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IN SDN-1OT ECOSYSTEMS

The subject of the study is the integration of artificial intelligence (Al) methods into software-defined networks
(SDN) for adaptive control of access to limited resources within the infrastructure of Internet of Things (l1oT)
ecosystems. The goal of this work is to develop a model and architectural solution for a hybrid Cloud-SDN-loT
framework with embedded Al components, enabling the intelligent allocation of network and computing re-
sources, and to experimentally validate the improvement of the fair distribution of a limited 10T resource
across different traffic patterns in an emulation environment. The main tasks of the research are: 1) to analyze
modern approaches to energy-efficient resource management and security in SDN-10T networks; 2) to create
the architecture of a hybrid Cloud-SDN-IoT framework that combines centralized SDN network control with
the flexibility of cloud infrastructure; 3) to develop an experimental methodology using machine learning com-
ponents to improve resource allocation and reduce load imbalance among competing clients; 4) to evaluate
the system’s efficiency in relation to the stated objectives and the fair distribution of limited 10T resources by
assessing the request distribution and the accuracy of detecting resource access violations. The paper propos-
es an improved three-layer SDN architecture model incorporating Al-based analytics: the 10T infrastructure
layer, the SDN control layer, and the cloud application layer. The experimental part was implemented in a vir-
tual Linux environment using Mininet and Ryu, where the trained Al model makes decisions about allocating
the limited resource. The experimental results demonstrated that integrating the Al module into the SDN con-
troller workflow increases the accuracy of detecting resource access violations, reduces load imbalance
among clients, and improves the stability of real-time request distribution. Conclusions. The scientific novelty
of the obtained results lies in the development of a reproducible hybrid Cloud-SDN-1oT architecture model
that enables adaptive management of access to limited 10T node resources by combining centralized SDN con-
trol with Al-based predictive analytics. The Al-enabled control loop increased the average fairness accuracy
of request distribution from 79.2% to 90.98%, an increase of 11.78 percentage points (14.87% relative),
demonstrating improved proportional access to the limited 0T TokenServer API while preserving stable, real-
time request regulation. The practical significance lies in the potential application of the proposed approach
to optimize access to limited cloud services, APIs, energy resources, or 10T devices in smart city systems,
healthcare, or industrial networks. Further research will focus on expanding the Al components with various
machine learning models, forming new datasets, and conducting comparative evaluations of each model’s ef-
fectiveness in dynamic SDN-10T resource management and reproduction under real-world conditions.

Keywords: software-defined networks; Internet of Things; artificial intelligence; resource management; cloud
infrastructure; SDN controller; machine learning.

control and programmable interfaces. It is appropriate to
review the current state of the art in resource manage-
ment, security, and integration with Al-based approach-
es for traffic analysis and anomaly detection. Further
research is required to develop a model and architecture
of a hybrid Cloud-SDN-IoT framework using artificial
intelligence for adaptive control of access to limited

1. Introduction

The increasing data flows in information and
communication systems (ICS) require greater resource
controllability to optimize access to data, servers, com-
munication devices, and other components [1, 2]. This
necessitates more in-depth research into SDN networks,

which are predominantly used in ICS. In particular, is-
sues of scalability and controllability in heterogeneous
SDN-IoT networks remain relevant, where limitations
in energy, bandwidth, and computing power are com-
bined with high security and quality of service (QoS)
requirements. There is a need to define the practical
challenges arising in 10T network scenarios and the role
of SDN as an architecture with logically centralized

resources and to conduct its experimental validation in
real-time conditions.

1.1. Motivation

The use of 10T technologies has become so wide-
spread that human interaction with smart devices now
occurs in everyday life, often in various forms and fre-
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quently unnoticed by users themselves. 10T plays a sig-
nificant role in nearly all areas where such devices are
deployed, such as smart homes, smart cities, energy
systems, healthcare, and agriculture. At the same time,
the number of devices whose operation depends directly
on the network has increased, both for global interac-
tions and for communication among devices in smart
system scenarios. Consequently, confidentiality, securi-
ty, and resource management in loT networks will re-
main essential challenges for the foreseeable future.

Software-defined networks are a relatively new ar-
chitecture whose main feature is the separation of con-
trol and data forwarding functions, aimed at simplifying
and accelerating the management of large-scale net-
works. The architecture consists of three layers, each
corresponding to a specific role. The control layer as-
sumes responsibility for network management, remov-
ing this function from network devices as in traditional
networks. The control layer may include one or more
SDN controllers interconnected and interacting with
other layers. The infrastructure layer includes network
devices that directly process and forward data packets
(such as switches or routers). This layer acts as an exec-
utor of commands received from the control layer, with
nodes not making independent routing decisions. The
application layer implements the interfaces and applica-
tions that interact with the controllers to provide net-
work functions. Interaction with applications occurs
through software interfaces (APIs), enabling manage-
ment of quality of service, security control, monitoring,
and load balancing without the need for physical inter-
vention in network equipment.

SDN can manage resources across various network
types, including loT, cellular networks, internet service
providers, and cloud services. To coordinate networks
of different natures, integrating artificial intelligence is a
necessary step [3, 4]. Al at the SDN controller level can
significantly enhance efficiency by taking over auto-
mated decision-making and diagnostics. This enables
the modeling of complex networking problems such as
dynamic configuration, routing, and access management
to limited resources.

Resource management in 10T networks faces chal-
lenges, the main ones being limited computing power,
energy resources, and bandwidth. Figure 1 summarizes
the key resource components of a typical autonomous
10T node, including the power source, communication
module, data-processing module, and memory [5]. Most
IoT devices operate autonomously, and their batteries’
limited capacity complicates long-term operation, re-
quiring algorithms to reduce energy consumption.

The functions of an 10T device include collecting,
processing, storing, and transmitting data from the phys-
ical world to the virtual environment. Within a single
automation stage, the number of loT devices can be

quite large. The heterogeneity of devices and communi-
cation technologies complicates integrating various el-
ements into a unified network, thereby increasing the
complexity of resource management. Furthermore, the
growing volume of data generated by 10T devices [6]
places additional strain on computing resources and data
storage, affecting the overall reliability of the system.

Data Processing

Power Source
Module

Communication

Memo
y Module

Fig. 1. Key resource components of an 10T node

Given the challenges outlined above, this work
aims to systematize and analyze current approaches to
integrating Al into SDN for adaptive resource manage-
ment in 10T networks, and to develop a framework ar-
chitecture that addresses the challenges of SDN-loT
networks, followed by its experimental deployment.
This will help identify areas where problems and con-
straints persist, determine which methods are effective
for optimizing network resources, and, at the same time,
open new research avenues that will drive further pro-
gress in the field.

