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The subject of the study is the integration of artificial intelligence (AI) methods into software-defined networks 
(SDN) for adaptive control of access to limited resources within the infrastructure of Internet of Things (IoT) 

ecosystems. The goal of this work is to develop a model and architectural solution for a hybrid Cloud-SDN-IoT 

framework with embedded AI components, enabling the intelligent allocation of network and computing re-

sources, and to experimentally validate the improvement of the fair distribution of a limited IoT resource 

across different traffic patterns in an emulation environment. The main tasks of the research are: 1) to analyze 

modern approaches to energy-efficient resource management and security in SDN-IoT networks; 2) to create 

the architecture of a hybrid Cloud-SDN-IoT framework that combines centralized SDN network control with 

the flexibility of cloud infrastructure; 3) to develop an experimental methodology using machine learning com-

ponents to improve resource allocation and reduce load imbalance among competing clients; 4) to evaluate 

the system’s efficiency in relation to the stated objectives and the fair distribution of limited IoT resources by 

assessing the request distribution and the accuracy of detecting resource access violations. The paper propos-
es an improved three-layer SDN architecture model incorporating AI-based analytics: the IoT infrastructure 

layer, the SDN control layer, and the cloud application layer. The experimental part was implemented in a vir-

tual Linux environment using Mininet and Ryu, where the trained AI model makes decisions about allocating 

the limited resource. The experimental results demonstrated that integrating the AI module into the SDN con-

troller workflow increases the accuracy of detecting resource access violations, reduces load imbalance 

among clients, and improves the stability of real-time request distribution. Conclusions. The scientific novelty 

of the obtained results lies in the development of a reproducible hybrid Cloud-SDN-IoT architecture model 

that enables adaptive management of access to limited IoT node resources by combining centralized SDN con-

trol with AI-based predictive analytics. The AI-enabled control loop increased the average fairness accuracy 

of request distribution from 79.2% to 90.98%, an increase of 11.78 percentage points (14.87% relative), 

demonstrating improved proportional access to the limited IoT TokenServer API while preserving stable, real-

time request regulation. The practical significance lies in the potential application of the proposed approach 
to optimize access to limited cloud services, APIs, energy resources, or IoT devices in smart city systems, 

healthcare, or industrial networks. Further research will focus on expanding the AI components with various 

machine learning models, forming new datasets, and conducting comparative evaluations of each model’s ef-

fectiveness in dynamic SDN-IoT resource management and reproduction under real-world conditions. 
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1. Introduction 

 

The increasing data flows in information and 

communication systems (ICS) require greater resource 

controllability to optimize access to data, servers, com-

munication devices, and other components [1, 2]. This 

necessitates more in-depth research into SDN networks, 

which are predominantly used in ICS. In particular, is-

sues of scalability and controllability in heterogeneous 

SDN-IoT networks remain relevant, where limitations 

in energy, bandwidth, and computing power are com-

bined with high security and quality of service (QoS) 

requirements. There is a need to define the practical 

challenges arising in IoT network scenarios and the role 

of SDN as an architecture with logically centralized 

control and programmable interfaces. It is appropriate to 

review the current state of the art in resource manage-

ment, security, and integration with AI-based approach-

es for traffic analysis and anomaly detection. Further 

research is required to develop a model and architecture 

of a hybrid Cloud-SDN-IoT framework using artificial 

intelligence for adaptive control of access to limited 

resources and to conduct its experimental validation in 

real-time conditions. 
 

1.1. Motivation  

 

The use of IoT technologies has become so wide-

spread that human interaction with smart devices now 

occurs in everyday life, often in various forms and fre-
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quently unnoticed by users themselves. IoT plays a sig-

nificant role in nearly all areas where such devices are 

deployed, such as smart homes, smart cities, energy 

systems, healthcare, and agriculture. At the same time, 

the number of devices whose operation depends directly 

on the network has increased, both for global interac-

tions and for communication among devices in smart 

system scenarios. Consequently, confidentiality, securi-

ty, and resource management in IoT networks will re-

main essential challenges for the foreseeable future. 

Software-defined networks are a relatively new ar-

chitecture whose main feature is the separation of con-

trol and data forwarding functions, aimed at simplifying 

and accelerating the management of large-scale net-

works. The architecture consists of three layers, each 

corresponding to a specific role. The control layer as-

sumes responsibility for network management, remov-

ing this function from network devices as in traditional 

networks. The control layer may include one or more 

SDN controllers interconnected and interacting with 

other layers. The infrastructure layer includes network 

devices that directly process and forward data packets 

(such as switches or routers). This layer acts as an exec-

utor of commands received from the control layer, with 

nodes not making independent routing decisions. The 

application layer implements the interfaces and applica-

tions that interact with the controllers to provide net-

work functions. Interaction with applications occurs 

through software interfaces (APIs), enabling manage-

ment of quality of service, security control, monitoring, 

and load balancing without the need for physical inter-

vention in network equipment. 

SDN can manage resources across various network 

types, including IoT, cellular networks, internet service 

providers, and cloud services. To coordinate networks 

of different natures, integrating artificial intelligence is a 

necessary step [3, 4]. AI at the SDN controller level can 

significantly enhance efficiency by taking over auto-

mated decision-making and diagnostics. This enables 

the modeling of complex networking problems such as 

dynamic configuration, routing, and access management 

to limited resources. 

Resource management in IoT networks faces chal-

lenges, the main ones being limited computing power, 

energy resources, and bandwidth. Figure 1 summarizes 

the key resource components of a typical autonomous 

IoT node, including the power source, communication 

module, data-processing module, and memory [5]. Most 

IoT devices operate autonomously, and their batteries’ 

limited capacity complicates long-term operation, re-

quiring algorithms to reduce energy consumption. 

