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MODEL OF THE INTELLIGENT SYSTEM
FOR PREDICTION OF ROAD TRAFFIC ACCIDENTS

This study aims to determine the prerequisites for the occurrence of road traffic accidents, analyze the most
dangerous maneuvers of motor vehicles that can lead to hazardous situations, and develop the most effective
method for promptly informing the driver about potential danger. The goal of this study is to develop an infor-
mation system that ensures timely notification of drivers about possible road traffic accidents in designated
hazardous areas. The tasks include: investigating existing computer vision models for classification and object
tracking tasks and determining the most suitable ones for deployment on a single-board computer Nvidia Jet-
son, while examining their performance and technical limitations; developing an optimized solution for the
prompt notification of drivers about danger; creating an algorithm for detecting potential vehicle collisions
that integrates computer vision methods and mathematical modeling; developing a comprehensive danger
warning system based on the obtained results and testing its functionality. The following methods were applied
in this study: a process-based approach to investigate the mechanisms of road traffic accident occurrence, sta-
tistical analysis of hazardous areas and maneuvers, and performance analysis of computer vision models for
real-time object detection and tracking and driver notification. Additionally, road situations were simulated
and modeled using the BeamNG.tech environment. The results include the development of a methodology
based on computer vision and mathematical models for identifying hazardous situations on the road and the
creation of an approach for prompt notification of road users using cloud technologies, 10T devices, and the
GeoHash algorithm. An information system that allows drivers to receive warnings about potential hazards
along their route has been proposed. Conclusions: this study confirms the successful development of a soft-
ware system for forecasting and notifying drivers about the risk of road traffic accidents. The conducted stud-
ies have demonstrated the effectiveness of the proposed algorithm for detecting hazardous situations and tech-
nological solutions for road infrastructure integration. Experiments conducted using BeamNG.tech have con-
firmed the functionality of the developed system, which can be applied to minimize the risk of road traffic acci-
dents in designated hazardous areas.

Keywords: Information Technologies Development; Intelligent software system; model for vehicles crash pre-
diction; Machine Learning; Computer Vision; Nvidia Jetson; Messages routing optimization; GeoHash; Inter-
net of Things.

However, all these systems are primarily focused on the
safety of a particular vehicle and do not consider

1. Introduction

1.1. Motivation

The growing urbanization of modern cities is
accompanied by the intensive use of motor vehicles, an
integral part of modern life. However, the increase in
the number of cars and their speed leads to an increase
in the frequency of road traffic accidents (RTAs), which
is confirmed by statistical studies [1, 2]. Particular
attention should be paid to the problem of pedestrian
collisions, as their share in the overall structure of road
traffic accidents shows an upward trend [3]. Despite
significant progress in the implementation of active
safety systems, comprehensive road safety remains a
relevant problem. The automotive industry offers a wide
range of technological solutions to minimize the risk of
accidents, including adaptive cruise control, lane-
keeping assistance, pedestrian detection, anti-lock
braking system (ABS), blind spot monitoring, etc.

dangers outside the range of their sensors. Most active
automotive safety systems are based on radar and video
analysis technologies. For example, the BMW KAFAS
system [4] recognizes road signs and displays them on
the dashboard, as well as provides pedestrian
identification and automatic emergency braking in the
absence of a driver’s reaction (up to 50 km/h).

Other technological solutions include the
automatic high-beam switching system [5], which
detects oncoming traffic and adjusts the lighting
intensity. However, the effectiveness of this function
depends on the cleanliness of the optical elements of the
camera, which can lead to malfunctions. Another

innovative solution is automatic parking, which uses
ultrasonic sensors and allows the vehicle to perform
direct

maneuvers driver

intervention.

independently  without
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The night vision system, which operates based on
thermal imaging cameras, has received special attention
[6]. In BMW, this system recognizes objects (i.e.,
pedestrians and animals) in the dark and illuminates
them with fog lights to improve visibility. This
significantly increases the driver’s awareness of
possible roadway threats.

Despite the diversity of modern automotive
technologies, they mostly perform auxiliary functions.
Systems such as ABS, brake force distribution, traction
control, and electronic differential lock remain
fundamental elements of active safety. Their main
purpose is to maintain vehicle stability in emergency
situations, for example, when a pedestrian unexpectedly
appears on the road or other road users violate the rules.

Notably, none of the modern safety systems is an
absolute guarantee of avoiding accidents, as the final
decision and speed of response remain with the driver.
In stressful or unexpected situations, a person may not
have time to properly assess the danger, which reduces
the effectiveness of even the most advanced
technologies.

Thus, an intelligent hazard warning system capable
of operating outside the range of standard car sensors
must be developed. A separate problem or disadvantage
is the availability of technology: most modern systems
are integrated exclusively into new car models, which
disadvantages owners of wvehicles without such
equipment. Therefore, a promising direction is to create
a universal solution that can function regardless of the
design features of the car and ensure that the driver is
effectively informed of potential threats.

