

Hypothesis. The time series of sea ice extent in the 

Northern Hemisphere is non-stationary and shows a clear 

downward trend. Thus, it is advisable to forecast data us-

ing classical autoregression methods taking into account 

seasonal patterns. At the same time, the time series cor-

responding to the sea ice extent in the Southern Hemi-

sphere is stationary and may contain hidden patterns. It is 

advisable to use machine learning approaches to forecast 

data. 

It is determined to provide a research comparing 

different approaches and find the best solution to achieve 

the highest efficiency of the model. To test the hypothe-

sis, we will consider the following forecasting methods: 

SARIMA, LSTM, Bi-LSTM and ensemble models com-

bining SARIMA with LSTM and Bi-LSTM. 

The following tasks should be solved for achieving 
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our purpose:  

– to analyze existing approaches to forecasting Sea 

Ice Extent; 

– based on previous research, to formulate a 

hypothesis regarding the application of different 

forecasting methods; 

– to conduct a comparative analysis of statistical and 

deep learning methods, as well as ensemble models; 

– to perform a hypothesis test regarding forecasting 

Sea Ice Extent; 

– to formulate an approach for long-term forecasting. 

Thus, the rest of the paper are structured as follows. 

Section 2 describes the dataset and mathematical frame-

work of the study. Statistical forecasting methods and 

deep learning methods are analyzed. An approach for 

creating ensemble forecasting models is described. Sec-

tion 3 presents the results of the experiments. The data 

are presented in tabular and graphical forms for better 

visualization. Hypothesis testing is performed and the re-

sults of the study are described. Section 4 presents the 

conclusions. 

 

2. Methodology 
 

2.1. Dataset 

 

The dataset [24] published on Kaggle by National 

Snow and Ice Data Center [25] provides measurements of 

total sea ice extent, defined as the area of ocean with at 

least 15% sea ice concentration, covering both the North-

ern (Arctic) and Southern (Antarctic) hemispheres. The 

data is derived from satellite passive-microwave radiome-

ters, specifically the Scanning Multichannel Microwave 

Radiometer (SMMR) on NASA’s Nimbus 7 satellite 

(1978–1987), a sequence of Special Sensor Microwave 

Imagers (SSMIs) on DMSP satellites (1987–2007), and 

the Special Sensor Microwave Imager Sounder (SSMIS) 

on DMSP F17 (2008–2012, with potential updates beyond 

this period). 

The dataset has some limitations due to the nature of 

satellite data, including low spatial resolution, underesti-

mation of thin or new ice, and higher uncertainties during 

the summer melt season. 

 

2.2. SARIMA 

 

There are several approaches to time series forecast-

ing. However, given the topic of the study and the need 

for long-term forecasting, we will focus on seasonal au-

toregression and deep learning algorithms. 

The Seasonal Autoregressive Integrated Moving 

Average (SARIMA) model is an extension of the 

ARIMA model that explicitly supports univariate time 

series data with a seasonal component. This algorithm 

can be described as: 

SARIMA(p, d, q) × (P,D, Q)s, (1) 

 

where: 

p – order of the non-seasonal AR (AutoRegressive) 

part; 

d – degree of non-seasonal differencing; 

q – order of the non-seasonal MA (Moving Average) 

part; 

P – order of the seasonal AR part; 

D – degree of seasonal differencing; 

Q – order of the seasonal MA part; 

s – length of the seasonal cycle (12 for monthly data 

with yearly seasonality). 

Let’s define Backshift Operator B for compactly ex-

pressing differencing and lag structures: 

 

Bkyt = yt−k. (2) 

 

Differencing Operators are divided into: 

– Non-seasonal differencing: 

 

∇dyt = (1 − B)dyt, (3) 

 

– Seasonal differencing: 

 

∇s
Dyt = (1 − Bs)Dyt. 

(4) 

 

Thus, the fully differenced series can be described 

as: 

zt = ∇d∇s
Dyt. (5) 

 

SARIMA models the differenced series zt as: 

 

ΦP(B
s)ϕp(B)zt = ΘQ(Bs)θq(B)εt, (6) 

 

where: 

ϕp(B) = 1 − ϕ1B−. . . −ϕpB
p (non-seasonal AR); 

θq(B) = 1 + θ1B+. . . +θqB
q (non-seasonal MA); 

ΦP(B
s) = 1 − Φ1B

s−. . .−ΦPB
Ps (seasonal AR); 

ΘQ(Bs) = 1 + Θ1B
s+. . .+ΘQBQs (seasonal MA) 

εt~WN(0, σ2) (white noise error term). 

