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INFORMATION-EXTREME IDENTIFICATION
OF UNMANNED AERIAL VEHICLES

This research aims to detect and identify unmanned aerial vehicles (UAVSs) by analyzing the network traffic they
transmit to their ground control station. The relevance of this topic arises from the need to develop highly effi-
cient UAV identification systems, given their widespread use across the military, civilian, and commercial sec-
tors. Effective solutions for detecting, identifying, and classifying these devices are required. This study aims to
develop models and methods that enable machine-learning-based UAV identification systems by analyzing in-
coming and outgoing data traffic using an extremely intelligent information technology. A methodology is pro-
posed for applying extreme information technology to UAV identification. This methodology involves employing
pattern recognition techniques and designing intelligent information systems. The scientific novelty lies in intro-
ducing an approach to modeling an intelligent system capable of learning to identify UAVs based on traffic
characteristics analysis. The research methodology includes the following steps: (1) forming a training dataset
based on UAV traffic parameters, (2) building a UAV identification system using an information-extreme ap-
proach, and (3) training the system under standard operating conditions of digital radio communication chan-
nels used by UAVSs. The results demonstrate that the proposed intelligent information system provides high UAV
identification accuracy. Testing achieved an average identification accuracy of 86%. Conclusions. The pro-
posed UAV identification system is based on an innovative approach to network traffic analysis using infor-
mation-extreme intelligent technology. The results confirm its effectiveness for identification tasks under stand-
ard regulated traffic characteristics. The obtained results have practical significance for developing monitoring
and protection systems in various fields against potential threats associated with UAV usage.

Keywords: unmanned aerial vehicles; information-extreme machine learning; information criterion; functional-
categorical model; traffic analysis; container of the recognition class.

the application of artificial intelligence technology, sig-
nal processing, information theory, and other fields [4].

1. Introduction

1.1 Motivation

As UAVs become increasingly accessible, their use
spans a wide range of fields, including commercial, sci-
entific, military, and civilian sectors [1]. Due to the di-
versity of UAV applications, ensuring safety, which in-
cludes effective detection and identification of these de-
vices, is an important aspect.

The relevance of this issue is determined by several
factors. First, the growing availability of UAV technolo-
gies and their integration into various civilian and mili-
tary systems create new threats to national security, citi-
zens’ privacy, and critical infrastructure stability [2],
which amplifies the need for developing specialized sys-
tems for UAV rapid detection and identification. Second,
although evolving, existing methods of UAV recognition
and identification still face limitations in terms of accu-
racy, efficiency under challenging weather conditions,
and adaptability to new types of UAVs [3].

In the scientific and practical context, the problem
of UAV detection and identification is multidisciplinary,
as it is related not only to engineering aspects but also to

Meanwhile, the research focus is on methods for design-
ing radar, optical, and acoustic detection systems for
UAVs [5, 6]. However, a significant number of unsolved
problems remain, such as minimizing identification er-
rors and adapting to new UAV technologies that use vis-
ibility reduction and radar jamming techniques. This
study proposes a set of so-called information-extreme in-
telligent models and machine learning methods that help
overcome these limitations and enhance the reliability
and speed of UAV identification.

1.2 State of the Art

State of the art UAV detection technologies include
radar systems, optical devices, acoustic sensors, and ra-
dio frequency signal analysis methods. However, all
these approaches have significant drawbacks. For exam-
ple, radar systems may be ineffective when dealing with
small, low-speed UAVs due to their low radar cross-sec-
tion [5]. Optical methods depend on lighting and visibil-
ity conditions, which limits their effectiveness in adverse
weather conditions [6]. Acoustic sensors are vulnerable
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to environmental noise pollution [7], and radio frequency
spectrum analysis can become challenging when multiple
signal sources are simultaneously monitored or in the
presence of high levels of radio interference [8].

A number of modern works propose combining sev-
eral sensor approaches, specifically the integration of op-
tical, radar, and acoustic channels, which allows for in-
creased UAYV detection reliability under interference con-
ditions [9, 10]. Multisensory data processing based on
deep neural networks provides improved classification
accuracy even with the partial absence of signals [11].

In this context, methods based on analyzing the data
traffic transmitted between UAVs and their ground con-
trol stations open up new possibilities. Monitoring signal
characteristics, such as radio frequency parameters, data
transmission protocol patterns, and command control sig-
natures, enables UAV identification even in the absence
of direct visual contact or radar reflection [12].