1.2. State of the Art

Among modern approaches to traffic accident
forecasting, regression analysis methods that allow
identifying key factors that affect the likelihood of an
accident are receiving considerable attention. The use of
such methods enables the formation of dynamic risk
statuses that can be updated in real time. In particular,
one of the possible scenarios for applying this approach
involves displaying the probability of getting into an
accident directly on the dashboard of a car when starting
to drive. Based on the statistics of the Ministry of
Transport of New Zealand [7], such a system can assess
the level of risk in a particular place under certain road
and weather conditions and predict the possible level of
damage in the event of an accident. The result of this
study is the creation of mathematical models that allow
the assessment of the potential consequences of an acci-
dent depending on various factors. The analysis of sta-
tistical data shows that the presence of drugs in the driv-
er’s blood is the most significant factor affecting the
likelihood of an accident. This factor significantly in-

creases the risk of an accident because it affects the
speed of reaction, coordination, and decision-making
adequacy.

In Fig. 1 shows the list of factors considered and
their impact on the regression model.
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Fig. 1. The factors impact on the regression model [7]

The next research [8] focuses on the integration of
advanced algorithms and machine learning techniques
to improve traffic management and emergency response
systems. For instance, Berhanu et al. emphasize the use
of adaptive routing algorithms, such as NSGA-II and
MOPSOQO, which can optimize emergency response plan-
ning and traffic flow control, thereby mitigating conges-
tion and reducing the likelihood of accidents in both
low- and high-income countries.

The next research [9] investigated connected and
autonomous vehicles (CAVs) as a transformative ap-
proach to accident prevention. According to Ahmed et
al., the implementation of automated driving functions
could significantly reduce human error, which is re-
sponsible for over 90% of crashes, potentially saving
thousands of lives annually.

The implementation of Artificial Intelligence tech-
nologies in traffic accident prediction highlights the
shift toward smart infrastructure solutions. The follow-
ing research [10] points out that Al can evaluate real-
time risks on roads, enhancing proactive measures to
prevent accidents before they occur. This Al integration
facilitates a more responsive and data-driven approach
to understanding and mitigating traffic incidents. Data-
driven methodologies are increasingly required for a
detailed understanding of traffic accident patterns. For
instance, in the next one research [11] shows the usage
of a machine learning framework for accident severity
modeling, showcasing the potential of advanced statisti-
cal approaches to improve decision-making in traffic
safety.
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Similarly, the authors of the following work [12]
focused on developing sensor systems for wildlife de-
tection, emphasizing the importance of timely interven-
tions to prevent accidents caused by environmental fac-
tors.

Using deep learning models to predict traffic acci-
dent severity, the next research [13] showcasing the
capacity of neural networks to interpret complex data
from numerous sources, which improves the interpreta-
bility of the models used for such predictions.

Cheng’s study [14] on the SARIMA-LSTM model
further illustrates how by effectively capturing temporal
dependencies in the data, hybrid models can substantial-
ly enhance traffic accident forecasting accuracy. The
results indicate that the combination of models can yield
more reliable predictions, significantly aiding decision-
making in road safety interventions.

Gatari¢ et al. [15] investigated the application of
artificial neural networks (ANN) for predicting traffic
accidents, emphasizing how non-linear models can inte-
grate various subjective and objective factors contrib-
uting to accidents. Their results indicate a promising
future for ANN in addressing accident prediction com-
plexity.

In examining factors influencing traffic accident
severity, the researchers of this work [16] integrated
multiple machine learning models to analyze accident
data collected from highway sections, demonstrating
how gradient boosting techniques can effectively pin-
point significant risk factors contributing to severe acci-
dents. This multifaceted approach illustrates the value of
machine learning in deriving actionable insights for
enhancing road safety measures.

1.3. Objectives and the approach

The problem of road accidents remains relevant,
and individual car safety technologies are being devel-
oped, road infrastructure is being improved, and autopi-
lot systems are being introduced to address it. Statistical
analyses are also used to predict accidents under certain
conditions.

However, technology that can analyze data from a
particular road section in real time and warn drivers of
possible emergencies is needed. This approach will sig-
nificantly reduce the number of accidents because the
information will come directly from the traffic area and
not be based on historical data. It is important that the
proposed system interacts with existing safety technolo-
gies, complementing their functionality rather than re-
placing it.

This study aims to create an intelligent system
model for road traffic accident prediction that will noti-
fy the driver of potential dangers on the way. To
achieve this goal, the following tasks must be per-
formed:

- consider and identify the best computer vision
model for classifying and tracking objects on a single-
board Nvidia Jetson computer;

- create an optimized solution for receiving a
driver’s hazard notification;

- create an algorithm for detecting potential haz-
ards using data from the computer vision and mathemat-
ical models.

The research includes the following sections:

- Section 1 is devoted to explaining the problem
of car accidence, describes the latest views and devel-
opments regarding the task of car accidence prediction,
and outlines the necessity of creating an intelligent sys-
tem model for road traffic accident prediction that will
notify the driver of potential dangers on the way;

- Section 2 shows the investigation of the causes
of road traffic accidents, which points to the reasons and
nature of the occurrence of car accidents;

- Section 3.2 includes a review of the computer
vision models for the classification of the prerequisites
for car crash occurrences on the image. The YOLOvVS
and TrafficCamNet_1.3 models are used, and Jetson
TX2 is considered the hardware;

- Section 3.3 presents an improved approach for
the task of classification of car accidence prerequisites,
which uses the computer vision model TrafficCam-
Net 1.3 for car classification on image and overlapping
car trajectory projections to identify possible car acci-
dence;

- Section 4 describes the architecture, UML dia-
grams for the created software, and error handling;

- Section 5 is related to results explanation of us-
ing the software system, which is built on top of the
defined model for possible car accidence revealing;

- Section 6 relates to the conclusions drawn dur-
ing the work on this research.