The functions of an IoT device include collecting, 

processing, storing, and transmitting data from the phys-

ical world to the virtual environment. Within a single 

automation stage, the number of IoT devices can be 

quite large. The heterogeneity of devices and communi-

cation technologies complicates integrating various el-

ements into a unified network, thereby increasing the 

complexity of resource management. Furthermore, the 

growing volume of data generated by IoT devices [6] 

places additional strain on computing resources and data 

storage, affecting the overall reliability of the system. 

 

 
 

Fig. 1. Key resource components of an IoT node  

 

Given the challenges outlined above, this work 

aims to systematize and analyze current approaches to 

integrating AI into SDN for adaptive resource manage-

ment in IoT networks, and to develop a framework ar-

chitecture that addresses the challenges of SDN-IoT 

networks, followed by its experimental deployment. 

This will help identify areas where problems and con-

straints persist, determine which methods are effective 

for optimizing network resources, and, at the same time, 

open new research avenues that will drive further pro-

gress in the field. 

 

1.2. State of the art  

 

- Modern methods of IoT resource management. 

Resource management mechanisms in IoT nodes are 

typically divided into the following areas: process man-

agement, memory management, energy management, 

and communication management. The communication 

needs of an IoT ecosystem are supported by its commu-

nication architecture. Due to the limited resources of 

each node, the communication protocols of sensor net-

works that enable such interaction as per [7] must be 

effective in terms of reliability, scalability, and energy 

efficiency. This is further complicated by device hetero-

geneity and by the fact that heterogeneous sensor net-

works may operate under widely varying transmission 

conditions [8]. Efficient communication at the device 

level directly affects the network's overall performance. 

Therefore, in such systems, communication should pri-

marily be oriented toward energy efficiency, and only 

then toward achieving high bandwidth. It is also essen-

tial to consider the unique characteristics of device traf-

fic and ensure appropriate quality of service manage-

ment. 

The processing and management needs of the large 

data flows generated by the IoT ecosystem can largely 

be met through cloud computing [9, 10]. Cloud compu-
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ting provides a flexible and scalable infrastructure for 

storing and processing data generated by Internet of 

Things devices. Its application enables network state 

management from any location, allowing organizations 

to perform real-time data analysis, create tasks for the 

IoT ecosystem, integrate a wide range of tools (such as 

machine learning, data storage, and scaling), and make 

informed decisions based on the obtained information. 

However, processing IoT applications exclusively in the 

cloud is not always an optimal solution [11], particular-

ly for tasks that require minimal latency. A promising 

approach involves using fog and edge computing to 

address the high bandwidth requirements for transmit-

ting data from end devices. These technologies enable 

the processing of large volumes of data directly near 

their sources, reducing dependence on the cloud and 

minimizing delays. 

- The application of SDN architecture in IoT 

provides global visibility into network state via pro-

grammable APIs, centralized logical control over physi-

cally distributed resources, and flexibility in implement-

ing new network management methods. Owing to these 

properties, SDN serves as a solid foundation for build-

ing IoT ecosystem management frameworks. The inte-

gration of IoT and SDN [12], known as SDN-IoT 

(Fig. 2), creates a unified architecture that separates the 

control plane from the data plane and efficiently coordi-

nates interactions among individual IoT nodes within 

the network. 

 

 
 

Fig. 2. Structure of the SDN-IoT framework 

 

For the long-term operation of the SDN-IoT infra-

structure, energy-efficient routing is essential, as it min-

imizes device power consumption, extends network 

lifetime, and ensures optimal utilization of limited re-

sources. The use of intelligent algorithms for dynamic 

load balancing increases data transmission efficiency 

even in large and complex networks. In [13], the use of 

genetic algorithms (particle swarm optimization and 

artificial bee colony methods) was proposed to address 

these tasks. Architecturally, the SDN controller is de-

ployed within a cloud infrastructure (Fig. 3). The cloud 

provides centralized management of routing, cluster 

formation, and load balancing across the network. In 

particular, genetic algorithms are executed on cloud 

infrastructure, as its computational capacity eliminates 

the need for local infrastructure for such tasks (or when 

it is not feasible). 

 

 
 

Fig. 3. Architecture of Cloud-based SDN for IoT 

 

The cloud provides flexibility in network scaling, 

allowing resource allocation to increase or decrease 

depending on load. This helps reduce costs compared to 

maintaining local infrastructure, especially during peri-

ods of low network usage. It also simplifies network 

maintenance (and thus extends its lifespan) in cases 

where genetic algorithms are replaced with other meth-

ods or when the resource management approach is mod-

ified - changes that would be costly or even impossible 

if the SDN AI controller were implemented within the 

network itself. 

The integration of blockchain into SDN for IoT is 

a promising approach, as it enhances security, privacy, 

and data integrity in IoT applications [14]. Blockchain 

provides a decentralized, immutable ledger, helping 

ensure that data cannot be tampered with when ex-

changed across SDN-orchestrated IoT networks. This 

feature is particularly relevant in IoT domains that re-

quire trustworthy, secure data exchange. 

- Integration of AI into SDN for IoT. Security in 
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IoT is critically essential because individual nodes are 

vulnerable, leading to cyberattacks that can harm both 

individual users and organizations. Protecting IoT de-

vices from such threats requires implementing reliable 

security measures, particularly intrusion detection sys-

tems (IDSs) [15]. The limited computing power, energy 

and memory resources of IoT devices make it difficult 

to implement complex and comprehensive security 

mechanisms on each device. Therefore, efficient light-

weight security solutions are needed to ensure protec-

tion and adaptability at the network level. 