Final equation in expanded form: 

 

Φ(Bs)ϕ(B)∇d∇s
Dyt = Θ(Bs)θ(B)εt. (7) 

 

Parameters ϕ, θ, Φ, Θ are typically estimated via 

Maximum Likelihood Estimation (MLE) or non-linear 

least squares. Once fitted, SARIMA can be used to gen-

erate forecasts by projecting the model forward using 

past data and residuals. 

 

2.3. LSTM 

 

Long Short-Term Memory (LSTM) networks are a 

type of recurrent neural network. This type is designed to 
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model sequences and store long-term dependencies. The 

network architecture solves the problem of gradient 

vanishing that is inherent in standard RNNs. This is done 

by implementing a more complex memory structure. 

The state of a memory cell passes through the entire 

sequence with minimal changes, which allows 

information to be stored over time. 

An LSTM uses three gates to control the flow of 

information into, out of, and within a cell state: forget 

gate, input gate and output gate. 

The role of forget gate is to Decide what 

information from the cell state should be forgotten. The 

input gate decides what new information to add to the cell 

state. And output gate determines what part of the cell 

state becomes the output. 

Thus, LSTM is effective for long sequences because 

it can capture long-range dependencies in time series. 

 

2.4. Bi-LSTM 

 

A Bidirectional LSTM consists of two separate 

LSTMs. One processes the input forward (as in normal 

LSTM), the other processes it backward (from t=T to 1). 

Forward LSTM can be described as: 

 

h⃗ t = LSTMfwd(xt, h⃗ t−1). (8) 

 

Backward LSTM: 

 

h⃐⃗t = LSTMbwd(xt, h⃖⃗t+1). (9) 

 

Combined output: 

 

ht = [h⃗ t; h⃐⃗t]. (10) 

 

Each output ht is the concatenation of the hidden 

states from both directions at time t. 

 

2.5. Ensemble models 

 

In the SARIMA+LSTM ensemble, the LSTM is 

typically used to model the non-linear residuals rt from 

the SARIMA model, as SARIMA captures linear patterns 

but struggles with non-linearities. 

Thus, the final forecast is the sum of the SARIMA 

forecast and the LSTM residual prediction: 

 

ŷt = ŷt
SARIMA + r̂t

LSTM. (11) 

 

The ensemble model can be represented as: 

 

ŷt = ϕ(B)Φ(BS)(1 − B)Dyt +
fLSTM(rt−1, . . . , rt−k), 

(12) 

 

where fLSTM represents the non-linear function learned by 

the LSTM to model residuals. 

Advantages of this approach are following: 

SARIMA captures linear trends and seasonality, LSTM 

captures non-linear patterns in the residuals, improving 

forecast accuracy for complex time series. 

The SARIMA+Bi-LSTM ensemble is similar to 

SARIMA+LSTM, but replaces the LSTM with a Bi-

LSTM to capture bidirectional dependencies in the resid-

uals or input sequence. 

Prediction combining provides as: 

 

ŷt = ŷt
SARIMA + r̂t

Bi−LSTM, (13) 

 

Thus, this ensemble model can be represented as: 

 

ŷt = ϕ(B)Φ(BS)(1 − B)d(1 − BS)Dyt

+ fBi−LSTM(rt−k,  
(14) 

 

where fBi-LSTM is the non-linear function learned by the 

Bi-LSTM, incorporating both forward and backward 

temporal dependencies. 

Advantages of this approach are following: Bi-

LSTM’s bidirectional processing captures more complex 

patterns, especially in time series with strong dependen-

cies in both past and future directions. It is suitable for 

datasets where context from future time steps (within the 

input window) improves residual modeling. 

In summary, the SARIMA+LSTM and 

SARIMA+Bi-LSTM ensembles combine the linear mod-

eling of SARIMA with the non-linear, sequential learn-

ing of LSTM or Bi-LSTM. The key mathematical differ-

ence lies in the bidirectional processing of Bi-LSTM, 

which enhances the model’s ability to capture complex 

temporal dependencies. Both ensembles are powerful for 

time series forecasting, with the choice depending on the 

data’s complexity and computational constraints. 
 