2. Investigation of road traffic
accidents causes

The human factor remains the main factor leading
to road accidents. Human behavior determines the
course of events on the road, affecting the likelihood of
accidents. According to the annual U.S. analytical report
The Federal Highway Administration [17] statistics
show a gradual decrease in the level of road traffic
deaths between 2022 and 2024, indicating a positive
trend in road safety (Fig. 2).

Table 1 presents statistics on fatalities depending
on the impact direction on passenger crashes.

From the above data, we can conclude that the
probability of fatalities decreases with the size of the
vehicle. This is because cars with a smaller mass absorb
less impact energy, which leads to a much greater load
on the human body during a collision.
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Fig. 2. Vehicle crash death count trend [17]
Table 1 Moreover, recent studies have highlighted the role
The number of fatalities depends of specific conditions, such as weather and road surface
on the direction of impact [17] conditions, in intensifying the severity of accidents. For
Impact - Sport Utility instance, research [19] explored the impact of rainstorm
directi Cars Pickups : .. . . - L
rection Vehicle conditions on traffic accidents, revealing that climatic
Front 8076 2811 4043 factors, alongside road conditions, play a crucial role in
Side 3551 811 1271 det . ident ity This ali ith the find
Rear o 187 385 determining accident severity. This aligns wi e find-
Flips 1449 892 1104 ings of other studies that emphasize the need for com-

According to the US road accident fatalities re-
ports, the most dangerous type of collisions are frontal
impacts, followed by side impacts. Based on this, it can
be assumed that such accidents most often occur in crit-
ical areas of road infrastructure, particularly on intersec-
tions where there is a high probability of a side impact,
as well as in cases of loss of control, which can lead to a
head-on collision.

A systematic review and meta-analysis focused on
the prevalence of seat belt use among drivers and pas-
sengers, emphasizing its critical role as a cost-effective
preventive measure in reducing the severity of injuries,
disabilities, and fatalities resulting from road traffic ac-
cidents [18]. Their research highlights that a significant
proportion of deaths from motor vehicle crashes occur
among vehicle occupants, underscoring the need for seat
belt usage as a fundamental safety practice. Kargar et
al.’s findings are particularly relevant in the context of
global road safety initiatives, as they align with the rec-
ommendations of the World Health Organization on
enhancing seat belt compliance to mitigate road traffic
injuries. Despite the known benefits of seat belt use,
compliance rates remain suboptimal in many regions,
necessitating targeted interventions to promote their
usage. This research contributes to the broader discourse
on traffic safety by providing empirical evidence that
supports policy-making and public health strategies
aimed at increasing the adoption of seat belts.

prehensive data collection and analysis to accurately
predict accident outcomes [20-21].

The next research, which is based on statistical da-
ta [22], identifies the most dangerous maneuvers, in-
cluding the following:

- Continuing to drive without changing direction
after hazard detection. This maneuver is responsible for
62% of all fatal accidents in the United States.

- Driving on serpentines, sharp turns, and moun-
tainous terrain at a speed exceeding the speed limit. This
type of maneuver accounts for 20.63% of fatal accidents
in the United States. The main reason is that drivers
overestimate their own driving skills and vehicle capa-
bilities. The high proportion of accidents is also ex-
plained by the terrain: approximately 50% of the US
territory is covered by mountain ranges, whereas 95%
of the territory in Ukraine is flat, which significantly
reduces the prevalence of this risk.

- Turning left. This maneuver causes 7% of all
fatal accidents in the United States, but it is often con-
sidered one of the most dangerous maneuvers in
Ukraine, along with overtaking. The main risk of a left
turn is that the vehicle crosses into the oncoming lane,
where there may be other cars. The danger of this ma-
neuver increases especially in limited visibility when
the oncoming traffic has two or more lanes, which
makes it difficult to assess the road situation. An addi-
tional risk factor when making a left turn is the driver’s
excessive cognitive load. While performing the maneu-
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ver, he or she must simultaneously control vehicles in
the oncoming traffic, monitor for possible pedestrians,
and assess other potential obstacles;

- Overtaking a motor vehicle. This maneuver is
characterized by an increased level of risk, as it com-
bines high speed and oncoming traffic. Incorrect over-
taking can lead to a head-on collision or loss of vehicle
control.

The latest EU road accident fatalities report [23]
displays the decreasing trend of fatality occurrences
(Fig. 3).

The data presented in this analysis were obtained
from the CARE (Community Database on Accidents on
the Roads in Europe), which compiles detailed records
of individual road accidents resulting in death or injury
based on reports collected by national authorities from

Road accident fatalities, European Union

police and hospital sources across European countries.

The number of road traffic fatalities in EU coun-
tries has declined significantly over the past decade,
with a 16% reduction observed between 2013 and 2023.
This downward trend was largely consistent, except in
2015, 2021, and 2022, when modest increases of 0.9%,
5.7%, and 3.7%, respectively, were recorded relative to
the previous year.

