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The subject matter of this study is a collision checking for redundant robotic manipulators operating in variable 
environments, which remains a significant computational bottleneck in motion planning. The goal of this study 

is to improve computational efficiency of collision checking for multi-joint robotic manipulators in sampling-

based motion planning, while preserving functional safety. This is achieved by developing and evaluating a 

learning-based method that predicts per-link penetration depth and serves as a statistical pre-filter rather than 

a replacement for exact collision checking.  The tasks are as follows: 1) to propose a novel input representation 

that fuses the manipulator's kinematic state with localized geometric context extracted from the environment via 

voxel grids; 2) to design and implement a hybrid neural network architecture combining a fully-connected pro-

jection layer with a Kolmogorov-Arnold Network (KAN); 3) to train the network on a large, procedurally gen-

erated dataset of diverse collision scenarios; and 4) to evaluate the model's regression accuracy, classification 

performance, and computational speedup over a direct physics-based checker. The following results were ob-

tained: the trained model achieves high regression accuracy with a low Mean Squared Error of 0.000148 on the 
test set; the model achieves promising classification results with a per-link recall of 93.01%, which is an im-

portant indicator for its use as a pre-filter capable of screening out the majority of hazardous states; computa-

tional speedup - performance benchmarks for a batch of 8192 states show that the proposed approach, including 

data preparation and inference, is approximately 3.7 times faster than a direct physics-based checker. Conclu-

sions. The scientific novelty of results obtained is as follows: 1) a neural network architecture combining fully-

connected and Kolmogorov–Arnold Network layers is proposed for predicting per-link collision depth of a re-

dundant manipulator; 2) integration of kinematic and voxel-based geometric features into a unified input repre-

sentation for accurate collision estimation. The proposed method effectively serves as a pre-filter for sampling-

based planners, reducing the number of expensive collisions checks and accelerating the overall motion planning 

process. 
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1. Introduction 
 

1.1. Motivation  
 

Collision checking remains a dominant computa-

tional bottleneck in motion planning for redundant ro-

botic manipulators operating in varying operational envi-

ronments. In sampling-based pipelines (e.g., RRT-family 

methods [1]) and trajectory planners alike, tens of thou-

sands of candidate arm states or dense waypoint se-

quences must be evaluated for collisions. Physics-based 

collision queries (e.g., using the Bullet library [2]) pro-

vide reliable answers but are computationally expensive. 

A fast, learning-based estimator that screens large 

batches of states – with conservative use as a pre-filter – 

can substantially reduce the number of expensive exact 

checks, thereby shortening planning time. 

Earlier work by the authors [3] addressed a simpler 

setting: self-collision detection for a robot with a 7-DoF 

arm without an environment map. Joint angles were en-

coded as sine/cosine pairs and fed to a KAN (Kolmogo-

rov–Arnold Network) [4] classifier, achieving about 

98.5% binary accuracy on self-collision labels. The pre-

sent study extends that line of research to the realistic 

case where the arm operates in a workspace with obsta-

cles: the environment is explicitly represented and the 

prediction target changes from a binary self-collision in-

dicator to per-link penetration depth. To supply the 

model with localized geometric context at inference time, 

each link (and the wrist-mounted tool) is paired with a 

small axis-aligned local voxel grid of collision depths 

with the map and the base, and with the link pose ex-

pressed as a relative position and a unit quaternion with 

a canonical sign. This design permits batched processing 

on modern accelerators and amortizes repeated voxel 

queries through caching voxel collision depths. 

This research focuses on accelerating the collision 

checking process for a robotic arm in varied environ-

ments by using neural networks to evaluate batches of 

potential states. 

