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INFORMATION-EXTREME IDENTIFICATION  

OF UNMANNED AERIAL VEHICLES 
 

This research aims to detect and identify unmanned aerial vehicles (UAVs) by analyzing the network traffic they 

transmit to their ground control station. The relevance of this topic arises from the need to develop highly effi-

cient UAV identification systems, given their widespread use across the military, civilian, and commercial sec-

tors. Effective solutions for detecting, identifying, and classifying these devices are required. This study aims to 

develop models and methods that enable machine-learning-based UAV identification systems by analyzing in-

coming and outgoing data traffic using an extremely intelligent information technology. A methodology is pro-

posed for applying extreme information technology to UAV identification. This methodology involves employing 
pattern recognition techniques and designing intelligent information systems. The scientific novelty lies in intro-

ducing an approach to modeling an intelligent system capable of learning to identify UAVs based on traffic 

characteristics analysis. The research methodology includes the following steps: (1) forming a training dataset 

based on UAV traffic parameters, (2) building a UAV identification system using an information-extreme ap-

proach, and (3) training the system under standard operating conditions of digital radio communication chan-

nels used by UAVs. The results demonstrate that the proposed intelligent information system provides high UAV 

identification accuracy. Testing achieved an average identification accuracy of 86%. Conclusions. The pro-

posed UAV identification system is based on an innovative approach to network traffic analysis using infor-

mation-extreme intelligent technology. The results confirm its effectiveness for identification tasks under stand-

ard regulated traffic characteristics. The obtained results have practical significance for developing monitoring 

and protection systems in various fields against potential threats associated with UAV usage. 

 

Keywords: unmanned aerial vehicles; information-extreme machine learning; information criterion; functional-

categorical model; traffic analysis; container of the recognition class. 

 

1. Introduction 

 

1.1 Motivation 
 

As UAVs become increasingly accessible, their use 

spans a wide range of fields, including commercial, sci-

entific, military, and civilian sectors [1]. Due to the di-

versity of UAV applications, ensuring safety, which in-

cludes effective detection and identification of these de-

vices, is an important aspect. 

The relevance of this issue is determined by several 

factors. First, the growing availability of UAV technolo-

gies and their integration into various civilian and mili-

tary systems create new threats to national security, citi-

zens’ privacy, and critical infrastructure stability [2], 

which amplifies the need for developing specialized sys-

tems for UAV rapid detection and identification. Second, 

although evolving, existing methods of UAV recognition 

and identification still face limitations in terms of accu-

racy, efficiency under challenging weather conditions, 

and adaptability to new types of UAVs [3]. 

In the scientific and practical context, the problem 

of UAV detection and identification is multidisciplinary, 

as it is related not only to engineering aspects but also to 

the application of artificial intelligence technology, sig-

nal processing, information theory, and other fields [4]. 

Meanwhile, the research focus is on methods for design-

ing radar, optical, and acoustic detection systems for 

UAVs [5, 6]. However, a significant number of unsolved 

problems remain, such as minimizing identification er-

rors and adapting to new UAV technologies that use vis-

ibility reduction and radar jamming techniques. This 

study proposes a set of so-called information-extreme in-

telligent models and machine learning methods that help 

overcome these limitations and enhance the reliability 

and speed of UAV identification. 
 

1.2 State of the Art 
 

State of the art UAV detection technologies include 

radar systems, optical devices, acoustic sensors, and ra-

dio frequency signal analysis methods. However, all 

these approaches have significant drawbacks. For exam-

ple, radar systems may be ineffective when dealing with 

small, low-speed UAVs due to their low radar cross-sec-

tion [5]. Optical methods depend on lighting and visibil-

ity conditions, which limits their effectiveness in adverse 

weather conditions [6]. Acoustic sensors are vulnerable 
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to environmental noise pollution [7], and radio frequency 

spectrum analysis can become challenging when multiple 

signal sources are simultaneously monitored or in the 

presence of high levels of radio interference [8]. 

A number of modern works propose combining sev-

eral sensor approaches, specifically the integration of op-

tical, radar, and acoustic channels, which allows for in-

creased UAV detection reliability under interference con-

ditions [9, 10]. Multisensory data processing based on 

deep neural networks provides improved classification 

accuracy even with the partial absence of signals [11]. 