Deep learning (DL) at the intrusion detection sys-

tem level to analyze network traffic and detect anoma-

lies is applied. The combination of deep learning mod-

els such as convolutional neural networks (CNNs) and 

long short-term memory (LSTMs) effectively handles 

the heterogeneous nature of IoT devices and enables 

classification of IoT traffic as benign or malicious, 

achieving high accuracy and efficiency in threat detec-

tion. LSTM is an advanced form of recurrent neural 

networks that allows modeling of temporal dependen-

cies in data. LSTM networks consist of memory blocks 

that use three types of gates (input, output, and forget) 

to control the flow of information. This makes LSTM 

ideal for analyzing sequential data, such as network 

traffic, for anomaly detection [16]. In the context of IoT 

security, LSTM is used to analyze network traffic to 

detect anomalies and potential cyberattacks, owing to its 

ability to capture long-term dependencies in data. The 

system proposed in [17], called IDSIoT-SDL (Fig. 4), 

consists of three main components: 

 

 
 

Fig. 4. Structure of IDSIoT-SDL 

 

- Activity Monitor – responsible for collecting 

and analyzing network traffic. OpenFlow switches are 

used to gather data about network flows. Its functions 

include traffic capture, parsing, and analysis prepara-

tion; 

- Activity Analyzer – uses statistical data to de-

tect anomalies in the network. The LSTM algorithm 

helps identify potential attacks and classify threat types. 

Its main task is to determine traffic characteristics for 

model training; 

- Classifier – responsible for classifying traffic 

as usual or malicious. When an attack is detected, an 

alert is generated, and the attack type is identified for 

subsequent response. 

The approach proposed in [17] demonstrated effec-

tiveness in protecting IoT networks by integrating SDN 

and deep learning, enabling adaptability to security 

challenges. 

 

1.3. Objectives and tasks 

 

Despite its advantages, the application of SDN ar-

chitecture in IoT faces several challenges. Centralized 

control introduces the risk of a single point of failure, 

which affects network stability. The growing number of 

connected IoT devices places a significant load on SDN 

controllers, resulting in data processing delays and re-

duced overall network performance. Studies [18, 19] 

show that embedded controllers are effective in small 

networks, but as the scale increases, it becomes more 

appropriate to use external controllers to ensure ade-

quate performance. 

SDN architecture faces new security challenges, 

particularly concerning the protection of its own infra-

structure. New risks have emerged related to potential 

attacks on the controller itself. A compromised SDN 

controller may allow an attacker to take control of the 

entire network. In contrast, a compromised router can 

only disrupt the proper functioning of the traffic passing 

through it [20]. Attacks on control systems can cause 

significant disruptions to industrial processes, negative-

ly affecting product quality and potentially endangering 

human life. Therefore, it is necessary to develop a strat-

egy that ensures the isolation and monitoring of suspi-

cious devices, for example, through network segmenta-

tion and quarantining malicious IoT devices [21]. 

The use of the SDN approach in IoT, if not opti-

mized, can increase device energy consumption by gen-

erating additional control traffic [22, 23], thereby reduc-

ing IoT devices` autonomy. 

The Internet of Things is a key source of big data, 

as it relies on connecting many smart nodes to the net-

work to transmit information about the environmental 

conditions they monitor. When integrated into a distrib-

uted environment, the SDN architecture can amplify its 
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internal limitations. Under current conditions, creating a 

single central controller [24, 25] to manage all subnet-

works is a risky approach, since the Internet itself is 

inherently distributed. This highlights the need for a 

new perspective on the overall architecture. 

Summarizing the above analysis, it can be noted 

that the development and integration of SDN into the 

Internet of Things environment are accompanied by a 

set of systemic challenges, the resolution of which de-

termines the overall network efficiency. The key tasks 

for SDN in the context of IoT include effective energy 

management, scalability, enhanced security, load bal-

ancing, and interoperability among heterogeneous de-

vices and technologies. Implementing these tasks re-

quires the development of flexible, intelligent control 

mechanisms capable of adaptively responding to chang-

es in network state and load. 

A promising approach to addressing the above 

challenges is the use of artificial intelligence in SDN-

IoT networks. The integration of AI assists in device 

authentication, enhances security, effectively mitigates 

attacks on SDN-IoT networks, and ensures operational 

continuity. Through capabilities such as real-time data 

analysis and network event prediction, AI enables SDN-

IoT networks to achieve a new level of performance, 

delivering high QoS, scalability, and adaptability across 

interconnected systems. 

The paper is structured as follows: Section 1 in-

troduces the motivation for improving the management 

of limited resources in heterogeneous IoT environments 

and provides an overview of the SDN architecture, its 

integration with cloud and AI technologies, and the key 

challenges in ensuring scalability, energy efficiency, 

and security. Section 2 describes the materials and 

methods of research, detailing the design of the pro-

posed hybrid Cloud-SDN-IoT framework, the interac-

tions among architectural layers, and the experimental 

setup implemented within a software-defined testbed 

with an external SDN controller, control API, monitor-

ing, and AI module for traffic optimization. Section 3 

presents the algorithm and results of experimental test-

ing of the proposed framework, including performance 

metrics, adaptive access control evaluation, and analysis 

of system stability. Section 4 provides a detailed discus-

sion of the results, demonstrating the framework's abil-

ity to enhance network performance and security, ensure 

adaptive access control to constrained resources, and 

maintain service quality. Section 5 concludes the paper 

by summarizing the key findings, highlighting the ad-

vantages and limitations of the proposed approach, and 

outlining directions for future research toward large-

scale implementation and real-time optimization of hy-

brid Cloud-SDN-IoT systems. 

 

 

2. Materials and methods of research 
 

Let us consider the basic theoretical approaches, 

methods, and technologies that enable the design of an 

improved Hybrid Cloud-SDN-IoT framework architec-

ture and, accordingly, provide adaptive control of access 

to limited resources in Internet of Things networks and 

ecosystems. We will analyze and justify the extended 

functionality of the new framework architecture, de-

scribe the selection and interaction of the hardware–

software resources and components, and the artificial 

intelligence algorithms required for the experimental 

implementation of the framework and the emulation 

environment. The proposed methodology is structured 

in accordance with the stated research objectives and 

allows the experiment to be reproduced. 