The marked decrease in fatalities in 2020 (—17.3%
compared with that in 2019) is likely attributable to the
COVID-19 pandemic, during which widespread lock-
downs and mobility restrictions significantly reduced
traffic volumes across Europe.

The Fig.4 illustrates the number of road traffic fa-
talities per million inhabitants across countries in 2023.
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Fig. 3. A recent EuroStat report of road accident fatalities [23]
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3. Materials and methods of research

3.1. Methods overview

This paper considers approaches for classifying a
road situation in terms of whether it is dangerous or not.
For this purpose, we deployed the computer vision algo-
rithms TrafficCamNet_1.3 [24] and YOLOV8 [25] on a
single-board computer Jetson TX2. The MQTT message
broker of AWS loT Core was used to send notifications
to the user. The BeamNG.tech software [26] was used
to create typical traffic scenarios. To use the YOLOV8
model, a dataset that described a dangerous left turn
situation was created.

The TrafficCamNet_1.3 model was used as a pre-
trained model for car detection tasks. The TrafficCam-
Net 1.3 model, developed using NVIDIA’s TAO
Toolkit, is an object detection model based on the De-
tectNet_v2 architecture with a ResNet-18 backbone. It
is designed to identify four object classes: cars, persons,
road signs, and two-wheelers. The model was trained on
a proprietary dataset containing more than 200,000 im-
ages, including approximately 160,000 traffic camera
images and 40,000 dashcam images, yielding more than
3 million labeled instances primarily focused on vehi-
cles. The exact training parameters are not publicly dis-
closed.

The following training parameters were used for
training the YOLOv8 model:

- Image size: 640x640 pixels

- batch size: 16

- number of epochs: 100

- learning rate: 0.01

- optimizer: Stochastic Gradient Descent

3.2. Classification of road traffic accidents
causes on an image

The first approach for identifying hazardous situa-
tions was to use the YOLOV8 model trained on the basis
of a dataset with images describing a particular hazard-
ous situation [27]. For example, a left turn across on-
coming lanes was considered (Fig. 5).

The dataset comprises two image categories: dan-
ger (illustrating hazardous scenarios) and non-danger.
The model is intentionally kept straightforward and fo-
cuses on a specific dangerous situation: making a left
turn across oncoming traffic. This scenario arises when
one lane remains unoccupied while the adjacent lanes
have stationary vehicles yielding to a driver attempting
to turn left. In such cases, some drivers acknowledge the
left-turning vehicle, but a driver traveling in the empty
lane may not realize why the other lanes are at a stand-
still. If a left-turning driver proceeds across, they may
unexpectedly enter the path of the oncoming vehicle in
the open lane, increasing the risk of an accident [27].

The pictures which were used there were 640x640 px
resolution and represent danger and non-danger cases.
The ratio between classes was 1:1. That is, 150 pictures
were created for one class and 150 for another.

~ Fig. 5. Example of turning left across oncoming
lanes case [27]

The general approach for image classification into
danger and not—danger classes can be considered as
follows: if cars’ trajectories are intersected or can be
intersected in a short period of time and these cars’
drivers cannot see each other in line of sight, then this
case can be considered as danger. The opposite way for
classification of non-danger cases: If cars’ drivers are
able to see each other in direct sight during maneuvers,
then these cases are classified as non-danger. A left turn
across an oncoming lane is one of the dangers.

The YOLOvV8 model validation included the usage
of the following metrics: Mean average Precision with
loU, Time to train, occupied GPU memory, model size,
Loss CLS, Loss box, inference time, Recall, Precision.
The following formulas describe these metrics.

The Precision metric has the following formula:

TP

Precision = ,
TP+FP

M)

where TP (True Positive) — the number of correctly pre-
dicted positive cases;
FP (False Positive) — the number of cases where the
model incorrectly predicted a positive result.
The Recall formula is as follows:

Recall = L : 2
(TP +FN)

where TP — the number of correctly predicted positive
cases;
FN — the number of cases where the model predicted
negative results but were actually positive.
The loU formula is as follows:
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where A,B — areas, and intersection is the area where
the predicted bounding box overlaps with the ground
truth bounding box;

Union — the total area covered by both the predicted
and ground truth bounding boxes, excluding the over-
lapping area.

The Loss Box formula is as follows:

Lok (V)= Y ™" -vp), @)

ie{x,y,w,h}

where there is a sum of L§™o°th (t¥% — v,) — which de-
notes Smooth L1 between the compared predicted box
and the ground-of-truth box;

t{' — predicted box;

Vi — ground of truth for the box;

i {x,y,w,h} — iteration over the four box compo-
nents: x, y, width, and height.

The Cross Entropy Loss CLS formula is the following:

Las(py) =-{ylog(p) + (1-y)log(l-p)l,  (5)

where y —actual label,
p — predicted probability of the instance being in a
class.
The Fig. 6 displays Recall metrics during model

training. X-axis displays epochs and Y-axis recall met-
ric.
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Fig. 6. Recall chart
The Fig. 7 displays the Loss box metrics during

model training. The x-axis denotes the epochs, and the
y-axis denotes the loss value. The training box loss is

steadily decreasing, suggesting that the model is im-
proving its ability to localize objects. It starts around
0.07 and ends just below 0.045, which is a significant
reduction.
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Fig. 7. Loss Box chart
The Fig. 8 represents chart of Cross Entropy Clas-
sification Loss metric, which was obtained during mod-
el training. The x-axis displays the epoch count, and the

y-axis shows the loss value.
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Fig. 8. Loss CLS chart

The Mean Average Precision formula is as follows:
1 N
MAP == AR, (6)
N3

where N —number of classes;
AP; — average precision for a given class.