1.2. State of the art

- Modern methods of 10T resource management.
Resource management mechanisms in 10T nodes are
typically divided into the following areas: process man-
agement, memory management, energy management,
and communication management. The communication
needs of an IoT ecosystem are supported by its commu-
nication architecture. Due to the limited resources of
each node, the communication protocols of sensor net-
works that enable such interaction as per [7] must be
effective in terms of reliability, scalability, and energy
efficiency. This is further complicated by device hetero-
geneity and by the fact that heterogeneous sensor net-
works may operate under widely varying transmission
conditions [8]. Efficient communication at the device
level directly affects the network's overall performance.
Therefore, in such systems, communication should pri-
marily be oriented toward energy efficiency, and only
then toward achieving high bandwidth. It is also essen-
tial to consider the unique characteristics of device traf-
fic and ensure appropriate quality of service manage-
ment.

The processing and management needs of the large
data flows generated by the IoT ecosystem can largely
be met through cloud computing [9, 10]. Cloud compu-
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ting provides a flexible and scalable infrastructure for
storing and processing data generated by Internet of
Things devices. Its application enables network state
management from any location, allowing organizations
to perform real-time data analysis, create tasks for the
lIoT ecosystem, integrate a wide range of tools (such as
machine learning, data storage, and scaling), and make
informed decisions based on the obtained information.
However, processing 10T applications exclusively in the
cloud is not always an optimal solution [11], particular-
ly for tasks that require minimal latency. A promising
approach involves using fog and edge computing to
address the high bandwidth requirements for transmit-
ting data from end devices. These technologies enable
the processing of large volumes of data directly near
their sources, reducing dependence on the cloud and
minimizing delays.

- The application of SDN architecture in loT
provides global visibility into network state via pro-
grammable APIs, centralized logical control over physi-
cally distributed resources, and flexibility in implement-
ing new network management methods. Owing to these
properties, SDN serves as a solid foundation for build-
ing 10T ecosystem management frameworks. The inte-
gration of loT and SDN [12], known as SDN-loT
(Fig. 2), creates a unified architecture that separates the
control plane from the data plane and efficiently coordi-
nates interactions among individual 10T nodes within
the network.
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Fig. 2. Structure of the SDN-IoT framework

For the long-term operation of the SDN-10T infra-
structure, energy-efficient routing is essential, as it min-
imizes device power consumption, extends network
lifetime, and ensures optimal utilization of limited re-
sources. The use of intelligent algorithms for dynamic
load balancing increases data transmission efficiency

even in large and complex networks. In [13], the use of
genetic algorithms (particle swarm optimization and
artificial bee colony methods) was proposed to address
these tasks. Architecturally, the SDN controller is de-
ployed within a cloud infrastructure (Fig. 3). The cloud
provides centralized management of routing, cluster
formation, and load balancing across the network. In
particular, genetic algorithms are executed on cloud
infrastructure, as its computational capacity eliminates
the need for local infrastructure for such tasks (or when
it is not feasible).
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Fig. 3. Architecture of Cloud-based SDN for 10T

The cloud provides flexibility in network scaling,
allowing resource allocation to increase or decrease
depending on load. This helps reduce costs compared to
maintaining local infrastructure, especially during peri-
ods of low network usage. It also simplifies network
maintenance (and thus extends its lifespan) in cases
where genetic algorithms are replaced with other meth-
ods or when the resource management approach is mod-
ified - changes that would be costly or even impossible
if the SDN Al controller were implemented within the
network itself.

The integration of blockchain into SDN for IoT is
a promising approach, as it enhances security, privacy,
and data integrity in 10T applications [14]. Blockchain
provides a decentralized, immutable ledger, helping
ensure that data cannot be tampered with when ex-
changed across SDN-orchestrated 10T networks. This
feature is particularly relevant in loT domains that re-
quire trustworthy, secure data exchange.

- Integration of Al into SDN for loT. Security in
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loT is critically essential because individual nodes are
vulnerable, leading to cyberattacks that can harm both
individual users and organizations. Protecting 0T de-
vices from such threats requires implementing reliable
security measures, particularly intrusion detection sys-
tems (IDSs) [15]. The limited computing power, energy
and memory resources of 10T devices make it difficult
to implement complex and comprehensive security
mechanisms on each device. Therefore, efficient light-
weight security solutions are needed to ensure protec-
tion and adaptability at the network level.

Deep learning (DL) at the intrusion detection sys-
tem level to analyze network traffic and detect anoma-
lies is applied. The combination of deep learning mod-
els such as convolutional neural networks (CNNs) and
long short-term memory (LSTMs) effectively handles
the heterogeneous nature of loT devices and enables
classification of loT traffic as benign or malicious,
achieving high accuracy and efficiency in threat detec-
tion. LSTM is an advanced form of recurrent neural
networks that allows modeling of temporal dependen-
cies in data. LSTM networks consist of memory blocks
that use three types of gates (input, output, and forget)
to control the flow of information. This makes LSTM
ideal for analyzing sequential data, such as network
traffic, for anomaly detection [16]. In the context of loT
security, LSTM is used to analyze network traffic to
detect anomalies and potential cyberattacks, owing to its
ability to capture long-term dependencies in data. The
system proposed in [17], called IDSIoT-SDL (Fig. 4),
consists of three main components:

- traffic capturing
- traffic parsing

Activity
Monitor

Activity

- feature extraction
Analyser

- classifier learning

.| [ Activity
- anomaly detection

Classifier

o]

—

SDN Controller

Fig. 4. Structure of IDSIoT-SDL

- Activity Monitor — responsible for collecting
and analyzing network traffic. OpenFlow switches are
used to gather data about network flows. Its functions
include traffic capture, parsing, and analysis prepara-
tion;

- Activity Analyzer — uses statistical data to de-
tect anomalies in the network. The LSTM algorithm
helps identify potential attacks and classify threat types.
Its main task is to determine traffic characteristics for
model training;

- Classifier — responsible for classifying traffic
as usual or malicious. When an attack is detected, an
alert is generated, and the attack type is identified for
subsequent response.

The approach proposed in [17] demonstrated effec-
tiveness in protecting loT networks by integrating SDN
and deep learning, enabling adaptability to security
challenges.