 

2.1. Proposed Methods and Design  

of the Hybrid Cloud-SDN-IoT Framework 

 

The improved and updated architecture of the hy-

brid Cloud-SDN-IoT framework for adaptive manage-

ment and access control to limited resources in IoT net-

works (Fig. 5) is built as a three-layer structure based on 

the cloud application layer, the control layer, and the 

infrastructure layer. Unlike typical SDN architectures, it 

employs the MQTT protocol and blockchain technolo-

gies to enable cross-layer feedback, enhance system 

security, and support deep learning, among other func-

tions. 

The functionality and implementation approaches 

for the individual layers of the proposed architecture 

may be adjusted based on the problem-oriented tasks 

addressed by a particular ecosystem. However, the 

general approach to implementing the framework can be 

based on the following principles. 

1) Infrastructure Layer. As shown in Fig. 5, this 

layer serves as the foundation of the framework 

architecture. It comprises multiple distributed IoT 

environments (e.g., a room in a smart hospital, a bank 

branch, a part of a smart manufacturing system, or a 

smart home). Each environment consists of IoT nodes 

connected to their respective IoT controllers. 

- The IoT Controller plays a key role in enabling 

device interaction with the network, supporting the 

MQTT (Message Queue Telemetry Transport) protocol 

for communication and utilizing blockchain for secure 

authentication and authorization within the MQTT 

broker. For further routing and integration with the SDN 

network, several IoT controllers are connected to an 

OpenFlow SDN switch that manages traffic and 

allocates network resources. 

The infrastructure layer interacts with the control 

layer via the SDN Southbound Interface, enabling 

centralized network management. In addition, the IoT  
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Fig. 5. Architecture of the hybrid Cloud-SDN-IoT framework 

 

controller can publish information about connected 

devices to the application layer via the MQTT protocol 

and is itself subscribed to events for dynamic 

management of IoT device power consumption. This 

enables automatic control of the power supply for 

individual IoT nodes to optimize energy use or security 

management. 

2) Control Layer provides centralized 

management of network traffic and security within IoT 

environments. This layer includes SDN controllers that 

perform intelligent network control, as well as two 

embedded AI modules: 

- AI Security Management Module - employs 

deep learning methods, including convolutional neural 

networks and long short-term memory. The AI model is 

trained on historical network traffic data obtained from 

IoT controllers, OpenFlow SDN switches, and 

blockchain records. Based on this, it classifies traffic as 

safe or malicious, detecting anomalous patterns that 

may indicate DDoS attacks, unauthorized connections, 

or device configuration changes. When a threat is 

detected, the SDN controller blocks suspicious traffic or 

adjusts routing, notifying the Cloud Application Layer 

of the danger. 

- AI Traffic Management Module - applies 

supervised learning to balance traffic within the SDN-

IoT environment. The AI model is trained on data 

related to the load on OpenFlow SDN switches, 
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historical traffic metrics from resource-constrained IoT 

nodes, and QoS requirements. Based on the predicted 

changes in network load, the SDN controller optimizes 

routing to prevent delays and congestion, while 

dynamically adjusting bandwidth allocation for mission-

critical IoT devices. To minimize the risks of 

unauthorized access and data tampering, SDN 

controllers interact with the blockchain infrastructure. 

They record transactions related to network policy 

changes and store key configurations, ensuring 

protection against compromise by enabling rollback to 

the last known operational state. Blockchain is also used 

to authorize the SDN controller when interacting with 

the cloud layer, providing secure authentication during 

the exchange of control commands. 

Interaction with the infrastructure layer occurs 

through the Southbound API, where the controller re-

ceives traffic statistics, IoT device connection and dis-

connection events, and routing requests. In response, the 

controller provides updated routing rules to the Open-

Flow SDN switches, ensuring flexible traffic manage-

ment. Interaction with the application layer occurs 

through the Northbound API, where the SDN controller 

sends analytical data and threat notifications while re-

ceiving new network management policies from cloud-

based applications. 

3) Cloud Application Layer is the top level of the 

architecture, providing monitoring, analytics, high-level 

network management by the administrator, and energy 

consumption optimization. It performs essential 

functions related to integrating data from lower layers, 

processing this information, and making decisions for 

dynamic management of the IoT infrastructure. The 

cloud architecture was chosen for its flexibility, as it 

allows easy updates or replacement of the AI model 

without requiring modifications to the entire 

infrastructure, unlike direct implementation. It also 

provides scalability, enabling the addition of new 

analytical modules or increased computational capacity 

without requiring additional local hardware. Moreover, 

it allows the deployment of new algorithms for energy 

optimization, management, or IoT ecosystem protection 

without interrupting its operation, ensuring network 

stability. The components of this layer include: 

- The monitoring and analytics module provides 

visualization of the current network state, resource 

usage statistics, and traffic anomaly detection. 

Interactive analytical dashboards for operators enable 

strategic decision-making.  

- The SDN network API is used to receive data 

from the Control Layer and to transmit configuration 

commands. It ensures feedback with SDN controllers 

for adaptive routing. 

- The AI Energy Management module uses a 

deep reinforcement learning (DRL) algorithm to 

optimize energy consumption across IoT devices. The 

control process is implemented through an event 

management mechanism, specifically by generating 

commands based on telemetry data about the state of 

IoT devices, battery charge levels, and changes in the 

IoT network topology. These commands are published 

to an MQTT queue, to which IoT controllers subscribed 

to specific event types respond by performing 

corresponding actions, such as turning off a device or 

switching it to a power-saving mode. 

Interaction with the Control Layer occurs through 

the Northbound Interface, which provides data on the 

current traffic state, the status of IoT controllers, and 

overall network load. At this level, blockchain is used to 

authorize requests to the MQTT broker, control access 

to the event queue, and verify energy management 

commands to prevent request forgery. 

 

2.2. Experimental Setup 

 

To verify the functionality of the proposed 

framework, a controlled experimental environment was 

created and deployed (Fig. 6), integrating network 

emulation, an embedded AI module for adaptive access 

control to limited resources, an event broker for IoT 

resource management, and cloud-based monitoring and 

management tools (metrics, dashboards, APIs). 