Work [13] examined a UAV detection system
model that combines network traffic analysis with visual
information, which makes it possible to increase detec-
tion system reliability and response time. Another study
[14] demonstrated the capabilities of adaptive data fusion
in hybrid architectures, which use machine learning to
optimize real-time identification processes.

The global scientific community is paying increas-
ing attention to the use of machine learning methods for
analyzing UAV data traffic. Convolutional neural net-
works (CNNs) can effectively classify signals in real time
[15, 16]. For instance, the works [17, 18] proposed the
use of deep neural networks to analyze the radio fre-
quency spectrum, enabling UAV identification even un-
der intense radio interference conditions. In [19], a sys-
tem was developed to analyze Wi-Fi traffic that accounts
for the unique signatures of UAVs during data transmis-
sion, while [20] explored UAV control command traffic,
employing machine learning models to detect patterns
specific to UAVs.

Recent research indicates the effectiveness of using
deep neural architectures for recognizing low-visibility
objects in aerial photographs and Earth remote sensing
data, which is also relevant for UAV identification [21].
Specifically, [22] demonstrated that YOLOvV8 and Swin-
Transformer algorithms provide over 95% accuracy in
multiclass drone identification, while [23] showed that
using attention mechanisms improves performance when
classifying micro-UAVs under complex lighting condi-
tions.

Despite significant progress, most modern methods
have certain limitations. The high computational com-
plexity of machine learning algorithms often makes their
real-time implementation impossible [24]. Moreover,
many approaches are narrowly specialized and focus on
a specific type of data transmission protocol or UAV
type. Analyzing the radio frequency spectrum can be

challenging in complex multi-platform environments, es-
pecially when multiple devices operate simultane-
ously [25].

The shortcomings of these approaches can be ad-
dressed using information-extreme intelligent technol-
ogy (IEI technology). This approach ensures high func-
tional efficiency in UAV traffic processing by leveraging
its standard statistical characteristics [26]. Consequently,
it provides high UAV identification accuracy even under
challenging conditions, such as high noise levels or a
crowded spectrum [27]. Furthermore, IEI technology re-
duces computational costs during machine learning and
the application of the resulting UAV identification deci-
sion rules [28]. This opens up opportunities to develop
real-time-operating efficient monitoring systems, which
is crucial for maintaining security despite growing UAV-
related threats.

1.3. Objectives and approaches

This research aims to develop new approaches to
UAYV identification based on the analysis of data traffic
using IEI technology. This study aims to adapt the mod-
els and methods of the technology to ensure high UAV
identification accuracy in a multi-platform environment
with spectral noise and limited computational resources.

IEI technology can address a range of challenges as-
sociated with UAV traffic analysis by optimizing the
identification system’s genotypic and phenotypic param-
eters. A key feature of this approach is its ability to min-
imize information loss during signal processing and
adapt to changing environmental conditions, such as in-
terference or variations in data transmission protocols.

The following tasks are being addressed within the
framework of this study:

1. Analyzing existing approaches to UAV identifi-
cation and identifying their limitations in terms of accu-
racy, adaptability, and computational efficiency.

2. Developing an IEl-based machine learning
model for UAV identification by analyzing their data
traffic.

3. Developing methods for optimizing machine
learning’s genotypic and phenotypic parameters.

4. Experiments to evaluate the accuracy, robust-
ness, and effectiveness of the proposed approaches under
real-world conditions.

The results of this study are expected to contribute
to the development of a highly accurate UAV identifica-
tion system that is resistant to interference and capable of
operating in real-time conditions.

The structure of the article includes several main
sections. Section 2 presents the formalized information
synthesis problem for the UAV identification system
based on network traffic analysis. The key stages of train-
ing the decision support system (DSS) and optimizing its
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parameters are discussed. The system’s categorical
model is also described, covering the structure of sets and
operators used to improve the learning and identification
processes. Section 3 presents the experimental results of
the proposed UAV identification model and training
method. Section 4 discusses the research results in detail,
which also develops the main conclusions and outlines
future research directions.