In this context, methods based on analyzing the data 

traffic transmitted between UAVs and their ground con-

trol stations open up new possibilities. Monitoring signal 

characteristics, such as radio frequency parameters, data 

transmission protocol patterns, and command control sig-

natures, enables UAV identification even in the absence 

of direct visual contact or radar reflection [12]. 

Work [13] examined a UAV detection system 

model that combines network traffic analysis with visual 

information, which makes it possible to increase detec-

tion system reliability and response time. Another study 

[14] demonstrated the capabilities of adaptive data fusion 

in hybrid architectures, which use machine learning to 

optimize real-time identification processes. 

The global scientific community is paying increas-

ing attention to the use of machine learning methods for 

analyzing UAV data traffic. Convolutional neural net-

works (CNNs) can effectively classify signals in real time 

[15, 16]. For instance, the works [17, 18] proposed the 

use of deep neural networks to analyze the radio fre-

quency spectrum, enabling UAV identification even un-

der intense radio interference conditions. In [19], a sys-

tem was developed to analyze Wi-Fi traffic that accounts 

for the unique signatures of UAVs during data transmis-

sion, while [20] explored UAV control command traffic, 

employing machine learning models to detect patterns 

specific to UAVs. 

Recent research indicates the effectiveness of using 

deep neural architectures for recognizing low-visibility 

objects in aerial photographs and Earth remote sensing 

data, which is also relevant for UAV identification [21]. 

Specifically, [22] demonstrated that YOLOv8 and Swin-

Transformer algorithms provide over 95% accuracy in 

multiclass drone identification, while [23] showed that 

using attention mechanisms improves performance when 

classifying micro-UAVs under complex lighting condi-

tions. 

Despite significant progress, most modern methods 

have certain limitations. The high computational com-

plexity of machine learning algorithms often makes their 

real-time implementation impossible [24]. Moreover, 

many approaches are narrowly specialized and focus on 

a specific type of data transmission protocol or UAV 

type. Analyzing the radio frequency spectrum can be 

challenging in complex multi-platform environments, es-

pecially when multiple devices operate simultane-

ously [25]. 

The shortcomings of these approaches can be ad-

dressed using information-extreme intelligent technol-

ogy (IEI technology). This approach ensures high func-

tional efficiency in UAV traffic processing by leveraging 

its standard statistical characteristics [26]. Consequently, 

it provides high UAV identification accuracy even under 

challenging conditions, such as high noise levels or a 

crowded spectrum [27]. Furthermore, IEI technology re-

duces computational costs during machine learning and 

the application of the resulting UAV identification deci-

sion rules [28]. This opens up opportunities to develop 

real-time-operating efficient monitoring systems, which 

is crucial for maintaining security despite growing UAV-

related threats. 

 

1.3. Objectives and approaches 
 

This research aims to develop new approaches to 

UAV identification based on the analysis of data traffic 

using IEI technology. This study aims to adapt the mod-

els and methods of the technology to ensure high UAV 

identification accuracy in a multi-platform environment 

with spectral noise and limited computational resources. 

IEI technology can address a range of challenges as-

sociated with UAV traffic analysis by optimizing the 

identification system’s genotypic and phenotypic param-

eters. A key feature of this approach is its ability to min-

imize information loss during signal processing and 

adapt to changing environmental conditions, such as in-

terference or variations in data transmission protocols. 

The following tasks are being addressed within the 

framework of this study: 

1. Analyzing existing approaches to UAV identifi-

cation and identifying their limitations in terms of accu-

racy, adaptability, and computational efficiency. 

2. Developing an IEI-based machine learning 

model for UAV identification by analyzing their data 

traffic. 

3. Developing methods for optimizing machine 

learning’s genotypic and phenotypic parameters. 

4. Experiments to evaluate the accuracy, robust-

ness, and effectiveness of the proposed approaches under 

real-world conditions. 

The results of this study are expected to contribute 

to the development of a highly accurate UAV identifica-

tion system that is resistant to interference and capable of 

operating in real-time conditions. 