1.3. Objectives and tasks

Despite its advantages, the application of SDN ar-
chitecture in loT faces several challenges. Centralized
control introduces the risk of a single point of failure,
which affects network stability. The growing number of
connected 10T devices places a significant load on SDN
controllers, resulting in data processing delays and re-
duced overall network performance. Studies [18, 19]
show that embedded controllers are effective in small
networks, but as the scale increases, it becomes more
appropriate to use external controllers to ensure ade-
quate performance.

SDN architecture faces new security challenges,
particularly concerning the protection of its own infra-
structure. New risks have emerged related to potential
attacks on the controller itself. A compromised SDN
controller may allow an attacker to take control of the
entire network. In contrast, a compromised router can
only disrupt the proper functioning of the traffic passing
through it [20]. Attacks on control systems can cause
significant disruptions to industrial processes, negative-
ly affecting product quality and potentially endangering
human life. Therefore, it is necessary to develop a strat-
egy that ensures the isolation and monitoring of suspi-
cious devices, for example, through network segmenta-
tion and quarantining malicious loT devices [21].

The use of the SDN approach in loT, if not opti-
mized, can increase device energy consumption by gen-
erating additional control traffic [22, 23], thereby reduc-
ing 10T devices™ autonomy.

The Internet of Things is a key source of big data,
as it relies on connecting many smart nodes to the net-
work to transmit information about the environmental
conditions they monitor. When integrated into a distrib-
uted environment, the SDN architecture can amplify its
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internal limitations. Under current conditions, creating a
single central controller [24, 25] to manage all subnet-
works is a risky approach, since the Internet itself is
inherently distributed. This highlights the need for a
new perspective on the overall architecture.

Summarizing the above analysis, it can be noted
that the development and integration of SDN into the
Internet of Things environment are accompanied by a
set of systemic challenges, the resolution of which de-
termines the overall network efficiency. The key tasks
for SDN in the context of 10T include effective energy
management, scalability, enhanced security, load bal-
ancing, and interoperability among heterogeneous de-
vices and technologies. Implementing these tasks re-
quires the development of flexible, intelligent control
mechanisms capable of adaptively responding to chang-
es in network state and load.

A promising approach to addressing the above
challenges is the use of artificial intelligence in SDN-
lIoT networks. The integration of Al assists in device
authentication, enhances security, effectively mitigates
attacks on SDN-1oT networks, and ensures operational
continuity. Through capabilities such as real-time data
analysis and network event prediction, Al enables SDN-
10T networks to achieve a new level of performance,
delivering high QoS, scalability, and adaptability across
interconnected systems.

The paper is structured as follows: Section 1 in-
troduces the motivation for improving the management
of limited resources in heterogeneous 10T environments
and provides an overview of the SDN architecture, its
integration with cloud and Al technologies, and the key
challenges in ensuring scalability, energy efficiency,
and security. Section 2 describes the materials and
methods of research, detailing the design of the pro-
posed hybrid Cloud-SDN-loT framework, the interac-
tions among architectural layers, and the experimental
setup implemented within a software-defined testbed
with an external SDN controller, control API, monitor-
ing, and Al module for traffic optimization. Section 3
presents the algorithm and results of experimental test-
ing of the proposed framework, including performance
metrics, adaptive access control evaluation, and analysis
of system stability. Section 4 provides a detailed discus-
sion of the results, demonstrating the framework's abil-
ity to enhance network performance and security, ensure
adaptive access control to constrained resources, and
maintain service quality. Section 5 concludes the paper
by summarizing the key findings, highlighting the ad-
vantages and limitations of the proposed approach, and
outlining directions for future research toward large-
scale implementation and real-time optimization of hy-
brid Cloud-SDN-10T systems.

2. Materials and methods of research

Let us consider the basic theoretical approaches,
methods, and technologies that enable the design of an
improved Hybrid Cloud-SDN-1oT framework architec-
ture and, accordingly, provide adaptive control of access
to limited resources in Internet of Things networks and
ecosystems. We will analyze and justify the extended
functionality of the new framework architecture, de-
scribe the selection and interaction of the hardware—
software resources and components, and the artificial
intelligence algorithms required for the experimental
implementation of the framework and the emulation
environment. The proposed methodology is structured
in accordance with the stated research objectives and
allows the experiment to be reproduced.

2.1. Proposed Methods and Design
of the Hybrid Cloud-SDN-10T Framework

The improved and updated architecture of the hy-
brid Cloud-SDN-IoT framework for adaptive manage-
ment and access control to limited resources in 10T net-
works (Fig. 5) is built as a three-layer structure based on
the cloud application layer, the control layer, and the
infrastructure layer. Unlike typical SDN architectures, it
employs the MQTT protocol and blockchain technolo-
gies to enable cross-layer feedback, enhance system
security, and support deep learning, among other func-
tions.

The functionality and implementation approaches
for the individual layers of the proposed architecture
may be adjusted based on the problem-oriented tasks
addressed by a particular ecosystem. However, the
general approach to implementing the framework can be
based on the following principles.

1) Infrastructure Layer. As shown in Fig. 5, this
layer serves as the foundation of the framework
architecture. It comprises multiple distributed loT
environments (e.g., a room in a smart hospital, a bank
branch, a part of a smart manufacturing system, or a
smart home). Each environment consists of 10T nodes
connected to their respective 10T controllers.

- The loT Controller plays a key role in enabling
device interaction with the network, supporting the
MQTT (Message Queue Telemetry Transport) protocol
for communication and utilizing blockchain for secure
authentication and authorization within the MQTT
broker. For further routing and integration with the SDN
network, several 10T controllers are connected to an
OpenFlow SDN switch that manages traffic and
allocates network resources.

The infrastructure layer interacts with the control
layer via the SDN Southbound Interface, enabling
centralized network management. In addition, the l1oT



Machine learning and intelligent systems

159

— «——Pub Event Management
= Cloud
A A Monitoring Analitics API Application
MQTT BROKER Layer ]
' Al Power management
i A : e
Northbound interface Blockchain
SDN Y '
Controller
pTeent T sDN ([ SDN
. Al Security . Controller [----.___ _..---1Controller Control
1 management: | | /L | @ TTTvv--. SDN |-~ Layer
e Controller
i Al Traffic
' management | \. -
: Southbound interface
A 4
| Blockchain
i - A OpenF‘iow
; OpenFlow - SWN Infrastructure
SW1 v ) Layer
i ' OpenFIO\\N-\
; : SW2 :
: 5 4 "‘
— \ %
—_  oub 5 loT Controller 3
MQTT BROKER loT Controller 1 loT Controller 2 l loT Controller N
vo_ N[ 0 o _ 7
<= o = o - ke
B € 0 =% B -

loT ENV 1 loT ENV 2

loT ENV 3

loT ENV N

Fig. 5. Architecture of the hybrid Cloud-SDN-loT framework

controller can publish information about connected
devices to the application layer via the MQTT protocol
and is itself subscribed to events for dynamic
management of loT device power consumption. This
enables automatic control of the power supply for
individual 10T nodes to optimize energy use or security
management.