The scientific novelty consists in: (i) proposing a 

per-link input construction that fuses local, axis-aligned 

voxel grids of collision depth with relative link poses; (ii) 

formulating a general, batched per-link depth estimation 
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approach that targets the screening stage of motion plan-

ning. The specific combination of localized voxel evi-

dence, pose features, and a compact FC (fully connected) 

+ KAN architecture for per-link depth regression to the 

best of our knowledge has not been previously reported 

for redundant manipulators in mapped workspaces; fi-

nally, (iii) the work introduces a scalable per-link colli-

sion screening paradigm that explicitly targets the pre-

filtering stage of sampling-based motion planners rather 

than replacing exact collision checking. 

In this context, the proposed method focuses on 

fixed-base redundant manipulators with a wrist-mounted 

tool; environment states may vary, but are captured at 

data-generation time through local voxel depth patches. 

The model predicts per-link collision depths that can be 

aggregated into state- or trajectory-level risk scores, sup-

porting planner heuristics. Importantly, the method ex-

plicitly designed as a pre-filter, not a replacement for ex-

act collision checking. 

For clarity, in this work the term “redundant manip-

ulator” refers to kinematic redundancy, i.e., the presence 

of more degrees of freedom than strictly required to 

achieve a given end-effector pose. The proposed method 

does not exploit redundancy for fault tolerance, joint fail-

ure recovery, or null-space optimization. Instead, redun-

dancy is relevant because it increases the dimensionality 

of the configuration space, which amplifies the computa-

tional burden of collision checking. The proposed ap-

proach remains applicable to non-redundant manipula-

tors, but is particularly motivated by high-DoF systems. 

Figure 1 illustrates the redundant seven-joint xArm7 

manipulator by UFactory, along with the rotational joint 

limits. The robot model with the manipulator mounted on 

a robotic platform was used both to generate the training 

data and to experimentally evaluate the proposed ap-

proach. 

 

 
 

Fig. 1. xArm 7 manipulator with joints limits [21] 

 

Within the proposed planning pipeline, the learn-

ing-based pre-filter rapidly discards sampled states that 

are likely to be in collision and forwards states that are 

likely collision-free to the planner. Occasional false-neg-

ative predictions are acceptable, since all candidate states 

are subsequently validated by an exact physics-based col-

lision checker. Likewise, false-positive predictions dis-

card valid states but do not compromise correctness, as 

they only reduce sampling efficiency. 

For manipulators with kinematic redundancy, this 

trade-off is particularly favorable. Due to redundancy, 

multiple collision-free paths typically exist between the 

start and goal configurations. Therefore, rejecting a small 

subset of valid states does not prevent the planner from 

finding a feasible path. At the same time pre-filtering col-

liding states significantly reduces the number of expen-

sive collision checks. 

This leads to a conceptual distinction between con-

ventional collision checking pipelines and the proposed 

pre-filtered approach. In the baseline approach, every 

sampled arm state is subjected to an exact collision 

check, making collision detection the primary computa-

tional bottleneck in sampling-based planning.  

In contrast, the proposed pipeline introduces a light-

weight learning-based pre-filter that operates on batches 

of sampled states. Batch sampling and batch neural infer-

ence are essential to achieving computational gains, as 

they amortize data preparation overhead and efficiently 

utilize parallel hardware. The pre-filter reshapes the sam-

pling distribution by removing states that are likely to be 

in collision before exact validation. 

 

1.2. State of the art  

 

Existing research can be grouped into several main 

directions, which are analyzed below. 

1) GPU-accelerated collision detection. 

Early progress in accelerating collision queries was 

achieved through parallelization on graphics hardware. 

Pan and Manocha [5] introduced packetized BVH tra-

versal for GPUs, reporting very high throughput of bi-

nary queries for large sets of robot states. Their approach 

demonstrated that parallel hardware can drastically re-

duce latency in collision checking. However, GPU-based 

methods still rely on explicit geometric models and pro-

vide only a binary in/out-of-collision response at the con-

figuration level. They do not offer continuous severity 

measures (e.g., penetration depth) or link-wise resolu-

tion, which limits their integration as heuristics into 

higher-level motion planning. Despite these limitations, 

GPU-based acceleration remains a strong baseline for ap-

plications where hardware parallelism is available and bi-

nary decisions are sufficient. 