The structure of the article includes several main 

sections. Section 2 presents the formalized information 

synthesis problem for the UAV identification system 

based on network traffic analysis. The key stages of train-

ing the decision support system (DSS) and optimizing its 
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parameters are discussed. The system’s categorical 

model is also described, covering the structure of sets and 

operators used to improve the learning and identification 

processes. Section 3 presents the experimental results of 

the proposed UAV identification model and training 

method. Section 4 discusses the research results in detail, 

which also develops the main conclusions and outlines 

future research directions. 

 

2. Formalization of the proposed approach 
 

2.1. Basic and enhanced EIT approach  

on the learning stage 

 

We consider the formalized formulation of the 

problem of information synthesis for a UAV identifica-

tion system based on network traffic analysis. The core 

component of such a system is a DSS that can learn and 

is built using IEI technology. Let’s assume an alphabet 
o
m{X | m 1,M}  of recognition classes that characterize 

different types of UAVs, and a training matrix with sta-

tistical characteristics whose values are formed based on 

the analysis of incoming and outgoing network traffic 
( j)
m,i|| y ||, i 1,N, j 1,n  , where N and n represent the 

number of recognition features and traffic characteristic 

realizations, respectively. In this case, the row of the ma-

trix 
( j)
m,i{y | i 1, N}  defines j-th realization of traffic, and 

the column 
( j)
m,i{y | j 1,n}  corresponds to a training sam-

ple of values for the i-th feature, which is key for UAV 

identification. A known structured vector of parameters 

for training the UAV identification system is as follows: 

 

 m mg x ,d ,   , (1) 

 

where the genotypic parameters: xm – a reference (aver-

aged) vector-realization of network traffic parameters, 

the peak of which defines the geometric center of the 

class container o
mX ; dm – the radius of the class container 

o
mX , which is restored in the radial basis of the recogni-

tion feature space; and the phenotypic parameters:   – 

parameters of the symmetric field for the control limits 

on recognition features. 

At the machine learning stage of the DSS for UAV 

identification, the vector coordinates g must be optimized 

by searching for the global maximum of the information 

criterion of functional efficiency (CFE), averaged over 

the alphabet of recognition classes, used for optimizing 

the genotypic and phenotypic parameters: 

 

 
EG

M1
E max E

mM m 1
 


, (2) 

where E
m

 represent the information CFE calculated dur-

ing training for the current value of the class container’s 
o
mX  hyper-spherical radius; GE is the working (accepta-

ble) area for defining the CFE function. 

 

2.2. Categorical model of the DSSD 

 

Because the UAV identification process is complex 

and variable, we consider the learning system’s mathe-

matical categorical model for UAV identification as a di-

agram of mappings with corresponding set operators 

used during information-extreme learning [29, 30]. The 

DSS input mathematical description is presented as a set 

structure 

 

1 2
G,T,Z, ,Y,X;P,f ,fВ    , 

 

where G is the set of input network traffic factors; T is 

the set of time moments that characterize the data trans-

mission moments;   is the feature recognition space; Z 

is the space of possible types of unmanned aerial vehi-

cles; Y is the sample set (input training matrix) obtained 

after the initial traffic processing; P is the preprocessing 

operator for network traffic, which calculates the values 

of key traffic features, such as frequency, volume, and 

packet structure; 1f :G T Z Y    is the traffic pro-

cessing operator (forming the sample set Y at the input of 

the DSS); the operator f2 transforms the input Euclidean 

training matrix Y into a binary matrix X. 

Figure 1 shows the functional categorical model of 

the information-extreme machine learning for the UAV 

identification system in the form of a set mapping dia-

gram or oriented graph.  

In this model, the edges are operators that regulate 

the mapping of term sets involved in the process of ex-

treme machine learning. As shown in Figure 1, the term 

set E has elements that are calculated at each step of ma-

chine learning according to the principle of full composi-

tion for the general optimization contours of the training 

parameters. The operator |M|r : E   at each learning 

step transforms into the radial basis of the binary  

 
 

Fig. 1. Set Mapping Diagram  

of the UAV Identification System [26, 27] 
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feature space, where the recognition container classes 

form the classification ||~ M  . The operator   maps the 

partition ||~ M  of the binary feature vectors of recogni-

tion classes o
m{X } . The further operator |C|: X I   

checks the primary statistical hypothesis ( j) o
1 n m: x X  . 