2. Formalization of the proposed approach

2.1. Basic and enhanced EIT approach
on the learning stage

We consider the formalized formulation of the
problem of information synthesis for a UAV identifica-
tion system based on network traffic analysis. The core
component of such a system is a DSS that can learn and
is built using IEI technology. Let’s assume an alphabet

{XC |m=1,M} of recognition classes that characterize
different types of UAVS, and a training matrix with sta-

tistical characteristics whose values are formed based on
the analysis of incoming and outgoing network traffic

IyQ Il i=LN, j=Ln , where N and n represent the

number of recognition features and traffic characteristic
realizations, respectively. In this case, the row of the ma-

trix {y“)i li=1, N} defines j-th realization of traffic, and

m,
the column {yg{i | j=1,n} corresponds to a training sam-

ple of values for the i-th feature, which is key for UAV
identification. A known structured vector of parameters
for training the UAYV identification system is as follows:

g=<Xpm,dp, 8>, (1)

where the genotypic parameters: Xm — a reference (aver-
aged) vector-realization of network traffic parameters,
the peak of which defines the geometric center of the

class container X7, ; dm — the radius of the class container
X5, , which is restored in the radial basis of the recogni-

tion feature space; and the phenotypic parameters: o —
parameters of the symmetric field for the control limits
on recognition features.

At the machine learning stage of the DSS for UAV
identification, the vector coordinates g must be optimized
by searching for the global maximum of the information
criterion of functional efficiency (CFE), averaged over
the alphabet of recognition classes, used for optimizing
the genotypic and phenotypic parameters:

ML

E= maxE 2

1
M m=L Ge

where Ep, represent the information CFE calculated dur-

ing training for the current value of the class container’s
X5, hyper-spherical radius; Ge is the working (accepta-
ble) area for defining the CFE function.

2.2. Categorical model of the DSSD

Because the UAV identification process is complex
and variable, we consider the learning system’s mathe-
matical categorical model for UAV identification as a di-
agram of mappings with corresponding set operators
used during information-extreme learning [29, 30]. The
DSS input mathematical description is presented as a set
structure

Ag =<G,T.ZQ,Y,X;P,f f, >,

where G is the set of input network traffic factors; T is
the set of time moments that characterize the data trans-
mission moments; Q is the feature recognition space; Z
is the space of possible types of unmanned aerial vehi-
cles; Y is the sample set (input training matrix) obtained
after the initial traffic processing; P is the preprocessing
operator for network traffic, which calculates the values
of key traffic features, such as frequency, volume, and
packet structure; f; :GxTxQxZ—Y isthetraffic pro-

cessing operator (forming the sample set Y at the input of
the DSS); the operator f, transforms the input Euclidean
training matrix Y into a binary matrix X.

Figure 1 shows the functional categorical model of
the information-extreme machine learning for the UAV
identification system in the form of a set mapping dia-
gram or oriented graph.

In this model, the edges are operators that regulate
the mapping of term sets involved in the process of ex-
treme machine learning. As shown in Figure 1, the term
set E has elements that are calculated at each step of ma-
chine learning according to the principle of full composi-
tion for the general optimization contours of the training

parameters. The operator r:E — k™ at each learning

step transforms into the radial basis of the binary
u

5, | -
D 1El‘~PJIQI
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P G Ml ”
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L» GxTxQxZ—L Y2 pX— »|Isl

Fig. 1. Set Mapping Diagram
of the UAV lIdentification System [26, 27]



146

Radioelectronic and Computer Systems, 2025, no. 4(116)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

feature space, where the recognition container classes
form the classification 93™! . The operator ¢ maps the

partition S’™! of the binary feature vectors of recogni-
tion classes {X°}. The further operator v : X — II°

checks the primary statistical hypothesis v, : xV e X8 .
The operator Y defines the set of accurate characteristics

39 where Q = C?, and the operator ¢ calculates the

set E of values of the information optimization criterion,
which is a functional of the accurate characteristics.
Thus, the inner contour of operators (v, v, @, r, & ) reg-

ulates the optimization of the system’s genotypic param-
eters. The optimization contour of the control limits is
closed through the term set D, whose elements are the
control limit values for recognition features, and the op-
erator u governs the machine learning process. Thus, the
outer contour of operators regulates the optimization of
the system’s phenotypic parameters.