2) Control Layer provides centralized
management of network traffic and security within 10T
environments. This layer includes SDN controllers that
perform intelligent network control, as well as two
embedded Al modules:

- Al Security Management Module - employs
deep learning methods, including convolutional neural

networks and long short-term memory. The Al model is
trained on historical network traffic data obtained from
loT controllers, OpenFlow SDN switches, and
blockchain records. Based on this, it classifies traffic as
safe or malicious, detecting anomalous patterns that
may indicate DDoS attacks, unauthorized connections,
or device configuration changes. When a threat is
detected, the SDN controller blocks suspicious traffic or
adjusts routing, notifying the Cloud Application Layer
of the danger.

- Al Traffic Management Module - applies
supervised learning to balance traffic within the SDN-
loT environment. The Al model is trained on data
related to the load on OpenFlow SDN switches,
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historical traffic metrics from resource-constrained loT
nodes, and QoS requirements. Based on the predicted
changes in network load, the SDN controller optimizes
routing to prevent delays and congestion, while
dynamically adjusting bandwidth allocation for mission-
critical 10T devices. To minimize the risks of
unauthorized access and data tampering, SDN
controllers interact with the blockchain infrastructure.
They record transactions related to network policy
changes and store key configurations, ensuring
protection against compromise by enabling rollback to
the last known operational state. Blockchain is also used
to authorize the SDN controller when interacting with
the cloud layer, providing secure authentication during
the exchange of control commands.

Interaction with the infrastructure layer occurs
through the Southbound API, where the controller re-
ceives traffic statistics, 10T device connection and dis-
connection events, and routing requests. In response, the
controller provides updated routing rules to the Open-
Flow SDN switches, ensuring flexible traffic manage-
ment. Interaction with the application layer occurs
through the Northbound API, where the SDN controller
sends analytical data and threat notifications while re-
ceiving new network management policies from cloud-
based applications.

3) Cloud Application Layer is the top level of the
architecture, providing monitoring, analytics, high-level
network management by the administrator, and energy
consumption optimization. It performs essential
functions related to integrating data from lower layers,
processing this information, and making decisions for
dynamic management of the loT infrastructure. The
cloud architecture was chosen for its flexibility, as it
allows easy updates or replacement of the Al model
without requiring modifications to the entire
infrastructure, unlike direct implementation. It also
provides scalability, enabling the addition of new
analytical modules or increased computational capacity
without requiring additional local hardware. Moreover,
it allows the deployment of new algorithms for energy
optimization, management, or loT ecosystem protection
without interrupting its operation, ensuring network
stability. The components of this layer include:

- The monitoring and analytics module provides
visualization of the current network state, resource
usage statistics, and traffic anomaly detection.
Interactive analytical dashboards for operators enable
strategic decision-making.

- The SDN network API is used to receive data
from the Control Layer and to transmit configuration
commands. It ensures feedback with SDN controllers
for adaptive routing.

- The Al Energy Management module uses a

deep reinforcement learning (DRL) algorithm to

optimize energy consumption across loT devices. The
control process is implemented through an event
management mechanism, specifically by generating
commands based on telemetry data about the state of
0T devices, battery charge levels, and changes in the
lIoT network topology. These commands are published
to an MQTT queue, to which 10T controllers subscribed
to specific event types respond by performing
corresponding actions, such as turning off a device or
switching it to a power-saving mode.

Interaction with the Control Layer occurs through
the Northbound Interface, which provides data on the
current traffic state, the status of 10T controllers, and
overall network load. At this level, blockchain is used to
authorize requests to the MQTT broker, control access
to the event queue, and verify energy management
commands to prevent request forgery.

2.2. Experimental Setup

To verify the functionality of the proposed
framework, a controlled experimental environment was
created and deployed (Fig. 6), integrating network
emulation, an embedded Al module for adaptive access
control to limited resources, an event broker for loT
resource management, and cloud-based monitoring and
management tools (metrics, dashboards, APIs).

The environment was deployed on a Linux-based
platform, which provided flexibility in organizing the
operation of individual open-source components. The
choice of Mininet (Fig. 7) and Ryu (Fig. 8) was moti-
vated by their widespread use in research and experi-
mental studies [26], reproducibility across independent
conditions, open-source availability, and extensibility
via custom Python modules (Al module, traffic genera-
tion, statistics collection, and limited-resource simula-
tion).

Prometheus was used to collect network metrics,
and Grafana (Fig. 9) was employed for real-time visual-
ization of client activity, API request success and failure
statistics, and loT device status. Manual network opera-
tion control was implemented via a REST API using
Postman (Fig. 10).

To emulate the 10T data plane, an MQTT broker
and an loT device hub were configured on one of the
Mininet hosts (h7) and the control plane. Additionally,
an loT token-server APl with a limited number of
requests per minute was connected to host hl as a
constrained resource. Power management was
implemented using control queues with
on/off/sleep/awake commands. The controller or Al
module can temporarily switch devices into power-
saving states during overloads or when access quotas to
the limited resource are depleted and receive
confirmation via telemetry feedback. To simulate user
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behavior in the network, two groups of clients were
used: h2-h4 (regular clients) generated requests to the
limited resource at uniform intensity, while h5-h6
(aggressive clients) generated excessive requests,
emulating overload scenarios beyond acceptable limits.
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Fig. 6. Structure of the simulated
experimental environment

The Al module was developed in Python using
scikit-learn and integrated into the control plane. The Al
model was trained to classify traffic and manage access
of individual nodes to the limited 10T resource based on
statistical data collected by the Ryu controller. This
demonstrates how machine learning methods can extend
the capabilities of the SDN controller through predictive
decision-making and ensure fair (proportional) access to
the limited resource before it becomes depleted. A com-
plete description of the tools used is presented in Ta-
ble 1.