The operator   defines the set of accurate characteristics 

||||Q , where 
2Q C , and the operator   calculates the 

set E of values of the information optimization criterion, 

which is a functional of the accurate characteristics. 

Thus, the inner contour of operators ( , , , r,    ) reg-

ulates the optimization of the system’s genotypic param-

eters. The optimization contour of the control limits is 

closed through the term set D, whose elements are the 

control limit values for recognition features, and the op-

erator u governs the machine learning process. Thus, the 

outer contour of operators regulates the optimization of 

the system’s phenotypic parameters. 

 

2.3. Algorithms 

 

According to the categorical model in Figure 1, in-

formation-extreme machine learning for the DSS is per-

formed through a multi-cycle iterative procedure, which 

involves searching for the global maximum of the infor-

mation CFE within the working area defined by its func-

tion. The inner optimization contour is implemented as a 

basic learning algorithm, where the radius of the hyper-

spherical classifier is the optimized parameter of the 

functioning: 

 

E

*
m m

G {d}
d arg max E ,


   (3) 

 

where {d}  represent the set of radius values for the class 

container o
mX , restored in the recognition feature space’s 

radial basis. 

The outer loop of operators is implemented as an op-

timization algorithm for the control limits system δ on 

recognition features: 

 

 
E

*

G G

M
1

arg max max E
mM

m 1

 
  
 

 
 , (4) 

 

where G  is the range of allowable values for the recog-

nition feature control limit system.  

Thus, at each step of the algorithm for optimizing 

phenotypic parameters, genotypic parameters are opti-

mized.  

The Kullback information measure [26, 30] can be 

used as the CFE for machine learning of the UAV iden-

tification system, which for equally probable two-alter-

native decisions has the form: 
 

 
   

   
1 2

k k r

k
m 2 k k r

D D 10
E 0,5log

10





  
  
   



 

          
1 2

k k k k
* D D ,    
  

 (5) 

 

where 
 

1

k
D , 

 

2

k
D  are the first and second reliabilities cal-

culated at the k-th step of the training; 
 k

 , 
 k

  are the 

first and second type errors; r10  is a sufficiently small 

number to avoid division by zero. 

Within the framework of IEI technology, the pro-

cess of restoring the class-separation hypersurfaces for 

UAVs is performed on the radial basis of the binary fea-

ture space obtained from the analysis of network traffic. 

The closed separating hyper-surface, whose geometric 

center is determined using special algorithms, is com-

monly referred to as the corresponding recognition 

class’s container. The geometric shape of these contain-

ers determines the type of decision rules constructed dur-

ing machine learning. 

Thus, the optimization of the learning parameters 

for the UAV identification system is based on a multi-

level iterative procedure for searching the global maxi-

mum of the information criterion (5) in the working area. 

The optimization of phenotypic parameters is performed 

at the outer level, while the optimization of genotypic pa-

rameters is performed at the inner level. The following 

main functions are performed: 

 calculation of the information criterion (5) at 

each training stage; 

 search for the global maximum of the infor-

mation criterion within the working area; 

 determination of the optimal parameter values 

for each recognition class separately or alphabetically. 

This ensures the achievement of the maximum identifi-

cation accuracy of UAVs based on the statistical charac-

teristics of their network traffic without the detailed anal-

ysis of transmitted packets. 

The decision rules formed during the information-

extreme machine learning process are presented in the 

form of a system of predicate expressions: 

 

 
   

  

 
 

  

m m k
jo k 1,M

m

j o
m

m
jo

m j o
m

0 & max

X x

x X

0

X x
x X



   
            
  
   
  


   
  
  
 

 (6) 
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where 
 j

x  is the vector to be recognized; 
m  is the func-

tion that defines the membership of the vector 
 j

x  to the 

container of the recognition class 0
mX . 

The value of 
m  is determined by the following 

formula: 

 

  j*
m

m *
m

d x x
1 ,

d


    

 

where * *
m mx , d  are the parameters of the optimal recogni-

tion class container 0
mX  obtained during machine learn-

ing. 