2.3. Algorithms

According to the categorical model in Figure 1, in-
formation-extreme machine learning for the DSS is per-
formed through a multi-cycle iterative procedure, which
involves searching for the global maximum of the infor-
mation CFE within the working area defined by its func-
tion. The inner optimization contour is implemented as a
basic learning algorithm, where the radius of the hyper-
spherical classifier is the optimized parameter of the
functioning:

d- =arg max E._, 3
m A0 T @)

where {d} represent the set of radius values for the class

container X§,, restored in the recognition feature space’s

radial basis.

The outer loop of operators is implemented as an op-
timization algorithm for the control limits system & on
recognition features:

1 M
8 —argmax| — » maxE_ |, 4)
&% (M3

where Gj is the range of allowable values for the recog-

nition feature control limit system.

Thus, at each step of the algorithm for optimizing
phenotypic parameters, genotypic parameters are opti-
mized.

The Kullback information measure [26, 30] can be
used as the CFE for machine learning of the UAV iden-

tification system, which for equally probable two-alter-
native decisions has the form:

(9 D +DM 410"
E,’ =0,5log, a(k)+B(k)+10_r '

*[(D(lk) +D() = (o) + 5 )] )

2

where D(lk) , D(zk) are the first and second reliabilities cal-

culated at the k-th step of the training; o, B(k) are the

first and second type errors; 107" is a sufficiently small
number to avoid division by zero.

Within the framework of IEI technology, the pro-
cess of restoring the class-separation hypersurfaces for
UAVs is performed on the radial basis of the binary fea-
ture space obtained from the analysis of network traffic.
The closed separating hyper-surface, whose geometric
center is determined using special algorithms, is com-
monly referred to as the corresponding recognition
class’s container. The geometric shape of these contain-
ers determines the type of decision rules constructed dur-
ing machine learning.

Thus, the optimization of the learning parameters
for the UAV identification system is based on a multi-
level iterative procedure for searching the global maxi-
mum of the information criterion (5) in the working area.
The optimization of phenotypic parameters is performed
at the outer level, while the optimization of genotypic pa-
rameters is performed at the inner level. The following
main functions are performed:

— calculation of the information criterion (5) at
each training stage;

— search for the global maximum of the infor-
mation criterion within the working area;

— determination of the optimal parameter values
for each recognition class separately or alphabetically.
This ensures the achievement of the maximum identifi-
cation accuracy of UAVs based on the statistical charac-
teristics of their network traffic without the detailed anal-
ysis of transmitted packets.

The decision rules formed during the information-
extreme machine learning process are presented in the
form of a system of predicate expressions:

| (K 20)&[um = maX{uk}J
vx2 wxU) k=1M
> (X ex;) ©
(1w <0)
vx2 wxU) "
—>(x Ve X?n)
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where xJ) isthe vector to be recognized; ., isthe func-

tion that defines the membership of the vector xU) to the
container of the recognition class X9, .

The value of is determined by the following
formula:

dm

where x., d;, are the parameters of the optimal recogni-
tion class container X2 obtained during machine learn-
ing.

Thus, the procedure for applying the constructed
decision rules allows for real-time UAV identification
and the detection of unknown UAV classes with the pos-
sibility of further expanding the alphabet of classes and
re-training the intelligent system.

2.4. Structural functional diagram

The UAYV identification system structure (Fig. 2) is
based on the principles of IEI technology. All system
blocks can be divided into three functional groups: anal-
ysis-synthesis, decision-making, and registration. The
system adapts its operation to two main modes: learning
and evaluation, which are determined by the operator
through the interface. When the learning mode is se-
lected, the system activates the blocks of the analysis-
synthesis group, namely:

— Primary Information Processing Block (PIPB):
performs intelligent analysis of input data. At this stage,

the DSS parameters are optimized using information-ex-
tremum machine learning methods.

— Container Formation Block (CFB): implements
the information-extremum machine learning algorithm,
optimizing the geometric parameters of the recognition
classes. This corresponds to the set mapping in the iden-
tification system.

— Machine Learning Parameter Optimization
Block (MLPOB): determines the optimal operating pa-
rameters of the DSS. This block constructs the optimal
values of the containers through a multi-cycle iterative
procedure aimed at finding the global maximum of the
averaged value of the functional efficiency (FE).

An operational database (ODB) is created at the in-
itial stage of the system’s operation, which is a dynamic
copy of the main database (DB). The ODB provides the
other blocks with the necessary data for their correct
functioning.