This integrated configuration enabled the modeling
of a realistic hybrid AI-SDN-IoT ecosystem, in which
access to limited resources is managed adaptively
through artificial intelligence algorithms. It also provid-
ed flexibility for experiment replication, result visuali-
zation, and expansion of the test environment through
additional 10T or cloud service emulations.

[¥1  abanar@abanar-virtual-... e o= 2 o X

abanar@abanar-virtual-machine: f S
sudo mn --custom topo.py --topo mytopo --control
ler=remote,ip=127.0.0.1,port=6633 --switch ovsk,p
rotocols=0OpenFlow13 --nat

[sudo] password for abanar:

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2 h3 h4 h5 h6 h7

*** Adding switches:

s1

*** Adding links:

(h1, s1) (h2, s1) (h3, s1) (h4, s1) (h5, s1) (h6, s
1) (h7, s1)

*** Configuring hosts

hi h2 h3 h4 h5 h6 h7

*** Warning: loopback address in /etc/resolv.conf m
ay break host DNS over NAT

*** Starting controller

co

*** Starting 1 switches

ST ...

*** Starting CLI:

mininet> [I

Fig. 7. Mininet terminal of the environment

[+l  abanar@abanar-virtual-... o) M= = o X

abanar@abanar-virtual-machine: ] S
python3.8 -m ryu.cmd.manager api_controller.py

loading app api_controller.py

loading app ryu.controller.ofp_handler

creating context wsgi

instantiating app api_controller.py of SDNRestAPI
instantiating app ryu.controller.ofp_handler of OFP
Handler

i3494) wsgi starting up on http://0.0.0.0:8080

Fig. 8. Ryu terminal of the environment

Table 1
Platform and basic tools
Platform Tools used
component

OSandenvi- | Ubuntu 24.04 LTS (x86-64), Python 3.8
ronment

SDN network | Mininet with a custom topology (Open
emulator vSwitch switch, hosts h1...h7, external

SDN controller)
SDN control- | Ryu, OpenFlow 1.3 protocol, extended

ler controller application with a northbound
REST interface

Event broker | Eclipse Mosquitto for managing the loT
hub and publishing telemetry/command

messages (MQTT) for loT device control

Monitoring Prometheus (metric collection) + Grafana

(data visualization)

Control tools | Postman for interacting with the Applica-
tion Plane API, Python traffic generation

scripts (normal and aggredive modes)

Al module Python + scikit-learn (Supervised Learn-
ing, Logistic Regression) as an Applica-
tion Plane service that analyzes
flows/events and triggers access policies
for the limited resource

Limited re- h1: loT TokenServer APl with an access

source and quota (reg/min).

users h2-h4: normal clients (Python module,

steady uniform traffic to h1).

h5-h6: burst clients (Python module, traf-
fic spikes to h1).

h7: 10T hub with connected devices
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Fig. 10. REST API request window of the framework in Postman
3. Case study functionality and usability of the framework for this

kind of task. The loT system is emulated by an 10T To-

The purpose of the case Study experiment is to ap_ kenServer APl with a strict request—per—minute ||m|t,

ply artificial intelligence algorithms to dynamically dis- ~ While the client hosts may represent 10T devices or an
tribute access to a limited resource and to verify the 10T hub/gateway that generate requests to this service.



Machine learning and intelligent systems 163
The algorithm of the proposed model of the experiment Table 2
(Fig. 11) consists of three main stages: data preparation, Description of log file fields for training

f_\l mEduLe ;:reparat:jo_n,_dar:jd_tistmgbl/vT resul; I_evalgs- Field Description

ion. Each stage is divided into subtasks, enabling the = Timestamp (ms, Unix epoch) of the

trained Al model to be integrated into the SDN envi-

ronment sequentially.
data data pre-
acquisition | ~ [processing

Data
preparation

traffic
generation

r—-r—-—-- - - - - - - - =" -"-—"=-"=-"=-"=-"=-=-=-= |
I
I
| Al-module
i Al-Modale Model training Model I
preparation |
| deployment |
I
I
r-r—-——--"-"-"-" - - - - =" -"=-"=-="=-"=-="=-—=-=-= |
: |
! Testing and Result data Result I
: evaluation acquisition evaluation I
I
I
I

Fig. 11. Model of the experiment

- Data Preparation. To generate traffic, Python
modules were developed that, as described in Table 1,
simulate client behavior in two modes - normal (stable
clients, h2-h4) and aggressive (peak load clients, h5-h6)
- and send requests to the limited resource. The limited
resource is represented by an 10T token-server APl con-
nected to host hl, with a limit of requests per minute.
Data collection is performed by an event logger on the
SDN controller and on h1, which periodically gathers
traffic characteristics and exports them to CSV files.
The log files contain key parameters summarized in
Table 2.

The log files are divided into two types: API_log,
which reflects direct HTTP requests from clients to the
token server, and training_log, which records aggregat-
ed metrics collected from the SDN controller for subse-
quent Al module training. The combination of these two
sources establishes a connection between the actual
state of the resource, the controller’s decisions, and cli-
ent behavior over time. Merged into a single dataset,
these files formed the foundation for further training and
testing of the machine learning models.

The generated dataset included both stable request
patterns and bursty overloads, ensuring sample repre-
sentativeness. This contributed to effective model train-
ing and performance evaluation across different scenar-
ios. Data preprocessing included standardizing data
formats, handling missing values, and partitioning into
training and test sets without temporal overlapping.

recorded request

src_ip IP address of the source of traffic.

status Server HTTP response code (200,
429)

count_60s Number of requests from the client
during the last minute

global_limit Current resource limit (requests per
minute)

total_60s Total number of all requests to the
resource during the last minute

share_prev Client’s share of resource usage

active_clients | Number of active clients

label_fair_prev | Ground truth label indicating the
correctness of the previous resource

allocation

reset_in_sec Time (in seconds) remaining until

the next global limit reset

- Al-Module Preparation. Based on the collected
log files, a training dataset was formed to predict re-
source overuse (over_resource) in the SDN environ-
ment. To reduce dimensionality and eliminate correlated
features, feature selection was performed, retaining only
temporal and dynamic traffic parameters (count 60s,
global_limit, active_clients, share prev, status, to-
tal_60s). A logistic regression model from the scikit-
learn package was trained on 80% of the dataset, with
the remaining 20% used for testing. Logistic regression
was chosen for its interpretability, robustness on small
datasets, and ability to efficiently model the binary re-
source state (within_resource / over_resource) with min-
imal computational overhead, which is critical for real-
time SDN operation. After achieving stable results, the
model was saved in .joblib format for integration into
the Python Al module script. For verification, the model
was tested on new experimental data obtained during a
repeated traffic run. The prediction results were saved in
CSV files for subsequent comparison with the actual
values (label_fair_prev).