Thus, the procedure for applying the constructed 

decision rules allows for real-time UAV identification 

and the detection of unknown UAV classes with the pos-

sibility of further expanding the alphabet of classes and 

re-training the intelligent system. 

 

2.4. Structural functional diagram 

 

The UAV identification system structure (Fig. 2) is 

based on the principles of IEI technology. All system 

blocks can be divided into three functional groups: anal-

ysis-synthesis, decision-making, and registration. The 

system adapts its operation to two main modes: learning 

and evaluation, which are determined by the operator 

through the interface. When the learning mode is se-

lected, the system activates the blocks of the analysis-

synthesis group, namely: 

 Primary Information Processing Block (PIPB): 

performs intelligent analysis of input data. At this stage, 

the DSS parameters are optimized using information-ex-

tremum machine learning methods. 

 Container Formation Block (CFB): implements 

the information-extremum machine learning algorithm, 

optimizing the geometric parameters of the recognition 

classes. This corresponds to the set mapping in the iden-

tification system. 

 Machine Learning Parameter Optimization 

Block (MLPOB): determines the optimal operating pa-

rameters of the DSS. This block constructs the optimal 

values of the containers through a multi-cycle iterative 

procedure aimed at finding the global maximum of the 

averaged value of the functional efficiency (FE). 

An operational database (ODB) is created at the in-

itial stage of the system’s operation, which is a dynamic 

copy of the main database (DB). The ODB provides the 

other blocks with the necessary data for their correct 

functioning. 

The results of information-extremum machine 

learning, namely, the optimal operating parameters, are 

stored in the knowledge base. In the decision-making 

mode, these parameters are transferred to the Functional 

Efficiency Calculation Block (FECB). The FECB, which 

receives the results of the current UAV identification 

from the ODB, belongs to the decision-making group. 

The results registration group includes the DB, ODB, 

knowledge base, and the Output Block. The results of the 

FECB’s work in the analysis-synthesis mode are dis-

played to the operator through the system interface in the 

form of values, tables, or graphs that show the perfor-

mance indicators’ dependence on the factors that influ-

ence the identification process. The operator can view 

and edit the ODB through the system interface. 

 

 

 
 

Fig. 2. Functional diagram structure of the UAV identification system 
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This structure ensures the identification process’s 

flexibility and effectiveness, allowing the system to adapt 

and improve its performance over time. 

 

3. Experiments and Results 
 

The formation of the input mathematical descrip-

tion for an intelligent system capable of learning to iden-

tify UAVs based on the analysis of their network traffic 

was performed using data from the Machine Learning 

Repository at the Center for Machine Learning and Intel-

ligent Systems at the University of California, Irvine 

(USA) [31]. The implementation of the machine learning 

algorithm according to procedure (3) was based on the 

input training matrix, which was created for three recog-

nition classes: o
1X  – network traffic analyzed includes 

data corresponding to the characteristics of the Parrot Be-

bop UAV; o
2X  – data corresponding to the characteristics 

of the DBPower UDI UAV; o
3X  – data for the DJI Spark 

UAV. To formulate the input mathematical description 

of the intelligent system, the "Unmanned Aerial Vehicle 

(UAV) Intrusion Detection" dataset from the repository 

of the Center for Machine Learning and Intelligent Sys-

tems at the University of California, Irvine (USA) [31] 

was utilized. The training matrix was constructed from 

the values of 54 statistical traffic parameters, including 

packet volume, average latency, transmission frequency, 

and other network activity characteristics. 

A key advantage is that the used attribute set is uni-

versal and independent of the specific UAV type or man-

ufacturer, as it is based on most unmanned control sys-

tems’ generalized statistical traffic parameters character-

istic. This approach enables the future adaptation of the 

technology to other UAV types without requiring signif-

icant modification of the mathematical model. The rele-

vant section of the data repository provides a comprehen-

sive list and description of the features, ensuring the re-

producibility and validity of the parameters used. 