The environment was deployed on a Linux-based 

platform, which provided flexibility in organizing the 

operation of individual open-source components. The 

choice of Mininet (Fig. 7) and Ryu (Fig. 8) was moti-

vated by their widespread use in research and experi-

mental studies [26], reproducibility across independent 

conditions, open-source availability, and extensibility 

via custom Python modules (AI module, traffic genera-

tion, statistics collection, and limited-resource simula-

tion). 

Prometheus was used to collect network metrics, 

and Grafana (Fig. 9) was employed for real-time visual-

ization of client activity, API request success and failure 

statistics, and IoT device status. Manual network opera-

tion control was implemented via a REST API using 

Postman (Fig. 10). 

To emulate the IoT data plane, an MQTT broker 

and an IoT device hub were configured on one of the 

Mininet hosts (h7) and the control plane. Additionally, 

an IoT token-server API with a limited number of 

requests per minute was connected to host h1 as a 

constrained resource. Power management was 

implemented using control queues with 

on/off/sleep/awake commands. The controller or AI 

module can temporarily switch devices into power-

saving states during overloads or when access quotas to 

the limited resource are depleted and receive 

confirmation via telemetry feedback. To simulate user 
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behavior in the network, two groups of clients were 

used: h2-h4 (regular clients) generated requests to the 

limited resource at uniform intensity, while h5-h6 

(aggressive clients) generated excessive requests, 

emulating overload scenarios beyond acceptable limits. 

 

 
 

Fig. 6. Structure of the simulated  

experimental environment 

 

The AI module was developed in Python using 

scikit-learn and integrated into the control plane. The AI 

model was trained to classify traffic and manage access 

of individual nodes to the limited IoT resource based on 

statistical data collected by the Ryu controller. This 

demonstrates how machine learning methods can extend 

the capabilities of the SDN controller through predictive 

decision-making and ensure fair (proportional) access to 

the limited resource before it becomes depleted. A com-

plete description of the tools used is presented in Ta-

ble 1. 

This integrated configuration enabled the modeling 

of a realistic hybrid AI-SDN-IoT ecosystem, in which 

access to limited resources is managed adaptively 

through artificial intelligence algorithms. It also provid-

ed flexibility for experiment replication, result visuali-

zation, and expansion of the test environment through 

additional IoT or cloud service emulations. 

 
 

Fig. 7. Mininet terminal of the environment 

 

 
 

Fig. 8. Ryu terminal of the environment 

 

Table 1 

Platform and basic tools 

Platform 

component 

Tools used 

OS and envi-

ronment 

Ubuntu 24.04 LTS (x86-64), Python 3.8 

SDN network 

emulator 

Mininet with a custom topology (Open 
vSwitch switch, hosts h1…h7, external 
SDN controller) 

SDN control-

ler 

Ryu, OpenFlow 1.3 protocol, extended 

controller application with a northbound 
REST interface 

Event broker Eclipse Mosquitto for managing the IoT 
hub and publishing telemetry/command 
messages (MQTT) for IoT device control 

Monitoring Prometheus (metric collection) + Grafana 
(data visualization) 

Control tools Postman for interacting with the Applica-
tion Plane API, Python traffic generation 
scripts (normal and aggredive modes) 

AI module Python + scikit-learn (Supervised Learn-
ing, Logistic Regression) as an Applica-
tion Plane service that analyzes 
flows/events and triggers access policies 

for the limited resource 

Limited re-

source and 

users 

h1: IoT TokenServer API with an access 
quota (req/min). 
h2-h4: normal clients (Python module, 
steady uniform traffic to h1). 
h5-h6: burst clients (Python module, traf-
fic spikes to h1). 
h7: IoT hub with connected devices 
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Fig. 9. Interactive network monitoring charts in Grafana 

 

 
 

Fig. 10. REST API request window of the framework in Postman 

 

3. Case study 
 

The purpose of the case study experiment is to ap-

ply artificial intelligence algorithms to dynamically dis-

tribute access to a limited resource and to verify the 

functionality and usability of the framework for this 

kind of task. The IoT system is emulated by an IoT To-

kenServer API with a strict request-per-minute limit, 

while the client hosts may represent IoT devices or an 

IoT hub/gateway that generate requests to this service. 
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The algorithm of the proposed model of the experiment 

(Fig. 11) consists of three main stages: data preparation, 

AI module preparation, and testing with result evalua-

tion. Each stage is divided into subtasks, enabling the 

trained AI model to be integrated into the SDN envi-

ronment sequentially. 
 

 
 

Fig. 11. Model of the experiment 

 

- Data Preparation. To generate traffic, Python 

modules were developed that, as described in Table 1, 

simulate client behavior in two modes - normal (stable 

clients, h2-h4) and aggressive (peak load clients, h5-h6) 

- and send requests to the limited resource. The limited 

resource is represented by an IoT token-server API con-

nected to host h1, with a limit of requests per minute. 

Data collection is performed by an event logger on the 

SDN controller and on h1, which periodically gathers 

traffic characteristics and exports them to CSV files. 

The log files contain key parameters summarized in 

Table 2. 

The log files are divided into two types: API_log, 

which reflects direct HTTP requests from clients to the 

token server, and training_log, which records aggregat-

ed metrics collected from the SDN controller for subse-

quent AI module training. The combination of these two 

sources establishes a connection between the actual 

state of the resource, the controller’s decisions, and cli-

ent behavior over time. Merged into a single dataset, 

these files formed the foundation for further training and 

testing of the machine learning models. 

The generated dataset included both stable request 

patterns and bursty overloads, ensuring sample repre-

sentativeness. This contributed to effective model train-

ing and performance evaluation across different scenar-

ios. Data preprocessing included standardizing data 

formats, handling missing values, and partitioning into 

training and test sets without temporal overlapping. 