The results of information-extremum machine
learning, namely, the optimal operating parameters, are
stored in the knowledge base. In the decision-making
mode, these parameters are transferred to the Functional
Efficiency Calculation Block (FECB). The FECB, which
receives the results of the current UAV identification
from the ODB, belongs to the decision-making group.
The results registration group includes the DB, ODB,
knowledge base, and the Output Block. The results of the
FECB’s work in the analysis-synthesis mode are dis-
played to the operator through the system interface in the
form of values, tables, or graphs that show the perfor-
mance indicators’ dependence on the factors that influ-
ence the identification process. The operator can view
and edit the ODB through the system interface.

Operator TAV Identification
P i Process
F 3
k.
System Interface
» » L
k. ¥ k J
FIDE . CFR o MLPOB . Enowledge
Base
] I I
F
l ¥
Input Block > DB - - ODB "+ FECB

Fig. 2. Functional diagram structure of the UAV identification system
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This structure ensures the identification process’s
flexibility and effectiveness, allowing the system to adapt
and improve its performance over time.

3. Experiments and Results

The formation of the input mathematical descrip-
tion for an intelligent system capable of learning to iden-
tify UAVs based on the analysis of their network traffic
was performed using data from the Machine Learning
Repository at the Center for Machine Learning and Intel-
ligent Systems at the University of California, Irvine
(USA) [31]. The implementation of the machine learning
algorithm according to procedure (3) was based on the
input training matrix, which was created for three recog-

nition classes: X7 — network traffic analyzed includes
data corresponding to the characteristics of the Parrot Be-
bop UAV; X$ —data corresponding to the characteristics

of the DBPower UDI UAV; X3 — data for the DJI Spark

UAV. To formulate the input mathematical description
of the intelligent system, the "Unmanned Aerial Vehicle
(UAV) Intrusion Detection™ dataset from the repository
of the Center for Machine Learning and Intelligent Sys-
tems at the University of California, Irvine (USA) [31]
was utilized. The training matrix was constructed from
the values of 54 statistical traffic parameters, including
packet volume, average latency, transmission frequency,
and other network activity characteristics.

A key advantage is that the used attribute set is uni-
versal and independent of the specific UAV type or man-
ufacturer, as it is based on most unmanned control sys-
tems’ generalized statistical traffic parameters character-
istic. This approach enables the future adaptation of the
technology to other UAV types without requiring signif-
icant modification of the mathematical model. The rele-
vant section of the data repository provides a comprehen-
sive list and description of the features, ensuring the re-
producibility and validity of the parameters used.

The number of realizations for each class was 235,
where each column of the matrix corresponded to the
value of a separate indicator, and the rows contained re-
alizations of these indicators for each UAV type. Since
the statistical characteristics of traffic each have their
own area of definition, reducing their values to a common
(consolidated) scale using a transformation is advisable:

=1,M
YO i
T maxy - min
m=LM~ " m=LM
j=Ln =1

where W is the indicator’s maximum value on the con-
solidated scale at the corresponding minimum value of 0.

An information-extremal machine learning algo-
rithm has been implemented for the given alphabet of
recognition classes, which ensures parallel optimization
of the system of control tolerances reduced to a common
scale (CSCT), where W = 250.

Figure 3 shows the graph of the dependence of the
averaged Kullback information measure (5) on the pa-
rameter 6, which sets the width of the CSCT field for all
recognition features simultaneously.

3,0

0 10 20 30 40 50 60 70 80 90 100

Fig. 3. Graph of the dependence of the averaged CFE
on the parameters of the control tolerance system
on the consolidated scale for recognition features

In Figure 3 and in the text, the shaded part of the
graph is designated as the working (permissible) area for
defining the function (4), in which the values of the first
and second type errors are smaller than the values of the
first and second confidence levels, respectively [29, 30].
Analysis of Fig. 3 shows that the maximum value of the
averaged CFE was reached at step 46 and amounted to
2.388, which ensures a clear distinction between recog-
nition classes.

The optimal radii of the recognition class containers
for UAVs were determined within the internal cycle of
the algorithm (3) to construct decision rules. Figure 4
shows the results of the optimization of geometric param-
eters for this control tolerance system.