During initialization, the Al model was loaded
from the .joblib file. At each monitoring interval, a vec-
tor representing the current resource state was generated
and passed to the model for class prediction: 0 - with-
in_resource, 1 - over_resource. In the event of a predict-
ed overload, the module dynamically added a drop-flow
rule on the controller for the corresponding traffic
source, restricting access to the resource for a specified
timeout period (until the limited resource was re-
freshed). After the blocking interval ended, the rule was
automatically removed. Thus, the prepared and de-
ployed Al module enabled the integration of machine
learning into the SDN controller’s decision-making
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loop, allowing adaptive real-time management of access
to limited resources.

To formalize the resource management logic, the
adaptation process is defined as a per-client quota func-

tion g;(t) (1), representing the individual access quota

(allowed requests per minute) for the client i in the
current control window:

ai (t)=f(xi (1)), €N

where X (t) is the client feature vector built from re-
cent traffic statistics and previous allocations:

x;j (t)=[count _60s, total _60s, active _clients, @)

global _limit, share_ prev, quota_ prev, is_ blocked]

Based on vector (2), the trained Al model esti-
mates a risk score pj (t) (3) (probability of resource
overuse).

pi (t)=9(xi (1)),

pi (t)[0.1], ®3)

whereg(-) is the trained ML classifier that outputs the
overuse risk score, and Tignt is a predefined high-risk

threshold (in our experiments Thjgye =0.70).

If ;i (t)>Thign . the client's quota is adapted by

applying a penalty step, otherwise, the baseline fair-
share allocation is maintained, and any released capacity
is redistributed to low-risk clients. The resulting quota

vector {qi (t)} is dynamically updated and enforced via

the SDN/REST control interface.

- Testing and evaluation. To assess Al integra-
tion, data were collected under two scenarios: Baseline
(without Al) and Al-enabled. Logs from the limited
resource and the SDN controller were aggregated into 5-
minute windows (time-based grouping), and for each
client (h2-h6), the number of attempts, successful re-
quests, share of attempts, and success rate were calcu-
lated. The aggregated CSV files were used to generate
comparative charts and compute summarized perfor-
mance metrics.

For the trained logistic regression model that pre-
dicts limited resource overuse, standard evaluation met-
rics were applied: Accuracy (the overall proportion of
correct model decisions), Precision (the proportion of
correctly predicted positive cases among all positive
predictions made by the model), Recall (the proportion
of correctly identified actual positive cases among all
true positives), and Fl-score (the harmonic mean be-
tween Precision and Recall) (4) - (7).

TP+TN
TP+TN+FP+FN’

Accuracy =

(4)

where TP — (True Positive) - the model correctly pre-
dicted a resource overuse;

TN — (True Negative) - the model correctly predict-
ed the absence of resource overuse,;

FP — (False Positive) - the model incorrectly indicat-
ed a resource overuse that did not occur;

FN — (False Negative) - the model failed to detect an
actual resource overuse.

Precision = , (5)
TP+FP
Recall = L, (6)
TP+FN
Flo 2 x Precision x Recall )

Precision + Recall

The calculations were performed using the classi-
fication_report() and confusion_matrix() functions from
the scikit-learn library. The results are presented as con-
fusion matrices in both absolute (Fig. 12) and normal-
ized values (Fig. 13). Overall, the model correctly iden-
tifies approximately 93% of within_resource cases and
about 99% of over_resource cases, confirming its suita-
bility for operation at the SDN control level.

1600

1400
within_resource 1 27 2 1200
1000

' 800

True Label

over resource 26 1800

r 400

within_resource over_resource e

Predicted Label

Fig. 12. Confusion matrix for the logistic regression
model in absolute values

The impact of Al integration is illustrated by a
two-panel scatter plot (Fig. 14): the x-axis represents the
attempt share, and the y-axis shows the success share;
the red dashed line y = x indicates ideal proportionality.

- Without Al (Fig. 14.1), the points are noticea-
bly scattered relative to the y = x line: clients with a
higher share of attempts do not consistently achieve a
proportional share of successes; imbalances are visible
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- With Al (Fig. 14.2), the cloud of points aligns ¢ 10.0.0.2 ‘/
more closely along the y = x line, indicating a trend o ig-g-g-i « e
. .. . . . (] .0.0. P
toward proportional distribution: clients generating a A 10.0.0.5 i
higher share of attempts receive a comparable share of ¢ 10.0.06 ’ ¢
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the resource during bursts and continue to receive their S s
guaranteed resource quota. 0
The Al module stabilizes the distribution of re- §
quests among clients, maintaining fairness accuracy a N 4
within the range of 90-100% (Fig. 15), whereas in the Ve
baseline case (without Al), accuracy fluctuates between ] .gﬁ.
0-85%, indicating improved proportionality and predict-
ability of access to the limited resource.
In this setup, explainability is achieved through the ‘ |
structural transparency of logistic regression, enabling o0 g1 02 0.3 04

Attempt Share
2)
Fig. 14. Attempt vs. Success share for the scenarios:
1 —without Al; 2 — with Al

direct inspection of how each traffic feature (such as
“count_60s” or “active_clients”) contributes to the pre-
dicted overload probability. This ensures that resource
allocation decisions are not “black box” outcomes but
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Fig. 15. Fairness accuracy over time
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are explicitly linked to network state parameters via
defined risk thresholds. Furthermore, trustworthiness is
supported by a validation approach that relies on repro-
ducible feature extraction and quantitative evaluation
based on classification and error-rate metrics. To ensure
operational safety, the control policy is bound by mini-
mum service quotas and incremental penalty steps, pre-
venting radical actions during transient network fluctua-
tions. At the same time, full audit logging provides ac-
countability for every decision made by the Al module.