3. Case study and results 
 

Metrics were used to evaluate the performance of 

the models, namely, the mean absolute error, the mean 

square error, the weighted mean square error, and the R2 

estimate. The data were divided into training and valida-

tion samples. The model was trained on data from Octo-

ber 1978 to January 2026. The model was validated on 

data from January 2024 to January 2026. 

Figures 1-5 demonstrate forecasting methods eval-

uation on validation set for North Hemisphere. 

Figure 6 and Table 1 show comparison of models’ 

performance metrics. 

Due to the lack of long-term observation data, it is 

only possible to assess the short-term forecast. However, 

to assess the use of the proposed methods for long-term 

forecasting, forecast data up to 2100 were analyzed for 

the presence of attenuation or convergence to a constant 

value. 
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Fig. 1. SARIMA forecast evaluation for North Hemisphere 

 
Fig. 2. LSTM forecast evaluation for North Hemisphere 

 
Fig. 3. Bi-LSTM forecast evaluation for North Hemisphere 
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Fig. 4. SARIMA + LSTM forecast evaluation for North Hemisphere 

 

 
Fig. 5. SARIMA+Bi-LSTM forecast evaluation for North Hemisphere

The experimental results for the Northern Hemi-

sphere demonstrate that the SARIMA model predicts the 

time series values with high accuracy. The observed de-

viations are minimal. At the same time, the forecast cre-

ated by a recurrent neural network with a long short-term 

memory architecture is less accurate. The deviations, alt-

hough insignificant in the scale of the predicted values, 

are larger compared to the SARIMA forecast. The LSTM 

model also has a smaller amplitude compared to the ob-

servational data, which may indicate potential damping 

when creating a long-term forecast. The model with the 

Bi-LSTM architecture demonstrates a highly accurate 

short-term forecast, outperforming the LSTM model, alt-

hough slightly inferior to SARIMA. Both ensemble mod-

els produce a highly accurate short-term forecast. As ex-

pected, the SARIMA+Bi-LSTM ensemble model outper-

forms the SARIMA+LSTM model. Despite the low er-

rors, both ensemble models are slightly inferior to 

SARIMA. 

Overall, all models demonstrate high accuracy in 

predicting sea ice extent in the short term. Although the 

error metrics for LSTM are higher than those of other 

models, they are acceptable. Thus, the proposed models 

can be used to predict time series of Sea Ice Extent. 

The best performance was demonstrated by 

SARIMA model. The result of the experiment confirmed 

the first part of the formed hypothesis, namely, that for 

forecasting the time series of the sea ice extent in the 

Northern Hemisphere, it is advisable to use classical 

autoregressors taking into account seasonal patterns. 

A visualization of the long-term forecast is shown 

in Fig. 7. The long-term forecast shows a steady 

downward trend. Under current climate conditions, 

starting in 2080, the sea ice extent in the summer months 

will approach critical values, indicating such dangerous 

phenomena as the first ice-free day and the first ice-free 

month in the Arctic. Given that the study used only 

monthly average data, the first ice-free day may occur 

somewhat earlier.
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Fig. 6. Performance metrics 

 
Table 1 

Model evaluation for North Hemisphere 

Model 
Metrics 

R2 MAE MSE RMSE 

SARIMA 0.9953 0.1932 0.0512 0.2263 

LSTM 0.9758 0.4557 0.2658 0.5156 

Bi-LSTM 0.9884 0.2887 0.1275 0.3571 

SARIMA+LSTM 0.9943 0.2078 0.063 0.251 

SARIMA+Bi-LSTM 0.9948 0.205 0.0573 0.2393 

 

The long-term forecast generated by the LSTM and 

Bi-LSTM models for the Northern Hemisphere is not 

reliable, since the LSTM model exhibits a gradual decay, 

which confirms the assumption made during the analysis 

of the short-term forecast. The Bi-LSTM model decays 

much faster than the LSTM and converges to a constant 

value. 

Figures 8-12 demonstrate forecasting methods 

evaluation on validation set for South Hemisphere.  

Figure 13 and Table 2 show comparison of models’ 

performance metrics. 