The analysis of the optimization results (Fig. 4)
shows that the optimal parameters for the class container
x? are radius di = 10 with an inter-center distance dc =

12, for the class xg radius d, = 8 with dc = 12, and for the
class xg radius ds = 8 with dc = 14. These container pa-
rameters correspond to the following values of CFE and
accuracy characteristics: for the class x2: E = 2.130 (D:
=0.84; p=0.04); for the class x3: E=1.576 (D1=0.71;
B = 0); for the class xg: E = 3.458 (D1=0.94; B =0).
The results of testing the UAV identification sys-
tem, built based on decision rules, showed that the overall

probability of correct classification is 0.83. An infor-
mation-extremal machine learning algorithm has been
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implemented to improve accuracy, which performs se-
quential optimization of control tolerances. In this ap-
proach, the initial control tolerance values were obtained
during parallel optimization. Figure 5 shows the dynam-
ics of the averaged information criterion value during the
parallel-sequential tolerance optimization.

E E

d;

30

Fig. 4. Graph of the dependence of CFE
on the geometric parameters of the class containers:
a) class x2 — «Parrot Bebop»,

b) class x3 — «DBPower UDI»,
¢) class xg — «DIJI Spark»
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Fig. 5. Graph of dependence
of the averaged CFE during the sequential
optimization of the control tolerances

Figure 5 shows that the maximum value of the av-
eraged information CFE is achieved at the 270th iteration
and equals 2.751, which improves the performance com-
pared to the value obtained through parallel optimization.
Figure 6 shows the results of optimizing the geometric
parameters for this control tolerance system.

E E
A i

4 q -

3 - 3

2_ by

11 B

0 T g" T T T

dz

0 10 20 30

Fig. 6. Graph of CFE dependence
on the geometric parameters of the class containers:
a) class x? — «Parrot Bebop»,

b) class x3 — «DBPower UDI»,
¢) class xg — «DIJI Spark»

The analysis of the optimization results (Figure 6)
shows that the optimal container parameters for class x¢

are a radius of d;=7 with a center-to-center distance
dc=11, for class xg a radius of d,=7 with d.=11, and for

class xg a radius of ds=17 with d.=20. The correspond-

ing values of the CFE and accuracy characteristics for
these container parameters are as follows: for class x?:
E = 2.354 (D1=0.84; B = 0.01); for class xg: E = 1.744
(D1=0,74; B = 0); for class xg: E = 4.156 (D1 = 1.00;
B =0.01). As previously noted, the results of testing the
UAYV identification system, built on the basis of decision
rules, showed that the overall probability of correct clas-
sification was 0.83. This figure increased to 0.86 after ap-
plying the sequential optimization algorithm for control
tolerances, indicating an improvement in classification
accuracy and the effectiveness of the proposed approach.

Within the information-extreme approach applied
in this study, classification performance is evaluated not
by a traditional "point" metric, but by Kullback’s infor-
mation measure (Em) [26, 30]. This is a generalized
recognition quality function that integrally accounts for
the balance between reliabilities (D1 — analogous to True
Positive, D, — analogous to False Positive) and Type |
(o — analogous to True Negative) and Type II (f — analo-
gous to False Negative) errors. Unlike static metrics (e.g.,



150

Radioelectronic and Computer Systems, 2025, no. 4(116)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

accuracy, F, -score), the En, value is calculated at each
iterative optimization step and serves as the objective cri-
terion for the machine learning of the system.

Thus, the graphical dependencies presented in Sec-
tion 3 (Figs. 3-6) are not "point estimations” or "partial
assessments of accuracy. Instead, they illustrate the dy-
namics (evolution) of the learning process—the search
for the global maximum of the CFE E., during the opti-
mization of parameters (container radii dm and control
tolerances & ). The growth of the Er, curve in these plots
demonstrates how the system progressively improves its
decision consistency, which is a significantly more com-
prehensive characteristic of effectiveness than a single
summary evaluation.

In light of this, the proposed set of methods and
models ensures the formation of highly accurate decision
rules for the UAV identification system based on the net-
work traffic analysis in UAV monitoring and control
tasks under real operational conditions.

4. Discussion

The results of this study indicate that the parallel-
sequential optimization of the control tolerance system
provides an overall classification accuracy of 86%. The
obtained accuracy is competitive compared with existing
UAV identification systems based on radio frequency
signal analysis and optical methods, which typically
demonstrate accuracy in the range of 75-90%. It is advis-
able to consider applying base-class selection algorithms
[27] to further enhance recognition accuracy, which
would allow the control tolerances to be more effectively
adapted to the specific characteristics of each class.