4. Discussion

By integrating flexible resource management, Al-
enabled traffic analysis, and distributed security mecha-
nisms, the developed framework guarantees efficient
operation even in large-scale, heterogeneous environ-
ments. Let us examine how the proposed framework
tackles the main challenges faced by SDN in the context
of 10T, namely:

- Energy management. The use of programmable
interfaces in SDN networks [27] allows adaptive energy
consumption based on current load and network per-
formance requirements. At the application layer of the
framework, an Al-based infrastructure employing deep
reinforcement learning is used for power management.
DRL utilizes statistical data and Q-learning algorithms
[28] to optimize energy usage. The choice of EMQX as
the MQTT broker implementation is justified by its abil-
ity to efficiently handle millions of connections and
deliver MQTT messages with minimal latency, as con-
firmed by the study in [29];

- Scalability. The integration of the SDN ap-
proach into 10T simplifies this process for 10T networks
by distributing controllers horizontally or hierarchically
at the control layer, while maintaining centralized con-
trol over each distributed component [30]. SDN control-
lers enable dynamic changes to network topology with-
out requiring physical modifications to its structure,
simplifying the integration of new loT devices into the
overall ecosystem. The use of cloud infrastructure al-
lows computational resources to be scaled to meet cur-
rent network demands, eliminating the need to expand
physical infrastructure. This allows a flexible response
to changing loads by adding or removing resources in
real time;

- Security management. Al-based approaches -
specifically deep learning (DL) with CNN and LSTM -
are used at the control layer for network traffic analysis
and anomaly detection, enabling efficient identification
of malicious traffic and appropriate threat response [17].
The flexibility of SDN allows the isolation of suspicious
devices and the modification of routing paths to mini-
mize risks. The integration of Al algorithms enhances
the network’s ability to predict threats, automate re-

sponses, and mitigate attacks [31]. In the event of an
attack, SDN supports rapid network recovery, threat
isolation, and uninterrupted loT operation [32]. The
advancement of blockchain technology - a decentralized
ledger that immutably stores information in sequentially
linked blocks has opened promising applications in IoT.
[33, 34]. Physical integration is achieved using block-
chain components (gateways, lightweight nodes, and
computational nodes) to minimize the risks of unauthor-
ized access and data tampering when accessing the
cloud or establishing MQTT connections;

- Load balancing. The integrated Al traffic man-
agement module within the SDN controller uses super-
vised learning [35] and deep reinforcement learning
(DRL) approaches to optimize routing and evenly dis-
tribute network load, ensuring stable performance even
during peak conditions. The SDN paradigm, which sep-
arates the control plane from the data plane, enables
dynamic traffic redistribution and latency minimization,
both of which are essential for large-scale heterogene-
ous networks [36]. As a result, SDN helps maintain the
stable operation of network nodes even as data volumes
increase;

- Interoperability. The use of OpenFlow switch-
es enables the integration of loT devices of various
types into a unified, manageable network. SDN pro-
motes interoperability in 10T through flexible resource
configuration [37]. For example, unified APIs enable
integration of devices that use different communication
protocols. 10T controllers that support the MQTT proto-
col operate on the Publish/Subscribe model, ensuring
the universal exchange of control commands regardless
of device platform.

The results of the simulated experiment showed
that integrating the Al module into the SDN controller’s
decision-making loop not only ensures high accuracy in
detecting resource overuse but also measurably im-
proves the proportionality and stability of access distri-
bution among clients. The average fairness of request
distribution increased from 79.2% to 90.98% (an in-
crease of 11.78 percentage points, 14.87% relative),
which is significant for practical limited-resource SDN
scenarios. Future research will focus on comparing dif-
ferent machine learning models (Random Forest, SVM,
neural networks, etc.), utilizing alternative datasets with
diverse traffic profiles, and evaluating the effectiveness
of each approach in real-time, limited resource access
management tasks.

5. Conclusions

The integration of artificial intelligence into soft-
ware-defined networks for the Internet of Things ena-
bles adaptive resource management, enhances network
security, and improves energy efficiency. The use of
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SDN allows centralized control of traffic routing and
increases the scalability of 10T networks.

The proposed hybrid Cloud-SDN-loT framework
successfully addresses the key tasks faced by modern
SDN-loT systems: energy management, scalability,
enhanced security, load balancing, and interoperability
among heterogeneous devices. It combines the compu-
tational power of the cloud, the local analytical capabili-
ties of the SDN control layer, and the ability to dynami-
cally balance traffic. The framework enables fair and
stable access control to a limited 10T resource (the To-
kenServer API) under different traffic patterns, as ex-
perimentally validated in an emulation environment.
The use of machine learning algorithms for network
traffic analysis and anomaly detection enhances security
by reducing the risk of attacks on the 10T infrastructure.
The integration of blockchain technologies into the
framework facilitates secure access management and
transaction verification within the SDN environment,
minimizing the risks of data tampering and unauthor-
ized access. The use of the MQTT protocol enables effi-
cient control of 10T devices, particularly for energy op-
timization and security purposes. By building the exper-
iment on open-source components as Linux, the Ryu
controller, and Mininet, the framework is fully repro-
ducible, cost-free, and accessible to the research com-
munity. The developed tool is valuable for further scien-
tific experiments, testing artificial intelligence algo-
rithms, and validating hypotheses in the field of SDN-
0T without the need for specialized hardware.

In the conducted experiments, the Al-enabled con-
trol loop increased the average fairness of request distri-
bution from 79.2% to 90.98% (an increase of 11.78 per-
centage points, 14.87% relative), demonstrating im-
proved proportional access to the limited IoT Token-
Server APl while preserving stable, real-time request
regulation.

Future research will focus on testing the frame-
work on large synthetic datasets to evaluate its efficien-
cy under controlled conditions, and then on modeling
real operational scenarios to analyze performance,
scalability, and reliability under various network condi-
tions. Another important direction is to explore ways to
reduce the cost of commercial deployment using cloud-
based applications and to mitigate latency issues caused
by the geographical distance of cloud data centers by
expanding the use of edge and fog computing to enable
partial local processing of loT data.

Overall, the proposed architecture of the Hybrid
Cloud-SDN-IoT framework enables the study and im-
plementation of various policies for ensuring security
and access to limited resources in information and
communication networks and complex ecosystems, as
well as the development of advanced smart algorithms

for adaptive resource management and their distribution
among system components and users.
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AJANITUBHE YIIPABJIIHHSI OBMEXXEHUMH PECYPCAMM
HA OCHOBI LITYYHOI'O IHTEJIEKTY B EKOCUCTEMAX SDN-IOT