The results of the experiment for the Southern 

Hemisphere differ from those obtained for the Northern 

Hemisphere. The SARIMA model also predicts the time 

series values  for the Antarctic region with high accuracy, 

but the error metrics are higher than when predicting for the 

Arctic region. At the same time, the R2 metric is also higher. 

This is due to the fact that the Southern Hemisphere data do 

not have clearly expressed patterns, compared to the 

Northern Hemisphere data.  

The forecast created by the LSTM model is inferior 

to the SARIMA model forecast, similar to what is 

observed in the Northern Hemisphere. The Bi-LSTM 

model demonstrates high accuracy and is minimally 

inferior to SARIMA. The use of the SARIMA+LSTM 

ensemble model allowed to improve the SARIMA 

metrics. Thus, the use of both methods in the ensemble 

model allows to take into account both seasonal patterns 

and hidden patterns, which contributes to the creation of 

a highly accurate forecast. 

The ensemble model SARIMA+Bi-LSTM also 

performs highly accurate forecasting in the short term, 
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but is inferior to both the ensemble model 

SARIMA+LSTM and the SARIMA model. 

The best performance was demonstrated by 

ensemble SARIMA+LSTM model. The result of the 

experiment confirmed the second part of the formed 

hypothesis, namely, that for forecasting the time series of 

the sea ice extent in the South Hemisphere, it is advisable 

to use machine learning approach to to reveal hidden 

patterns. 

A visualization of the long-term forecast is shown 

in Fig. 14. The long-term forecast also has a downward 

trend, but not as steeply as in the Arctic region. The 

forecasted values can be divided into two parts. The first 

is the period from 2020 to 2030, where stability in values 

is observed. 

All deviations are insignificant. After 2030, there is 

a tendency to a gradual decrease. Although the minimum 

values approach critical closer to the end of the century, 

the maximum values remain high. This indicates that the 

Antarctic region, due to its geographical features, is more 

resistant to climate change than the Arctic. 

 

 
Fig. 7. Long-term forecast by SARIMA 

 
Fig. 8. SARIMA forecast evaluation for South Hemisphere
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Fig. 9. LSTM forecast evaluation for South Hemisphere

Analysis of the long-term forecast of all methods for 

the Southern Hemisphere showed similar results to those 

observed in the Northern Hemisphere. In particular, for 

the LSTM method, a decay of the forecast was observed 

with a gradual decrease in amplitude. Bi-LSTM shows a 

sharp decay, after which the forecast converges to a 

constant value. 

The study confirmed the hypothesis that the time 

series data of the Sea Ice Extent of the Northern 

Hemisphere is better predicted by statistical methods, at 

the same time, for the forecast of the sea ice extent in the 

Southern Hemisphere, it is advisable to use artificial 

intelligence technologies and, in particular, deep learning 

to identify hidden trends and patterns. 

Depending on the tasks, the proposed approaches 

can be implemented in predictive information systems. 

Short-term forecasting by all models is performed with 

high accuracy for both hemispheres. Long-term 

forecasting cannot be fully assessed due to the lack of 

historical observation data. However, the assessment of 

the long-term forecast allows to determine the presence 

of attenuation or approximation of the forecast to a 

constant value.

 
Fig. 10. LSTM forecast evaluation for South Hemisphere 
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Fig. 11. SARIMA+LSTM forecast evaluation for South Hemisphere 

 
Fig. 12. SARIMA+Bi-LSTM forecast evaluation for South Hemisphere 

The study allows us to assess the main climatic 

trends that have formed in the Arctic and Antarctic 

regions. Estimating future values of Sea Ice Extent is 

critically important for implementing the necessary 

measures to preserve the flora and fauna of the polar 

regions, as well as for the sustainable development of 

cities and communities not only in the polar regions, but 

also in coastal regions around the world, since the 

melting of glaciers is directly related to the rise in the Sea 

level. 

 

Thus, the data obtained are critically important for 

politicians and planners of a number of countries that are 

vulnerable to climate change in the polar regions. 