Table 2 

Description of log file fields for training 

Field Description 

ts Timestamp (ms, Unix epoch) of the 

recorded request 

src_ip IP address of the source of traffic. 

status Server HTTP response code (200, 

429) 

count_60s Number of requests from the client 

during the last minute 

global_limit Current resource limit (requests per 

minute) 

total_60s Total number of all requests to the 

resource during the last minute 

share_prev Client’s share of resource usage 

active_clients Number of active clients 

label_fair_prev Ground truth label indicating the 

correctness of the previous resource 
allocation 

reset_in_sec Time (in seconds) remaining until 

the next global limit reset 

 

- AI-Module Preparation. Based on the collected 

log files, a training dataset was formed to predict re-

source overuse (over_resource) in the SDN environ-

ment. To reduce dimensionality and eliminate correlated 

features, feature selection was performed, retaining only 

temporal and dynamic traffic parameters (count_60s, 

global_limit, active_clients, share_prev, status, to-

tal_60s). A logistic regression model from the scikit-

learn package was trained on 80% of the dataset, with 

the remaining 20% used for testing. Logistic regression 

was chosen for its interpretability, robustness on small 

datasets, and ability to efficiently model the binary re-

source state (within_resource / over_resource) with min-

imal computational overhead, which is critical for real-

time SDN operation. After achieving stable results, the 

model was saved in .joblib format for integration into 

the Python AI module script. For verification, the model 

was tested on new experimental data obtained during a 

repeated traffic run. The prediction results were saved in 

CSV files for subsequent comparison with the actual 

values (label_fair_prev). 

During initialization, the AI model was loaded 

from the .joblib file. At each monitoring interval, a vec-

tor representing the current resource state was generated 

and passed to the model for class prediction: 0 - with-

in_resource, 1 - over_resource. In the event of a predict-

ed overload, the module dynamically added a drop-flow 

rule on the controller for the corresponding traffic 

source, restricting access to the resource for a specified 

timeout period (until the limited resource was re-

freshed). After the blocking interval ended, the rule was 

automatically removed. Thus, the prepared and de-

ployed AI module enabled the integration of machine 

learning into the SDN controller’s decision-making 
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loop, allowing adaptive real-time management of access 

to limited resources. 

To formalize the resource management logic, the 

adaptation process is defined as a per-client quota func-

tion  iq t  (1), representing the individual access quota 

(allowed requests per minute) for the client i  in the 

current control window: 

 

    i iq t f x t ,             (1) 

 

where  ix t  is the client feature vector built from re-

cent traffic statistics and previous allocations: 

 

 ix t [count _60s, total _60s, active_clients,

global _ limit, share_ prev, quota _ prev, is _ blocked]


    (2) 

 

Based on vector (2), the trained AI model esti-

mates a risk score  ip t  (3) (probability of resource 

overuse).  

 

        i i ip t g x t , p t 0,1  , (3) 

 

where  g   is the trained ML classifier that outputs the 

overuse risk score, and hightT  is a predefined high-risk 

threshold (in our experiments hightT 0.70 ). 

If  i hightp t T , the client's quota is adapted by 

applying a penalty step, otherwise, the baseline fair-

share allocation is maintained, and any released capacity 

is redistributed to low-risk clients. The resulting quota 

vector   iq t is dynamically updated and enforced via 

the SDN/REST control interface. 

- Testing and evaluation. To assess AI integra-

tion, data were collected under two scenarios: Baseline 

(without AI) and AI-enabled. Logs from the limited 

resource and the SDN controller were aggregated into 5-

minute windows (time-based grouping), and for each 

client (h2–h6), the number of attempts, successful re-

quests, share of attempts, and success rate were calcu-

lated. The aggregated CSV files were used to generate 

comparative charts and compute summarized perfor-

mance metrics. 

For the trained logistic regression model that pre-

dicts limited resource overuse, standard evaluation met-

rics were applied: Accuracy (the overall proportion of 

correct model decisions), Precision (the proportion of 

correctly predicted positive cases among all positive 

predictions made by the model), Recall (the proportion 

of correctly identified actual positive cases among all 

true positives), and F1-score (the harmonic mean be-

tween Precision and Recall) (4) - (7). 

TP TN
Accuracy

TP TN FP FN




  
,   (4) 

 

where TP  – (True Positive) - the model correctly pre-

dicted a resource overuse; 

TN – (True Negative) - the model correctly predict-

ed the absence of resource overuse; 

FP – (False Positive) - the model incorrectly indicat-

ed a resource overuse that did not occur; 

FN – (False Negative) - the model failed to detect an 

actual resource overuse. 

 

TP
Precision

TP FP



,               (5) 

 

TP
Recall ,

TP FN



                (6) 

 

2 Precision Recall
F1 .

Precision Recall

 



  (7) 

 

The calculations were performed using the classi-

fication_report() and confusion_matrix() functions from 

the scikit-learn library. The results are presented as con-

fusion matrices in both absolute (Fig. 12) and normal-

ized values (Fig. 13). Overall, the model correctly iden-

tifies approximately 93% of within_resource cases and 

about 99% of over_resource cases, confirming its suita-

bility for operation at the SDN control level. 

 

 
 

Fig. 12. Confusion matrix for the logistic regression 

model in absolute values 

 
The impact of AI integration is illustrated by a 

two-panel scatter plot (Fig. 14): the x-axis represents the 

attempt share, and the y-axis shows the success share; 

the red dashed line y = x indicates ideal proportionality. 

- Without AI (Fig. 14.1), the points are noticea-

bly scattered relative to the y = x line: clients with a 

higher share of attempts do not consistently achieve a 

proportional share of successes; imbalances are visible 
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when an active client either receives excessive resources 

or fails to obtain sufficient successful requests during 

peak loads. 
 

 
 

Fig. 13. Confusion matrix for the logistic regression 

model in normalized form 

 

- With AI (Fig. 14.2), the cloud of points aligns 

more closely along the y = x line, indicating a trend 

toward proportional distribution: clients generating a 

higher share of attempts receive a comparable share of 

successes, while smaller clients are not “pushed out” of 

the resource during bursts and continue to receive their 

guaranteed resource quota. 