At the initial epoch, the classification loss was ap-
proximately 0.030, indicating a relatively high degree of
misclassification. The loss exhibits a monotonic de-
creasing trend as training progresses, characterized by a
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sharp decline in the early epochs (0-10), followed by a
more gradual reduction with minor oscillations. This
behavior is typical of well-behaved optimization dy-
namics, where the model quickly learns coarse patterns
initially and then fine-tunes its predictions in later
epochs.

he Fig. 9 displays the mean average precision met-
ric collected during model training. The x-axis displays
the epoch count, and the y-axis shows the mean preci-
sion value.
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Fig. 9. mAP metric chart

All metrics experienced a sharp decline at the 40th
epoch. This can be attributed to the model overfitting to
the training data at this stage, leading to reduced gener-
alization during validation. As a result, the model strug-
gles to effectively distinguish classes, which not only
lowers the overall accuracy but also gives a misleading
impression of fewer errors.

Table 2 shows the results obtained during the
model evaluation:

Table 2
Evaluation results of YOLOV8

Metric 16 54 80 100

Name epochs | epochs | epochs | epochs
Recall 0.726 0.742 0.75 0.738
Precision | 0.846 0.845 0.834 0.821
mAP50 0.83 0.84 0.84 0.829
mAP95 0.609 0.621 0.622 0.614

After 54 epochs, the model was selected for de-
ployment on the Nvidia Jetson TX2.

However, the proposed method of road accident
prediction is difficult to implement due to several design
limitations.

- the main problem is the large amount of train-
ing data required to classify dangerous situations accu-
rately. For example, to identify only one maneuver —
turning left — the model must consider a wide range of

variations: different background environments, vehicle
types, their positions on the road, and differences be-
tween safe and dangerous scenarios. Furthermore, a left
turn is only one of many risky maneuvers, and the num-
ber of possible scenarios for its execution is virtually
unlimited. This creates the problem of over-expanding
the dataset, which complicates the model training and
increases computational costs. The idea was to optimize
the approach by reducing the uninformative context:

- reduction of background information (city,
mountains, forest, highway), as it does not affect the
maneuver mechanism;

- vehicle type because the nature of the maneu-
ver does not depend on whether it is performed by a car,
truck, or bicycle.

Moreover, as an enhancement, characteristics, such
as road markings, can be added to help better classify
the image, which may be invisible or absent. However,
this enhancement is highly costly to prepare because the
image annotation process is performed manually. Only a
human can correctly determine which lines and objects
should be highlighted and which are irrelevant. In addi-
tion, this method does not solve the problem of variabil-
ity in the requirements of road accidents, as their occur-
rence scenarios are too diverse. Fig. 10 shows a possible
enhancement method.

Fig. 10. Elimination of unnecessary case context

Thus, the proposed approach cannot be argued to
significantly improve the accuracy of detecting danger-
ous situations.

3.3. Enhanced model for classification
of possible car accidence using computer
vision and math model

Based on this, new requirements for an intelligent
system model for road traffic accident prediction arise,
which should ensure the system’s efficiency and practi-
cality:
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- minimize the size of the training dataset to re-
duce resource requirements;

- simplified preparation of training data that does
not require significant human intervention;

- high speed and accuracy of image object classi-
fication;

- the ability to deploy the model on single-board
computers ensures the mobility and accessibility of the
solution.

came Count:

It was decided that it was necessary to use a gen-
eral classification model that could detect a car and then
predict whether the cars would likely crash using a cer-
tain model. This model, which determines whether the
cars are likely to crash, uses a projection of the direction
of the car’s movement. If the projections of the cars’
movement intersect, then an accident is possible
(Fig. 11).
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Fig. 11. The methodology of definition of the possible crash

4. Software Implementation

The MQTT message broker was used to
send/receive notifications, and the Raspberry PI is used
for 10T devices that receive notifications and are in-
stalled in a car (or it can be a smartphone). The reason
for keeping both devices for notification receiving is as
follows:

- Modern smartphones can request the current
location with a speed of up to 1 Hz, which may be in-
sufficient for some cases. The Raspberry Pi usage al-
lows assembling the high-frequency system for location
request; thus, the speed for the location request process
can be increased up to 10-20 Hz.

The general approach for receiving notifications is
to receive it from the AWS cloud message broker, ana-
lyze it, and determine whether the user is within the area
where the notification should be displayed. The system
activates an audible signal if the car is within the danger
zone, warning the driver of a potential threat.

This approach ensures confidentiality, as infor-
mation about the driver’s location remains locally in the
car’s device without transferring personal data to third-
party services and over the network. To optimize the
flow of incoming messages to the 10T device in the car,
the GeoHash [28] algorithm should be used. This ap-

proach divides the world map into fixed geographical
sectors of a certain size, greatly simplifying the process
of routing messages.