 

4. Discussion 
 

Sea Ice Extent forecasting for Arctic and Antarctic 

regions is crucial for understanding climate change, 

ecosystems, navigation, and geopolitics. Accurate Sea 

Ice Extent forecasts are crucial for maritime navigation, 

infrastructure planning, risk management, ecosystem 
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protection, and policy decision-making on climate 

change mitigation. Uncertainty in forecasts complicates 

these processes. Climate models have historically 

underestimated the rate of Arctic Sea Ice loss. While 

many models now predict an “ice-free” summer in the 

Arctic in the coming years, the exact timing and 

dynamics of this process are still a matter of debate.  

The situation with Antarctic sea ice is even more 

complex. For a long time, there has been little growth or 

stability in the extent of ice, which contradicts some 

predictions. However, a sharp decline began in 2016, and 

record lows were recorded in 2023. This sudden and 

significant decrease indicates the imperfection of existing 

forecasting systems.  

Recent studies indicate a possible role for increased 

salinity of the waters around Antarctica in this process, 

which creates a paradox, since melting ice usually leads 

to desalination. Thus, the process of sea ice loss is 

complex and requires a comprehensive analysis. Further 

research may reveal additional factors that should be 

taken into account in forecasting models. 

Although satellite observations have significantly 

improved our understanding of sea ice dynamics since 

1979, there are still gaps in the data. This is particularly 

true for ice thickness, as area-based analysis alone does 

not provide a complete picture of the situation. 

The data limitations are due to the fact that 

collecting data directly in polar regions is difficult and 

expensive due to the harsh conditions. 

Nowadays, there are different approaches to 

forecasting. Physical models try to simulate the physical 

processes that drive ice dynamics. They are complex and 

require significant computing resources. Their accuracy 

depends on the correct representation of all interactions. 

At the same time, statistical models and machine 

learning use historical data and statistical relationships to 

make forecasts. They are faster and more efficient for 

short-term forecasts, but may have limitations in 

predicting unprecedented events or long-term changes. 

There are attempts to combine both approaches, in 

particular, using machine learning to correct errors in 

dynamic models. 

The approach presented in the study allows creating 

a long-term forecast by combining statistical models and 

machine learning methods to recognize hidden patterns. 

Although the models demonstrated high performance 

indicators, due to the lack of long-term observational 

data, the models were evaluated only for the short term. 

The proposed framework provides a comprehensive 

analysis and forecasting of time series data of sea ice 

extent from statistical methods and data mining to 

forecasting. Methods and approaches for forecasting the 

sea ice extent of the Arctic and Antarctic regions are 

proposed. 

 

 
Fig. 13. Performance metrics 
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Table 2 

Model evaluation for South Hemisphere 

Model 
Metrics 

R2 MAE MSE RMSE 

SARIMA 0.9965 0.2814 0.1119 0.3345 

LSTM 0.986 0.5404 0.447 0.6686 

Bi-LSTM 0.993 0.3827 0.2261 0.4755 

SARIMA+LSTM 0.9967 0.2685 0.1069 0.327 

SARIMA+Bi-LSTM 0.9948 0.3459 0.1674 0.4092 

 

 
Fig. 14. Long-term forecast by SARIMA+LSTM

To create a highly accurate system, it is advisable to 

use the principles of dynamic forecasting and the 

reinforcement learning paradigm, which will allow for 

prompt correction of the forecast, as well as capture 

potential model errors or natural anomalies. 

Another common approach in such tasks is the use 

of the federated learning approach. The application of 

federated learning for the considered task is in principle 

possible, since sea ice data comes from several 

observation platforms and agencies.  

However, in this problem it is impractical. 

Federated learning is primarily designed for scenarios 

involving data confidentiality restrictions, limited data 

exchange, or decentralized data ownership. Instead, 

global sea ice records are openly available, centrally 

curated, and already integrated into unified reanalysis 

products. 

Therefore, predicting sea ice in polar regions 

remains an active and complex area of research, with new 

challenges and issues of debate constantly emerging, 

especially given the unprecedented changes observed in 

recent years, particularly in Antarctic region. 