The AI module stabilizes the distribution of re-

quests among clients, maintaining fairness accuracy 

within the range of 90-100% (Fig. 15), whereas in the 

baseline case (without AI), accuracy fluctuates between 

0-85%, indicating improved proportionality and predict-

ability of access to the limited resource.  

In this setup, explainability is achieved through the 

structural transparency of logistic regression, enabling 

direct inspection of how each traffic feature (such as 

“count_60s” or “active_clients”) contributes to the pre-

dicted overload probability. This ensures that resource 

allocation decisions are not “black box” outcomes but 
 

 
1) 

 

 
2) 

Fig. 14. Attempt vs. Success share for the scenarios: 

1 – without AI; 2 – with AI 

 
Fig. 15. Fairness accuracy over time 
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are explicitly linked to network state parameters via 

defined risk thresholds. Furthermore, trustworthiness is 

supported by a validation approach that relies on repro-

ducible feature extraction and quantitative evaluation 

based on classification and error-rate metrics. To ensure 

operational safety, the control policy is bound by mini-

mum service quotas and incremental penalty steps, pre-

venting radical actions during transient network fluctua-

tions. At the same time, full audit logging provides ac-

countability for every decision made by the AI module. 

 

4. Discussion 
 

By integrating flexible resource management, AI-

enabled traffic analysis, and distributed security mecha-

nisms, the developed framework guarantees efficient 

operation even in large-scale, heterogeneous environ-

ments. Let us examine how the proposed framework 

tackles the main challenges faced by SDN in the context 

of IoT, namely: 

- Energy management. The use of programmable 

interfaces in SDN networks [27] allows adaptive energy 

consumption based on current load and network per-

formance requirements. At the application layer of the 

framework, an AI-based infrastructure employing deep 

reinforcement learning is used for power management. 

DRL utilizes statistical data and Q-learning algorithms 

[28] to optimize energy usage. The choice of EMQX as 

the MQTT broker implementation is justified by its abil-

ity to efficiently handle millions of connections and 

deliver MQTT messages with minimal latency, as con-

firmed by the study in [29]; 

- Scalability. The integration of the SDN ap-

proach into IoT simplifies this process for IoT networks 

by distributing controllers horizontally or hierarchically 

at the control layer, while maintaining centralized con-

trol over each distributed component [30]. SDN control-

lers enable dynamic changes to network topology with-

out requiring physical modifications to its structure, 

simplifying the integration of new IoT devices into the 

overall ecosystem. The use of cloud infrastructure al-

lows computational resources to be scaled to meet cur-

rent network demands, eliminating the need to expand 

physical infrastructure. This allows a flexible response 

to changing loads by adding or removing resources in 

real time;  

- Security management. AI-based approaches - 

specifically deep learning (DL) with CNN and LSTM -

are used at the control layer for network traffic analysis 

and anomaly detection, enabling efficient identification 

of malicious traffic and appropriate threat response [17]. 

The flexibility of SDN allows the isolation of suspicious 

devices and the modification of routing paths to mini-

mize risks. The integration of AI algorithms enhances 

the network’s ability to predict threats, automate re-

sponses, and mitigate attacks [31]. In the event of an 

attack, SDN supports rapid network recovery, threat 

isolation, and uninterrupted IoT operation [32]. The 

advancement of blockchain technology - a decentralized 

ledger that immutably stores information in sequentially 

linked blocks has opened promising applications in IoT. 

[33, 34]. Physical integration is achieved using block-

chain components (gateways, lightweight nodes, and 

computational nodes) to minimize the risks of unauthor-

ized access and data tampering when accessing the 

cloud or establishing MQTT connections; 

- Load balancing. The integrated AI traffic man-

agement module within the SDN controller uses super-

vised learning [35] and deep reinforcement learning 

(DRL) approaches to optimize routing and evenly dis-

tribute network load, ensuring stable performance even 

during peak conditions. The SDN paradigm, which sep-

arates the control plane from the data plane, enables 

dynamic traffic redistribution and latency minimization, 

both of which are essential for large-scale heterogene-

ous networks [36]. As a result, SDN helps maintain the 

stable operation of network nodes even as data volumes 

increase; 

- Interoperability. The use of OpenFlow switch-

es enables the integration of IoT devices of various 

types into a unified, manageable network. SDN pro-

motes interoperability in IoT through flexible resource 

configuration [37]. For example, unified APIs enable 

integration of devices that use different communication 

protocols. IoT controllers that support the MQTT proto-

col operate on the Publish/Subscribe model, ensuring 

the universal exchange of control commands regardless 

of device platform. 

The results of the simulated experiment showed 

that integrating the AI module into the SDN controller’s 

decision-making loop not only ensures high accuracy in 

detecting resource overuse but also measurably im-

proves the proportionality and stability of access distri-

bution among clients. The average fairness of request 

distribution increased from 79.2% to 90.98% (an in-

crease of 11.78 percentage points, 14.87% relative), 

which is significant for practical limited-resource SDN 

scenarios. Future research will focus on comparing dif-

ferent machine learning models (Random Forest, SVM, 

neural networks, etc.), utilizing alternative datasets with 

diverse traffic profiles, and evaluating the effectiveness 

of each approach in real-time, limited resource access 

management tasks.  

 

5. Conclusions 

 

The integration of artificial intelligence into soft-

ware-defined networks for the Internet of Things ena-

bles adaptive resource management, enhances network 

security, and improves energy efficiency. The use of 
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SDN allows centralized control of traffic routing and 

increases the scalability of IoT networks. 

The proposed hybrid Cloud-SDN-IoT framework 

successfully addresses the key tasks faced by modern 

SDN-IoT systems: energy management, scalability, 

enhanced security, load balancing, and interoperability 

among heterogeneous devices. It combines the compu-

tational power of the cloud, the local analytical capabili-

ties of the SDN control layer, and the ability to dynami-

cally balance traffic. The framework enables fair and 

stable access control to a limited IoT resource (the To-

kenServer API) under different traffic patterns, as ex-

perimentally validated in an emulation environment. 