Each GeoHash quad corresponds to a separate top-
ic in the MQTT broker to which 10T devices installed in
vehicles will subscribe. This structure minimizes the
number of unnecessary messages because the device
receives only data relevant to its current geographic
location.

The flow diagram for the message receiving pro-
cess is shown in Fig. 12.

This flow chart describes the mechanism of how a
message about a certain warning is received. There are a
few components: a car, 10T device (or smartphone) in-
stalled in a car, AWS loT Core, and AWS RDS. The
process starts when the engine is started. This invokes
checks for subscription presence. Once a positive re-
sponse from the backend about the subscription status is
received, the 10T attempts to obtain the current location,
calculate the geohash, and subscribe to a particular topic
using the geohash. Once the message from the topic is
received, the 10T checks whether the car is within a de-
fined polygon, based on the message. This polygon is a
place on a crossroad, which the cameras’ installers
marked as a zone-of-action, indicating that cars in this
polygon should receive messages if any warnings are
found.
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The next diagram (Fig. 13) explains the publishing
flow of the message about the found potential car acci-
dence.

This diagram shows the mechanism of sending a
message about possible car accidence to the MQTT

device (Nvidia Jetson) setup process, installers provide
the software with static input information based on
which camera-device subscribes to the particular topic
on AWS loT MQTT broker. Then, Jetson processes the
image and classifies the vehicles, calculates the possible

message broker. There are few components in general:  cars’ trajectory intersection, and sends warning
Nvidia Jetson, AWS Cloud. Initially, during the camera-
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messages with defined metadata in case any violation is
found.

4.1. Error Handling

The real-time intelligent notification system’s error
handling should include handling for false positive clas-
sification and cloud disconnecting cases.

In terms of incorrect classification, receiving a
warning message is ok when there are no real danger
cases found. In cases where a danger situation is present
but is not recognized properly, it can be fixed with
proper model training and receiving a high average pre-
cision metric value during the testing system on each
installed danger road part. The system should be tested
before it goes live for workability on the particular place
of installation. If the system in the test mode shows a
low Average Precision metric, the model should be ad-
justed for the currently installed place.

The cases of cloud disconnections should be han-
dled with alternative Internet connection on the camera
edge device side, which allows switching from one way
to another, in case of any issues with the primary one
way for Internet access. The Exponential backoff algo-
rithm for sending notification into MQTT message bro-
ker should be used in the case of unsuccessful message
sending.

In terms of disconnection handling from the client
side (installed 10T device into a car), the following ap-
proaches can be used:

— Usage of QoS (Quality of Service) level 1,
which sets the delivery of message at least once.

— Persistent session usage, which allows the re-
tention of the subscription state and undelivered QoS 1
or 2 messages while the client is offline.

— Usage of alternative Internet connection
warmed up and ready for replacement in case of any
issues with the primary connection.

5. Results and Discussion

According to the results of testing the YOLOvV8
model on the Jetson TX2, the performance of the
YOLOV8 model on this version of the single-board
computer is significantly inferior to that of the Traffic-
CamNet_1.3 model. Table 3 shows the comparison re-
sults in Table 3.

Table 3
Comparison of YOLOV8 and TrafficCamNet_1.3
Metric Name YOLOvV8m Traﬁlcf gmNet_

Average on 10 runs -

GPU latency, ms 155.703 6.927
Throughput, gps 6.407 140.517
Latency: min, ms 153.808 7.052
Latency: max, ms 157.84 8.735

Various scenarios were designed to test an intelli-
gent system for predicting road traffic accidents. How-
ever, current research includes the results from only one
case, which tests the system from a performance point
of view. The exciting near-house territory or turning left
across oncoming lines involves only one vehicle at high
speed and another almost stops, which, in general, can-
not fully check the system. As an experimental scenario
for using an intelligent system model for road traffic
accident prediction, a case was designed where a traffic
light-controlled intersection exists. The exit from one
road is downhill, and there is also a building on the right
side of the car moving up. This building prevents the
driver of the red car from ensuring that it is safe to enter
the intersection (Fig. 14).

The TrafficCamNet_1.3 model was used to detect
and classify cars in this case. An example of the work is
shown in Fig. 15.

Fig. 14. Case created for the experiment
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The purpose of the experiment was to determine
the time when the system notifies the driver of a poten-
tial threat, the time when the driver stops completely
after receiving a sound signal (on a certain type of car),
and the model’s limitations for classifying and tracking
the car. A laptop was used as an loT device to run the
experiment scenarios created in the BeamNG.tech soft-
ware. The location of the car was determined based on
its position on the simulator map. Table 4 shows the
results of the experiment using a 1425 kg sedan car
weighing 1425 kg. Conventional disc brakes with 1 pis-
ton was there.

The analysis of the results of the first experiment
allows us to draw the following conclusions:

- the effectiveness of the system is confirmed at
a vehicle speed of ho more than 50 km/h for the vehicle
type in the experiment;

s, )

“(Side: NE, magni tude angle 45 Slde
I /| -

- the average time of message transmission and
processing is 0.3 s, which is fast enough to give the
driver additional time to react;

- the braking time varies between 1.7 and 2 s.