The number of realizations for each class was 235, 

where each column of the matrix corresponded to the 

value of a separate indicator, and the rows contained re-

alizations of these indicators for each UAV type. Since 

the statistical characteristics of traffic each have their 

own area of definition, reducing their values to a common 

(consolidated) scale using a transformation is advisable: 

 

( j) ( j)
m,i m,i

m 1,M

j 1,n( j)
m,i ( j) ( j)

m,i m,i
m 1,Mm 1,M

j 1,nj 1,n

y min y

y W
max y min y














, 

 

where W is the indicator’s maximum value on the con-

solidated scale at the corresponding minimum value of 0. 

An information-extremal machine learning algo-

rithm has been implemented for the given alphabet of 

recognition classes, which ensures parallel optimization 

of the system of control tolerances reduced to a common 

scale (CSCT), where W = 250. 

Figure 3 shows the graph of the dependence of the 

averaged Kullback information measure (5) on the pa-

rameter δ, which sets the width of the CSCT field for all 

recognition features simultaneously. 

 

 
 

Fig. 3. Graph of the dependence of the averaged CFE  

on the parameters of the control tolerance system  

on the consolidated scale for recognition features 

 

In Figure 3 and in the text, the shaded part of the 

graph is designated as the working (permissible) area for 

defining the function (4), in which the values of the first 

and second type errors are smaller than the values of the 

first and second confidence levels, respectively [29, 30]. 

Analysis of Fig. 3 shows that the maximum value of the 

averaged CFE was reached at step 46 and amounted to 

2.388, which ensures a clear distinction between recog-

nition classes. 

The optimal radii of the recognition class containers 

for UAVs were determined within the internal cycle of 

the algorithm (3) to construct decision rules. Figure 4 

shows the results of the optimization of geometric param-

eters for this control tolerance system. 

The analysis of the optimization results (Fig. 4) 

shows that the optimal parameters for the class container 
o
1X  are radius d1 = 10 with an inter-center distance dc = 

12, for the class o
2X  radius d2 = 8 with dc = 12, and for the 

class o
3X  radius d3 = 8 with dc = 14. These container pa-

rameters correspond to the following values of CFE and 

accuracy characteristics: for the class o
1X : E = 2.130 (D1 

= 0.84; β = 0.04); for the class o
2X : E = 1.576 (D1 = 0.71; 

β = 0); for the class o
3X : E = 3.458 (D1 = 0.94; β = 0). 

The results of testing the UAV identification sys-

tem, built based on decision rules, showed that the overall 

probability of correct classification is 0.83. An infor-

mation-extremal machine learning algorithm has been 
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implemented to improve accuracy, which performs se-

quential optimization of control tolerances. In this ap-

proach, the initial control tolerance values were obtained 

during parallel optimization. Figure 5 shows the dynam-

ics of the averaged information criterion value during the 

parallel-sequential tolerance optimization. 

 

 
a               b 

 
c 

Fig. 4. Graph of the dependence of CFE  

on the geometric parameters of the class containers:  

a) class o
1X  – «Parrot Bebop»,  

b) class o
2X  – «DBPower UDI»,  

c) class o
3X  – «DJI Spark» 

 

 
 

Fig. 5. Graph of dependence  

of the averaged CFE during the sequential  

optimization of the control tolerances 

 

Figure 5 shows that the maximum value of the av-

eraged information CFE is achieved at the 270th iteration 

and equals 2.751, which improves the performance com-

pared to the value obtained through parallel optimization. 

Figure 6 shows the results of optimizing the geometric 

parameters for this control tolerance system. 

 

  
a               b 

  
c 

Fig. 6. Graph of CFE dependence  

on the geometric parameters of the class containers:  

а) class o
1X  – «Parrot Bebop»,  

b) class o
2X  – «DBPower UDI»,  

c) class o
3X  – «DJI Spark» 

 

The analysis of the optimization results (Figure 6) 

shows that the optimal container parameters for class o
1X  

are a radius of d1=7 with a center-to-center distance 

dc=11, for class o
2X  a radius of d2=7 with dc=11, and for 

class o
3X  a radius of d3=17 with dc=20. The correspond-

ing values of the CFE and accuracy characteristics for 

these container parameters are as follows: for class o
1X : 

E = 2.354 (D1=0.84; β = 0.01); for class o
2X : E = 1.744 

(D1 = 0,74; β = 0); for class o
3X : E = 4.156 (D1 = 1.00; 

β = 0.01). As previously noted, the results of testing the 

UAV identification system, built on the basis of decision 

rules, showed that the overall probability of correct clas-

sification was 0.83. This figure increased to 0.86 after ap-

plying the sequential optimization algorithm for control 

tolerances, indicating an improvement in classification 

accuracy and the effectiveness of the proposed approach.  