An important advantage of the proposed approach
is its resilience to spectral interference and variability in
data transmission protocols, which frequently occur in
real-world UAV operational environments. The estab-
lished decision rules enable real-time execution of the ex-
amination stage, which is important for the UAV identi-
fication system’s practical application. However, as the
number of classes increases, more complex algorithms
are required. One promising direction is the introduction
of a hierarchical approach, which involves organizing
recognition classes into strata, each consisting of a group
of the closest neighboring classes [32, 33].

A comparative analysis with traditional machine
learning methods shows that the information-extreme ap-
proach offers better adaptability to changing operational
conditions and lower computational resource require-
ments. Although the results of implementing hierarchical
algorithms are not yet available, their use may improve
recognition accuracy by optimizing tolerances for each
stratum individually. Although constructing such a hier-
archical structure may take more time, it offers the possi-
bility of more efficient system operation as the number

of classes grows.

The limitation of the current study is that testing
was conducted only on a controlled dataset. Further vali-
dation on real-world data from various geographic re-
gions and diverse operational conditions is necessary to
confirm the approach’s universality.

Thus, the proposed approach, based on parallel-se-
quential optimization, demonstrates high functional effi-
ciency and accuracy in UAV identification tasks. Further
research will focus on implementing an enhanced set of
IEIT models and methods to improve classification accu-
racy and system adaptability.

5. Conclusions

The proposed models and methods of information-
extreme machine learning for UAV identification sys-
tems are based on the analysis of network traffic trans-
mitted to the ground control station. The implementation
of this approach has enabled the system to achieve high
functional efficiency, ensuring an 86% accuracy rate in
classifying UAV types. The system has significantly
lower computational costs than other methods, making it
suitable for use in real-time environments, where rapid
decision-making is crucial.

The main scientific contributions of this study are:
the development of an adaptive methodology for apply-
ing information-extreme technology to UAV network
traffic analysis, the formalization of the information syn-
thesis problem for a UAV identification system, and the
experimental validation of the effectiveness of parallel-
sequential optimization of control tolerances.

The optimal adjustment of classification parameters
was an important factor in improving accuracy, which
helped minimize the risk of erroneous decisions. Simul-
taneously, the effectiveness of parallel-sequential optimi-
zation, normalized to a common scale for the system of
control tolerances on recognition features, was demon-
strated. The practical significance of the results lies in the
integration of the developed system into existing airspace
monitoring complexes and counter-UAV threat systems.

Further research will focus on addressing the
problem of adapting the system to the expansion of the
alphabet of class quantities (including in the context of
factorial cluster analysis). In particular, the implementa-
tion of a hierarchical approach is promising because it
will allow the construction of multi-level data structures
and the configuration of the CSCT for each level. Addi-
tionally, the application of algorithms for selecting the
base class is considered promising because it will en-
hance the classification accuracy and the formation of er-
ror-free decision rules based on the training matrix under
conditions of varying traffic characteristics. The applica-
tion of factorial cluster analysis methods opens opportu-
nities for the automatic detection of new UAV types and
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for adapting the system to the evolution of UAV technol-
ogies without the need for complete system retraining.
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TH®OPMAIINHO EKCTPEMAJIbHA ITEHTA®IKAIII
BE3NIVIOTHUX JIITAJIBHUX AITAPATIB