A. IO. banap, I'. 1. Bopo6eus

IIpeamerom nocinipkeHHs € iHTerpaiis MeroniB mry4noro inrenekry (LLI) y nporpamuo-koHpirypoBani me-
pexi (SDN) ajist ananTHBHOIO KEpYBaHHS AOCTYIIOM JI0 OOMEXKEHHX pecypciB B iHYpacTpyKTypi ekocucteM [HTep-
nery peueit (IoT). Mertorw pobotu € po3poOka Moneni Ta apxiTekrypHoro pimenss riopumHoro Cloud-SDN-loT
¢petimBopky 3 BOynoBanumu LIII-koMImoHeHTaMH ISl 1HTENEKTYaTBHOTO PO3IOALTY MEPEKEBUX Ta OOUUCIIOBAIIb-
HUX PEeCypCiB Ta eKCIIepUMEHTaIbHa MepeBipka MOKPAIIeHHs PO3MOALTY AoCTyly A0 oomexkeroro loT-pecypcy Bpa-
XOBYIOUH pi3HI ma0nonu tpadiky y cepegoBuil emyrsii. OCHOBHI 3aBJaHHs JOCTIDKEHHS: 1) aHami3 cydacHHUX
MiXO/IB /10 eHeproeeKTHBHOrO yrpaBiiHHs pecypcamu Ta Oesnekn B SDN-IoT mepexax; 2) cTBOpEHHS apXiTek-
typu riopuaaoro Cloud-SDN-IoT ¢peiiMBOpKY, siKuii MoeqHYe LeHTpaTi3oBaHe kepyBanHs SDN-Mepexki 3 THy4Ki-
CTIO XMapHOI iHPpacTpyKkTypH; 3) po3podKka METOMOOTT EKCIIEPUMEHTY 3 BUKOPUCTAHHSIM KOMIIOHEHTIB MAIIMHHO-
TO HABYAHHS IS TIOKPAIIEHHS PO3MOALTY JOCTYILY 0 PECypCy Ta 3MEHIIEHHS HEPiBHOMIPHOCTI HABAHTAXKEHHS MiXk
KOHKYPYIOUHMH KITi€HTaMH; 4) OIiHIOBaHHS €(DEKTUBHOCTI CHCTEMH BiJAIOBITHO 10 TIOCTABJICHUX 3aBIaHb Ta CIIpa-
BEUTMBOr0 po3moiry oomexeHoro loT pecypcy mumsixoMm aHamizy pO3MOJLTY 3alUTIB i TOYHOCTI PO3Mi3HABaHHA
TIEPEBUIIEHHS JTOCTYIIY IO pecypcy. Y poOOTi 3amponoHOBAHO YIOCKOHAIEHY TPHUPIBHEBY MOJENb apXiTEKTYpH
SDN i3 3acrocyBanrsam LI anamituku: iHQpacTpykTypHUil piBeHs loT-By3niB, piBeHs ympasiiaas SDN ta xmap-
HUM IpUKIaTHANA piBeHb. EXCieprMeHTanbHa YacTHHA pealli3oBaHa y BipTyalsHOMY cepemopumli Linux, Mininet +
Ryu, a maBuena monens LI mpuiimae pimmeHHS mpo po3moin odMexxeHoro pecypcy. Pe3yJbTaTH eKCIiepuMEHTIB
mokasainy, mo iaTerparis [HI-momymnst y kouTyp SDN-KOHTpOJIepa MiABHUIYE TOYHICTh JETEKIlii MepEeBUIIEHHS JOC-
TYITy O pecypcy, 3MEHIITye HEpiBHOMIPHICTh HABAaHTa)KEHHS MK KITIEHTAMH Ta ITOKPAIIY€e CTAaOUTBEHICTD PO3TOALTY
3amuTiB y peaspHOMY 4aci. BucHoBku. HaykoBa HOBHM3HA OTPMMAaHUX PE3YNBTATIB IMOJATa€ y CTBOPEHHI MOAEi
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BiaTBOpIoBaHoi ridopuanoi apxitektypu Cloud-SDN-IoT, sika 3a0e3nedye aganThBHE KEpyBaHHS JIOCTYIIOM IO 00-
MexxeHnX pecypci [oT-By3miB nUIsIXoM moeHaHHS HEHTpali3oBaHoro SDN-KOHTPOJIIO 3 MPOrHO3HOO aHAJIITHKOIO
I, 1o 103BOMMIIO BU3HAYMTH Ta pealli3yBaTH IMiAXOAM Uil 3a0e3MeueHHs KirouoBux kpurepiiB SDN mepexi (ym-
PaBIIiHHS €HEPrOCIIOKUBAHHAM, 3a0€3IIeUeHHsI MaclITaO0BaHOCTI, MiJBHUIIEHHS PiBHS Oe3reKH, OaJaHCyBaHHS Ha-
BaHTAXXCHHS Ta NOCSATHEHHs iHTepornepadenbHocTi). InTerpanis 111 B xoHTyp KepyBanHs SDN migBunms cepeaHiit
MMOKA3HUK CIPABEIIUBOCTI po3moairy 3amuTiB 3 79,2% no 90,98% (mpupict ctanoButh 11,78 B aGCOMOTHOMY 3HA-
yenHi Ta 14,87% y BiIHOCHOMY), IO TOKa3ye MOKPAIICHHS MPOMOPIIHHOr0 JOCTymy a0 oomexeHoro loT
TokenServer API i3 36epesxeHHIM CTaGiIBHOrO PEryNOBaHHs 3alHTIB y peadbHOMY Yaci. IIpakTHYHe 3HAYEHHS
TIOJIATAaE Y MOXKIIMBOCTI 3aCTOCYBaHHS 3allpOIIOHOBAHOTO MiIXOMy AJISl ONTHUMi3amii JOCTYIy 10 OOMEXKEHHX XMap-
HUX cepsiciB, API, enepropecypciB abo [oT-npuctpoiB y cucremMax «pO3yMHOI'O MiCTa», OXOPOHH 37I0pOB’Sl 49U
npoMucioBux Mepexax. [ogansmni mocaimkenns: nependayarots posmupenHs 11II-koMIOHEHTIB pi3HUMH MoOJe-
JISIMM MAIIMHHOTO HaBYaHHS, ()OPMYBaHHSI HOBHX HAaOOpIB JaHUX i MOPIBHSIBHY OLIHKY €()EeKTHBHOCTI KOXHOI MO-
JIeTi B 3aBJaHHI AMHaMivHoro ynpasiiaHs pecypcamMu SDN-IoT i BiATBOpeHHI y pealbHIX YMOBaX.

Koarouosi ciioBa: nporpamMHo-KOH]IrypoBaHi Mepexi; [HTepHeT pedeil; ITydYHUH 1HTENIEKT; KepyBaHHS Pecyp-
camu; xMapHa iHdpactpykTypa; SDN-KOHTpoOsIep; MalllMHHE HABYAHHS.
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