Within the information-extreme approach applied 

in this study, classification performance is evaluated not 

by a traditional "point" metric, but by Kullback’s infor-

mation measure (Em) [26, 30]. This is a generalized 

recognition quality function that integrally accounts for 

the balance between reliabilities (D1 – analogous to True 

Positive, D₂  – analogous to False Positive) and Type I 

(α – analogous to True Negative) and Type II (β – analo-

gous to False Negative) errors. Unlike static metrics (e.g., 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 4(116)               ISSN 2663-2012 (online) 
150 

accuracy, F₁ -score), the Em value is calculated at each 

iterative optimization step and serves as the objective cri-

terion for the machine learning of the system. 

Thus, the graphical dependencies presented in Sec-

tion 3 (Figs. 3-6) are not "point estimations" or "partial" 

assessments of accuracy. Instead, they illustrate the dy-

namics (evolution) of the learning process—the search 

for the global maximum of the CFE Em during the opti-

mization of parameters (container radii dm and control 

tolerances  ). The growth of the Em curve in these plots 

demonstrates how the system progressively improves its 

decision consistency, which is a significantly more com-

prehensive characteristic of effectiveness than a single 

summary evaluation.  

In light of this, the proposed set of methods and 

models ensures the formation of highly accurate decision 

rules for the UAV identification system based on the net-

work traffic analysis in UAV monitoring and control 

tasks under real operational conditions. 

 

4. Discussion 
 

The results of this study indicate that the parallel-

sequential optimization of the control tolerance system 

provides an overall classification accuracy of 86%. The 

obtained accuracy is competitive compared with existing 

UAV identification systems based on radio frequency 

signal analysis and optical methods, which typically 

demonstrate accuracy in the range of 75-90%. It is advis-

able to consider applying base-class selection algorithms 

[27] to further enhance recognition accuracy, which 

would allow the control tolerances to be more effectively 

adapted to the specific characteristics of each class. 

An important advantage of the proposed approach 

is its resilience to spectral interference and variability in 

data transmission protocols, which frequently occur in 

real-world UAV operational environments. The estab-

lished decision rules enable real-time execution of the ex-

amination stage, which is important for the UAV identi-

fication system’s practical application. However, as the 

number of classes increases, more complex algorithms 

are required. One promising direction is the introduction 

of a hierarchical approach, which involves organizing 

recognition classes into strata, each consisting of a group 

of the closest neighboring classes [32, 33]. 

A comparative analysis with traditional machine 

learning methods shows that the information-extreme ap-

proach offers better adaptability to changing operational 

conditions and lower computational resource require-

ments. Although the results of implementing hierarchical 

algorithms are not yet available, their use may improve 

recognition accuracy by optimizing tolerances for each 

stratum individually. Although constructing such a hier-

archical structure may take more time, it offers the possi-

bility of more efficient system operation as the number 

of classes grows. 

The limitation of the current study is that testing 

was conducted only on a controlled dataset. Further vali-

dation on real-world data from various geographic re-

gions and diverse operational conditions is necessary to 

confirm the approach’s universality. 

Thus, the proposed approach, based on parallel-se-

quential optimization, demonstrates high functional effi-

ciency and accuracy in UAV identification tasks. Further 

research will focus on implementing an enhanced set of 

IEIT models and methods to improve classification accu-

racy and system adaptability. 

 

5. Conclusions 
 

The proposed models and methods of information-

extreme machine learning for UAV identification sys-

tems are based on the analysis of network traffic trans-

mitted to the ground control station. The implementation 

of this approach has enabled the system to achieve high 

functional efficiency, ensuring an 86% accuracy rate in 

classifying UAV types. The system has significantly 

lower computational costs than other methods, making it 

suitable for use in real-time environments, where rapid 

decision-making is crucial. 