1. B. lllenexos, /I. B. Ilpunena, /l. B. Onegipenxo, P. C. Kpuyvkuii

O0’€KTOM JIOCIIDKEHHS € TIPOLIEC ACTEKTYBaHHs Ta ileHTHdiKamii Oe3minoTHrX NiTanbHux amapatis (BITJIA)
LIISIXOM aHajli3y MepexeBoro Tpadiky, sSKUil MepenacTbcsi HUIMU Ha Ha3eMHY CTaHINI0 KepyBaHHS. AKTYalbHICTh
TEMH 3yMOBJIEHA HEOOXiHICTIO CTBOPEHHS BUCOKOe(eKTHBHUX cucTeM ineHTrdikarii BIIJIA y 3B’s3Ky 3 iXHIM mIH-
POKMM BUKOPHUCTAHHSM Yy BiMICbKOBMX, IMBUIBHHUX 1 KOMEPUIHHHUX cepax, M0 3yMOBIIOE MOTPedy B epeKTHBHOMY
BUpILIEHH] 3aJ1a4 AeTeKTyBaHHs, 11eHTH]iKamii Ta kacugikamii Takux IprCTpoiB. MeTOr0 T0CTiKEHHS € pO3po0Ka
MoJIesied 1 MeTOIB, sIKi 3a0e3nevyroTh MalllMHHE HaBuaHHi cucteMu ineHTugikanii bITJIA Ha ocHOBI aHanizy BXid-
HOT'O Ta BUXIJHOTO TpadiKy JAaHHX 3a JIONOMOrolo iH(pOpMaliifHO-eKCTpeMalIbHOI IHTEIeKTyalIbHOI TeXHOIOorii. 3a-
MIPOITOHOBAHO METOJIOJIOTIF0 BUKOPUCTaHHS 1H(OpMalliliHO-eKCTpeMaibHOi TexHoorii st inentudikanii BIUIA,
sIka BKJTIOYA€E 3aCTOCYBaHHS METO/IB i/ieHTH(DiKalil 00pa3iB 1 mpoekTyBaHHs 1HOOPMALIHHNX IHTEIEKTyaIbHIX CHC-
TeM. HaykoBOIO HOBU3HOIO € BIIPOBAUKEHHS IMiXOY JI0 MOJIEJIIOBAHHS 1HTEJIEKTyaJIbHOI CUCTEMH, 3[]aTHOI HaBya-
tucs ineHTugikanii BIIJIA Ha ocHOBI aHamizy XapakTepucTuk ix Tpadiky. MeTtoguka nociimkeHHs: 0a3yeTbesl Ha
PO3po0IIi cUCTEeMH 13 3aCTOCYBaHHSIM HacTynmHHX etariB: (1) hopMyBaHHsS HaBYAJILHOTO HA0OPY JaHUX i3 MapaMeTpiB
tpadiky BIUIA, (2) mobynoBa cucremu inentudikaii BILUIA i3 BUKOpUCTaHHIM 1H(POPMAIIHHO-EKCTPEMATLHOTO
nigxony, (3) MalIMHHE HaBYaHHS CHUCTEMH y CTaHAAPTHHX DEXHMMax (QyHKLIOHYBaHHs HU(POBUX pajiokaHaiB
3B’s13Ky BILJIA. Pe3yabraTu 10CiiPKEHHST IEMOHCTPYIOTh, 10 3alPONOHOBAHA 1HTENeKTyalbHa iHpopMalliiiHa cu-
cTeMa 37aTHa 3a0e3neyrTd BUCOKY TouHicTh ineHTudikamii BITJIA. ¥V TecTyBaHHI 0yii0 HOCATHYTO CEpeIHbOI TOY-
HocTi ineHTHdikanii Ha piBHI 86%. BucHoBKH. 3anponoHoBana B podoti cucrema ineHtudikamnii BITJIA 6a3yerbcs
Ha iHHOBaliHOMY MiZXOZi 10 aHali3y MepexeBoro Tpadiky 3a ZJOMOMOror iHhpopManiiHO-eKCTPEeMaIbHOI iHTeNneK-
TyaJbHOI TeXHOJOr1i. Pe3ynbTaTi MochimKeHHs MiATBEpIKYIOTh 11 e)eKTHBHICTD IS 3a/1a4 11eHTH]iKalii B yMoBax
CTaHIAPTHHUX PErJIAaMEHTOBAHUX XapaKTepUCTHK Tpadiky. OTprMaHi pe3ylbTaTH MartoTh MPAKTHYHE 3HAYCHHS IS
CTBOPEHHS CUCTEM MOHITOPHHTY Ta 3aXHCTY BiJ OTEHIIHHKUX 3arpo3, OB’ 13aHuUX 13 BUKoprcTaHHsAM BITJIA y pizHux
cdepax MisUIbHOCTI.

Koarwuosi cioBa: 06e3misioTHI JiTajbHI anapaTty; iHpopMaliiHO-eKCTpeMasibHe MallMHHE HaBYaHHs; iH(Op-
MaIiiHui KpuTepiit; QyHKIIOHATIbHO-KaTeropiajibHa MOJIENb; aHalli3 TpadiKy; KOHTEeHHEp KIacy po3Mi3HaBaHHS.
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