However, in 50% of the cases, a collision still oc-
curred. The main reason for this was the late triggering
of the system, which was caused by the late detection of
the car or its loss during the threat analysis. To fix this
problem, the computer vision algorithm must be opti-
mized by training the model on datasets with different
input image sizes, which will improve recognition accu-
racy and system stability.

The next experiment was conducted under an iden-
tical scenario but using a different vehicle type. The car
weighed 1660 kg, had a wagon body type, and was
equipped with a three-piston sports brake system. Ta-
ble 5 presents the results.

) i
—

Fig. 15. Example of how the model performs

Table 4
Results of experiments for the created case with a car weight of 1425 kg
The time before The time, when IoT | The time, when car The sp © ed aj[ the mqment Crash
. . . of notification received;

notification sent received message fully stopped kim/h happened
2025-01- 2025-01- 2025-01- 42 TRUE
05T12:40:02.709622 | 05T12:40:02.933484 | 05T12:40:05.114334
2025-01- 2025-01- 2025-01- 37 FALSE
05T13:08:56.834051 | 05T13:08:57.076655 | 05T13:08:58.772655
2025-01- 2025-01- 2025-01- 51.38 FALSE
05T13:09:27.781746 | 05T13:09:28.030199 | 05T13:09:29.102009
2025-01- 2025-01- 2025-01- 52.67 TRUE
05T13:09:57.748407 | 05T13:09:57.994106 | 05T13:09:59.253262
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Table 5
Experimental results for the wagon-type vehicle and 1660 kg weight
The time before The time, when IoT The time, when car at the rrrllﬂ(l)lri:fl ff)(; notifi- Crash
notification sent received message fully stopped cation received: km/h happened
2025-01- 2025-01- 2025-01- 50 FALSE
05T14:16:54.601413 | 05T14:16:54.998645 05T14:16:56.905827
2025-01- 2025-01- 2025-01- 66.06 TRUE
05T14:17:09.322504 | 05T14:17:09.649457 05T14:17:12.297685
2025-01- 2025-01- 2025-01- 61 TRUE
05T14:17:55.841201 | 05T14:17:56.151540 05T14:17:57.848792
2025-01- 2025-01- 2025-01- 77 TRUE
05T14:18:40.917595 | 05T14:18:41.222709 05T14:18:42.918078
2025-01- 2025-01- 2025-01- 41.6 FALSE
05T14:18:58.137268 | 05T14:18:58.457782 05T14:18:59.872115
2025-01- 2025-01- 2025-01- 43.7 FALSE
05T14:19:10.642923 | 05T14:19:10.975277 05T14:19:12.424491
2025-01- 2025-01- 2025-01- 32 FALSE
05T14:19:24.891371 | 05T14:19:25.217969 05T14:19:26.146659

This experiment clearly shows the relationship be-
tween vehicle speed and accident probability:

- no emergencies occur at speeds of up to 60
km/h, and the system manages to warn the driver in
time of an approaching threat from the right;

- the time to send and receive a message remains
unchanged at 0.3 s;

- the time for a complete stop of the car ranges
from 1.5 to 2.3 s, which corresponds to the previous test
results.

However, even with a highly effective braking sys-
tem, it is impossible to safely avoid an accident when
the city’s speed exceeds the allowed limit. This con-
firms the critical importance of speed limit compliance
for the effective functioning of the accident prevention
system.

6. Conclusions

In this study, we developed and tested an intelli-
gent system model for road traffic accident prediction
based on real-time video processing and notification
sending. The articles considered for improving road
safety mostly use historical data to define patterns and
dependencies in data, whereas this research focuses on
revealing potential threats in real-time based on infor-
mation collected from a particular place.

The main practical results are as follows:

- An analysis of the current approaches to road
safety was conducted;

- We investigated and tested computer vision
models for real-time vehicle detection on the Nvidia
Jetson platform;

- A new intelligent system is proposed for de-
tecting dangerous situations, such as vehicle collisions,
in real time;

- A system is implemented for routing messages
from video stream analysis devices to cars using Geo-
Hash;

- A software architecture that provides high per-
formance, reliability, and scalability through AWS
cloud services was developed;

- A prototype of the device for installation on
dangerous road sections based on Jetson Orin Nano and
IMX219-160 camera was created;

- The system was experimentally tested in dif-
ferent vehicle traffic scenarios using BeamNG.tech [26].

Thus, the proposed model can reduce the risk of
accidents in certain dangerous areas, and its effective-
ness is confirmed by the test results. The future work
that needs to be done is: improvement of computer vi-
sion models in the angle of faster car classification and
avoiding of classified object tracking loss.