The use of machine learning algorithms for network 

traffic analysis and anomaly detection enhances security 

by reducing the risk of attacks on the IoT infrastructure. 

The integration of blockchain technologies into the 

framework facilitates secure access management and 

transaction verification within the SDN environment, 

minimizing the risks of data tampering and unauthor-

ized access. The use of the MQTT protocol enables effi-

cient control of IoT devices, particularly for energy op-

timization and security purposes. By building the exper-

iment on open-source components as Linux, the Ryu 

controller, and Mininet, the framework is fully repro-

ducible, cost-free, and accessible to the research com-

munity. The developed tool is valuable for further scien-

tific experiments, testing artificial intelligence algo-

rithms, and validating hypotheses in the field of SDN-

IoT without the need for specialized hardware. 

In the conducted experiments, the AI-enabled con-

trol loop increased the average fairness of request distri-

bution from 79.2% to 90.98% (an increase of 11.78 per-

centage points, 14.87% relative), demonstrating im-

proved proportional access to the limited IoT Token-

Server API while preserving stable, real-time request 

regulation. 

Future research will focus on testing the frame-

work on large synthetic datasets to evaluate its efficien-

cy under controlled conditions, and then on modeling 

real operational scenarios to analyze performance, 

scalability, and reliability under various network condi-

tions. Another important direction is to explore ways to 

reduce the cost of commercial deployment using cloud-

based applications and to mitigate latency issues caused 

by the geographical distance of cloud data centers by 

expanding the use of edge and fog computing to enable 

partial local processing of IoT data.  

Overall, the proposed architecture of the Hybrid 

Cloud-SDN-IoT framework enables the study and im-

plementation of various policies for ensuring security 

and access to limited resources in information and 

communication networks and complex ecosystems, as 

well as the development of advanced smart algorithms 

for adaptive resource management and their distribution 

among system components and users. 
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АДАПТИВНЕ УПРАВЛІННЯ ОБМЕЖЕНИМИ РЕСУРСАМИ  

НА ОСНОВІ ШТУЧНОГО ІНТЕЛЕКТУ В ЕКОСИСТЕМАХ SDN-IOT 

А. Ю. Банар, Г. І. Воробець 

Предметом дослідження є інтеграція методів штучного інтелекту (ШІ) у програмно-конфігуровані ме-

режі (SDN) для адаптивного керування доступом до обмежених ресурсів в інфраструктурі екосистем Інтер-
нету речей (IoT). Метою роботи є розробка моделі та архітектурного рішення гібридного Cloud-SDN-IoT 

фреймворку з вбудованими ШІ-компонентами для інтелектуального розподілу мережевих та обчислюваль-

них ресурсів та експериментальна перевірка покращення розподілу доступу до обмеженого IoT-ресурсу вра-

ховуючи різні шаблони трафіку у середовищі емуляції. Основні завдання дослідження: 1) аналіз сучасних 

підходів до енергоефективного управління ресурсами та безпеки в SDN-IoT мережах; 2) створення архітек-

тури гібридного Cloud-SDN-IoT фреймворку, який поєднує централізоване керування SDN-мережі з гнучкі-

стю хмарної інфраструктури; 3) розробка методології експерименту з використанням компонентів машинно-

го навчання для покращення розподілу доступу до ресурсу та зменшення нерівномірності навантаження між 

конкуруючими клієнтами; 4) оцінювання ефективності системи відповідно до поставлених завдань та спра-

ведливого розподілу обмеженого IoT ресурсу шляхом аналізу розподілу запитів і точності розпізнавання 

перевищення доступу до ресурсу. У роботі запропоновано удосконалену трирівневу модель архітектури 
SDN із застосуванням ШІ аналітики: інфраструктурний рівень IoT-вузлів, рівень управління SDN та хмар-

ний прикладний рівень. Експериментальна частина реалізована у віртуальному середовищі Linux, Mininet + 

Ryu, а навчена модель ШІ приймає рішення про розподіл обмеженого ресурсу. Результати експериментів 

показали, що інтеграція ШІ-модуля у контур SDN-контролера підвищує точність детекції перевищення дос-

тупу до ресурсу, зменшує нерівномірність навантаження між клієнтами та покращує стабільність розподілу 

запитів у реальному часі. Висновки. Наукова новизна отриманих результатів полягає у створенні моделі 
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відтворюваної гібридної архітектури Cloud-SDN-IoT, яка забезпечує адаптивне керування доступом до об-

межених ресурсів IoT-вузлів шляхом поєднання централізованого SDN-контролю з прогнозною аналітикою 

ШІ, що дозволило визначити та реалізувати підходи для забезпечення ключових критеріїв SDN мережі (уп-

равління енергоспоживанням, забезпечення масштабованості, підвищення рівня безпеки, балансування на-

вантаження та досягнення інтероперабельності). Інтеграція ШІ в контур керування SDN підвищив середній 

показник справедливості розподілу запитів з 79,2% до 90,98% (приріст становить 11,78 в абсолютному зна-

ченні та 14,87% у відносному), що показує покращення пропорційного доступу до обмеженого IoT 

TokenServer API із збереженням стабільного регулювання запитів у реальному часі. Практичне значення 

полягає у можливості застосування запропонованого підходу для оптимізації доступу до обмежених хмар-

них сервісів, API, енергоресурсів або IoT-пристроїв у системах «розумного міста», охорони здоров’я чи 

промислових мережах. Подальші дослідження передбачають розширення ШІ-компонентів різними моде-
лями машинного навчання, формування нових наборів даних і порівняльну оцінку ефективності кожної мо-

делі в завданні динамічного управління ресурсами SDN-IoT і відтворенні у реальних умовах. 

Ключові слова: програмно-конфігуровані мережі; Інтернет речей; штучний інтелект; керування ресур-

сами; хмарна інфраструктура; SDN-контролер; машинне навчання. 
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