The main scientific contributions of this study are: 

the development of an adaptive methodology for apply-

ing information-extreme technology to UAV network 

traffic analysis, the formalization of the information syn-

thesis problem for a UAV identification system, and the 

experimental validation of the effectiveness of parallel-

sequential optimization of control tolerances. 

The optimal adjustment of classification parameters 

was an important factor in improving accuracy, which 

helped minimize the risk of erroneous decisions. Simul-

taneously, the effectiveness of parallel-sequential optimi-

zation, normalized to a common scale for the system of 

control tolerances on recognition features, was demon-

strated. The practical significance of the results lies in the 

integration of the developed system into existing airspace 

monitoring complexes and counter-UAV threat systems. 

Further research will focus on addressing the 

problem of adapting the system to the expansion of the 

alphabet of class quantities (including in the context of 

factorial cluster analysis). In particular, the implementa-

tion of a hierarchical approach is promising because it 

will allow the construction of multi-level data structures 

and the configuration of the CSCT for each level. Addi-

tionally, the application of algorithms for selecting the 

base class is considered promising because it will en-

hance the classification accuracy and the formation of er-

ror-free decision rules based on the training matrix under 

conditions of varying traffic characteristics. The applica-

tion of factorial cluster analysis methods opens opportu-

nities for the automatic detection of new UAV types and 
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for adapting the system to the evolution of UAV technol-

ogies without the need for complete system retraining. 
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ІНФОРМАЦІЙНО ЕКСТРЕМАЛЬНА ІДЕНТИФІКАЦІЇ  

БЕЗПІЛОТНИХ ЛІТАЛЬНИХ АПАРАТІВ 

І. В. Шелехов, Д. В. Прилепа, Д. В. Олефіренко, Р. С. Крицький 

Об’єктом дослідження є процес детектування та ідентифікації безпілотних літальних апаратів (БПЛА) 

шляхом аналізу мережевого трафіку, який передається ними на наземну станцію керування. Актуальність 

теми зумовлена необхідністю створення високоефективних систем ідентифікації БПЛА у зв’язку з їхнім ши-

роким використанням у військових, цивільних і комерційних сферах, що зумовлює потребу в ефективному 
вирішенні задач детектування, ідентифікації та класифікації таких пристроїв. Метою дослідження є розробка 

моделей і методів, які забезпечують машинне навчанні системи ідентифікації БПЛА на основі аналізу вхід-

ного та вихідного трафіку даних за допомогою інформаційно-екстремальної інтелектуальної технології. За-

пропоновано методологію використання інформаційно-екстремальної технологій для ідентифікації БПЛА, 

яка включає застосування методів ідентифікації образів і проектування інформаційних інтелектуальних сис-

тем. Науковою новизною є впровадження підходу до моделювання інтелектуальної системи, здатної навча-

тися ідентифікації БПЛА на основі аналізу характеристик їх трафіку. Методика дослідження базується на 

розробці системи із застосуванням наступних етапів: (1) формування навчального набору даних із параметрів 

трафіку БПЛА, (2) побудова системи ідентифікації БПЛА із використанням інформаційно-екстремального 

підходу, (3) машинне навчання системи у стандартних режимах функціонування цифрових радіоканалів 

зв’язку БПЛА. Результати дослідження демонструють, що запропонована інтелектуальна інформаційна си-
стема здатна забезпечити високу точність ідентифікації БПЛА. У тестуванні було досягнуто середньої точ-

ності ідентифікації на рівні 86%. Висновки. Запропонована в роботі система ідентифікації БПЛА базується 

на інноваційному підході до аналізу мережевого трафіку за допомогою інформаційно-екстремальної інтелек-

туальної технології. Результати дослідження підтверджують її ефективність для задач ідентифікації в умовах 

стандартних регламентованих характеристик трафіку. Отримані результати мають практичне значення для 

створення систем моніторингу та захисту від потенційних загроз, пов’язаних із використанням БПЛА у різних 

сферах діяльності. 

Ключові слова: безпілотні літальні апарати; інформаційно-екстремальне машинне навчання; інфор-

маційний критерій; функціонально-категоріальна модель; аналіз трафіку; контейнер класу розпізнавання. 
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