Contributions of authors: conceptualization,
methodology; formulation of tasks, analysis; develop-
ment of model, software, verification; writing, original
draft preparation — Oleksandr Byzkrovnyi; analysis of
results, visualization; writing — review and editing —
Kirill Smelyakov; analysis of implementation results,
models improvement — Anastasiya Chupryna.
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MOJIEJIb IHTEJEKTYAJIbHOI CACTEMHY NPOTHO3YBAHHSA
JOPOXKHBO-TPAHCHHOPTHUX ITPUT'O/1

O. M. Buskposnuii, K. C. Cmenakos, A.C. Yynpuna

IIpenMeT moCHi/UKEHHS MONATAE y BU3HAYEHHI NMEpeIyMOB BHHHKHEHHS JOPOXHBO-TPAHCIOPTHUX IPHIOL,
aHaJi31 HalfHeOe3MEeYHIMNX MaHEBPiB MEXaHIYHIX TPAHCIIOPTHIX 3aC00iB, M0 MOXYTh COIPHUYMHUATH aBapiiHi CHTY-
arii, Halfie()eKTUBHILIOrO Croco0y OMEpaTHBHOIO CIIOBIIICHHS BOIis MPO MOTEHLiNHY HeOe3meky. MeTa rocii-
JOKEHHSI — CTBOPEHHS 1H(pOpManiifHOI cucTeMu, o 3a0e3Medye CBOE9acHe CIOBIMICHHS BOAI{B PO MOXIINBE BUHU-
kaeHHs JITII Ha BU3HaUCHUX HEOE3MEUHHUX AUISHKAX PyXy. 3aBAAHHA: JTOCIIAUTH iCHYIOYi MOJENi KOMI FOTEPHOTO
OaveHHs [uis 3ajadi knacudikamii i TpeKiHTy 00'€KTiB Ta BU3HAYMTH HAWOIIBII BIAMOBIAHI JUIi BUKOPUCTAHHS HA
onmHOILTaTHOMY KoMIT 1oTepi Nvidia Jetson, mociianTa iX MPOXYKTHBHICTE 1 TEXHIYHI 0OMEKEHHS; pO3POOUTH OITH-
Mi30BaHe PIillleHHs I ONEPATUBHOIO CIIOBIIIEHHS BOJIiB Mpo HeOe3MeKy; CTBOPUTH alTOPUTM BUSBICHHS MOXIIH-
BHX 3iTKHEHb aBTOMOOLIIB, IO MOEIHYE METOAHM KOMIT IOTEPHOr0 Oa4eHHS Ta MAaTEMAaTHIHOTO MOJEIIOBAHHS, PO3-
pOOHUTH KOMIUIEKCHY CHCTEMY TOMEpeIKEHHS PO HeOe3MmeKy Ha OCHOBI OTPUMAaHHUX PE3yIbTATiB Ta MPOTECTYBATH
i1 mpame3maTHiCTb. Y poOOTi 3aCTOCOBAHO Pi3HI METOAM, TPOICCHUIN MiIXiA IS TOCHTIKSHHS MEXaHi3MiB BUHUK-
verHs [TII, cratuctrynnii aHami3 HeOE3MEYHMX MUISHOK Ta MaHEBPIB, a TAKOK aHANI3 IIBUAKOMAII Momenen
KOMIT FOTEPHOT0 30pY [UIS ONEPAaTHBHOTO PO3Mi3HABaHHs 00’ €KTIiB Ta iHGOpMyBaHHA BOHis. J{OMaTKOBO BUKOpHCTA-
HO METOOY MOJENIOBAHHS Ta CHMYJAIIl MOPOXKHIX cuTyamid y cepemoBuili BeamNG.tech. OcHOBHI pe3yJbTaTh
BKITIOYAIOTH PO3POOKY METOAMKH BU3HAUCHHS HEOS3MEUHNX CHUTYAIil HA TOPO3i Ha OCHOBI KOMIT FOTEPHOr0 OaueH-
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HS Ta MaTeMaTHYHHUX MOJIeINei, CTBOPEHHS X0y JUIS ONEePaTUBHOTO CIOBIIIEHHS YYaCHHKIB pyXy depe3 XMapHi
texHonorii, loT-npucrpoi ta anropurm GeoHash. 3amnpornonoBano iHdopMamiiiHy cucremy, II0 J103BOJISIE BOAIAM
OTpPUMYBATH TONEPEPKEHHS PO MOTEHIIHHY HeOe3rmeky Ha MapuipyTi. BucHoBku. Byno po3pobneno mporpamHy
CHCTEMY NPOTHO3YBaHHS Ta CIIOBIIIeHHS BoAiiB mpo pu3uk BuHukHeHHS [TII Ha noposi. [IpoBexeHi mocmimkeHHS
TOKa3aIn e(eKTUBHICT 3aMPOITOHOBAHOTO aJITOPUTMY BU3HAYEHHS aBapiiHUX CHTYallill Ta TEXHOJOTIYHHX PilIeHb
JUTSL THTerpalii y JOpoXKHIO iHppacTpykTypy. BukoHaHi ekcriepuMenTH 3 BUKOpHcTaHH:IM BeamNG.tech nponemon-
CTpYBaJIU MpPAIE3aTHICTh PO3POOJICHOI CHCTEMH, 0 MOXKe OyTH 3acTocoBaHa i MiHiMizari pusukis JITII y Bu-
3HAYEeHUX HeOE3MEeYHNX 30HAX.

Karouosi ciaoBa: po3poOka iH(pOpMAIiHOI TEXHONIOTI]; 1HTENEeKTyalbHa MpOorpaMHa CUCTEMa; MOJIENb IpOo-
THO3YBaHHS TOPOXKHBO-TPAHCIIOPTHUX TPHUIOJl; MAIIMHHE HABYAHHs; KOMII toTepHe OauenHs; Nvidia Jetson; onru-
Mi3allis MapipyTu3aiii mosizomnens; GeoHash; Internet of Things.
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