 

5. Conclusions 
 

The application of the SARIMA model to long-term 

forecasting demonstrated its ability to capture persistent 

trends and generate stable projections based on historical 

dynamics. In contrast, deep learning models proved ef-

fective in identifying hidden nonlinear patterns and ex-

hibited high predictive performance in short-term fore-

casting. However, for long-term horizons, deep learning 

models tend to exhibit forecast degradation, with predic-

tions converging toward a limiting value. This behavior 

can be attributed to overfitting and to the limited capacity 

of purely data-driven models to extrapolate long-term 

trends. 
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To address this limitation, ensemble models were 

developed that integrate seasonal autoregressive compo-

nents with deep learning architectures. This combination 

enables the simultaneous representation of large-scale 

trend dynamics and hidden nonlinear variability. 

The experimental results confirm the hypothesis 

formulated during exploratory data analysis and demon-

strate that the proposed model selection and ensemble 

construction strategy provides improved robustness and 

forecasting accuracy across different temporal regimes. 

Future research. Based on the experiments con-

ducted, a basis has been formed for further research, in 

particular: 

– Development of an information system for Sea 

Ice Extent forecasting using the proposed approaches; 

– Research into the impact of sea ice extent on 

other climate indicators and related threats, including sea 

level rise and the risk of coastal flooding; 

– Research into time series of other climate pa-

rameters, evaluation of machine learning technologies 

for their forecasting. 

To increase the reliability of the results obtained, it 

is planned to use the reinforcement learning paradigm for 

dynamic model adjustment in the future. 
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ПРОГНОЗУВАННЯ ПЛОЩІ ПОШИРЕННЯ МОРСЬКОГО ЛЬОДУ З ВИКОРИСТАННЯМ 

СТАТИСТИЧНИХ МЕТОДІВ ТА ГЛИБОКОГО НАВЧАННЯ 

Т. О. Говорущенко, О. О. Павлова, В. О. Алексейко 

Предметом вивчення статті є прогнозування часових рядів площі поширення морського льоду статисти-

чними методами та методами глибокого навчання. Площа морського льоду є одним із найважливіших показ-

ників зміни клімату. Сьогодні спостерігаються тенденції до танення льодовиків, що призводить до підви-

щення рівня моря, і, в свою чергу, створює значну загрозу затоплення прибережних регіонів по всій земній 

кулі. Крім того, танення льодовиків впливає на флору та фауну арктичного та антарктичного регіонів, а також 
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на економічну стабільність у світі, охоплюючи економічний розвиток та продовольчу безпеку. Сфери сільсь-

кого господарства, туризму, логістики напряму залежать від кліматичних змін, тому прогнозування майбутніх 

змін є критично важливим для стабільності та сталого розвитку. У статті проаналізовано основні тенденції 

зміни площі морського льоду. Метою дослідження є аналіз статистичних методів та методів глибокого нав-

чання в контексті створення високоточного довгострокового прогнозу. Завданнями статті є проведення по-

рівняльного аналізу статистичних методів та методів глибокого навчання та їх оцінка для задачі прогнозу-

вання площі поширення морського льоду. В дослідженні використано методи прогнозування на основі ста-

тистичних моделей та глибокого навчання. Проведено дослідження, щодо використання різних підходів до 

прогнозування майбутніх змін часового ряду на основі статистичних методів, методів глибокого навчання та 

ансамблевих моделей. Одержані результати дозволяють оцінити роботу моделей у короткостроковій перспе-

ктиві та сформовано підхід до довгострокового прогнозування. Запропоновано використання авторегресорів 

та методів глибокого навчання для створення надійного довгострокового прогнозу. Порівняння роботи мето-

дів було проведено для Північної та Південної півкуль. Висновки. Наукова новизна одержаних результатів 

полягає в наступному: набув подальшого розвитку метод прогнозування часових рядів площі поширення мор-

ського льоду з використанням статистичних методів та методів глибокого навчання. На основі проведених 

експериментів визначено найточніші методи. Використання ансамблевих підходів дозволяє забезпечити як 

врахування основних тенденцій, так і розпізнавання прихованих закономірностей. Отримані результати дають 

змогу комплексно оцінити часові ряди для Північної та Південної півкуль та вказують на доцільність викори-

стання як статистичних методів прогнозування для даних з чітко визначеними закономірностями на прикладі 

Арктичного регіону, так і методів глибокого навчання задля розпізнавання прихованих закономірностей, що 

спостерігаються в даних часового ряду Антарктичного регіону. 

Ключові слова: площа поширення морського льоду; прогнозування; авторегресори; глибоке навчання; 

ансамблеві моделі. 
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