2) Configuration-space proxies and learning-based 

classifiers. 

A second research direction focuses on proxy mod-

els that approximate the collision boundary in configura-

tion space. Das et al. introduced the Fastron framework 

[6], which uses online kernelized learning to approximate 

the feasible space and allows fast incremental updates 
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when the environment changes. This method has been 

shown to accelerate planning loops significantly. Later, 

Das and Yip [7] extended this work into a more compre-

hensive IEEE Transactions on Robotics study, analyzing 

proxy collision detectors as formal approximations with 

convergence properties and providing extensive evalua-

tions across robotic benchmarks. These studies showed 

that learning-based proxies can achieve large speedups 

while maintaining safety guarantees, provided that con-

servative thresholds are applied. However, proxy meth-

ods generally return only binary collision labels and lack 

the ability to capture link-specific severity. This is a key 

limitation for manipulators where different links may 

contribute differently to collision risk. 

3) Neural signed-distance field (SDF) approaches 

and differentiable proxies. 

Recent research has explored continuous collision 

representations. DiffCo [8] proposed an auto-differentia-

ble proxy that outputs distance-like measures and sup-

ports gradient-based optimization. This allows trajectory 

optimizers to receive smooth feedback signals rather than 

discrete labels, enabling gradient-based planners to con-

verge faster. Similarly, iSDF [9] introduced a real-time 

neural reconstruction of signed distance fields from depth 

data, making it possible to query distance values for ar-

bitrary points in space during planning. These approaches 

highlight the benefits of differentiability, but their pri-

mary focus is on optimization-based planning. They are 

less effective in scenarios requiring the high-throughput 

screening of tens of thousands of discrete candidate 

states, as occurs in sampling-based planning. 

4) Implicit neural geometry. 

Another recent trend is the use of implicit neural 

representations. Neural Collision Fields (NCF) [10] learn 

implicit occupancy functions over mesh primitives, re-

ducing the need for explicit geometric contact queries. 

Neural Implicit Swept Volumes (NISV) [11] extend this 

to entire motion segments, predicting whether continuous 

motion intervals will intersect with obstacles. These 

methods are powerful for simulation, graphics, and phys-

ics applications where continuous reasoning is essential. 

However, their training cost is high, and their applicabil-

ity to large-scale batched state filtering for motion plan-

ning remains limited. Importantly, these approaches typ-

ically operate at the level of primitives or trajectories, not 

individual manipulator links. 

5) Real-time redundancy-aware collision avoid-

ance. 

With the rise of redundant and dual-arm manipula-

tors in industrial and service robotics, new works target 

real-time collision avoidance in high-dimensional 

spaces. Sun et al. [12] proposed a method for real-time 

collision avoidance in dual-arm redundant robots operat-

ing in open environments. Their approach combines ge-

ometric reasoning with task-level redundancy resolution, 

ensuring safe collaboration in constrained workspaces. 

Zhang and Wang [13] present a redundancy-based mo-

tion-planning framework that explicitly enforces task 

constraints for 7-DoF manipulators, leveraging redun-

dancy to improve connectivity yet still relying on geo-

metric collision checks. Scoccia et al. [14] propose an 

online perturbation strategy of off-line generated trajec-

tories for dynamically varying environments, combining 

potential-field planning with Bézier smoothing to main-

tain feasibility in real time. A recent survey by Zhang et 

al. [15] further explores motion planning for redundant 

space manipulators, identifying open challenges such as 

dynamic planning under uncertainty, multi-arm coordi-

nation, and efficiency constraints that call for scalable 

collision-checking front-ends. These studies show a clear 

trend towards dynamic, constraint-aware planning. How-

ever, they still lack a fast screening primitive for batched, 

per-link depth estimation, which is the specific gap this 

work addresses. 

6) Classical motion planning foundations. 

The foundations of collision-aware planning were 

established by classical methods that remain relevant to-

day. Kavraki et al. [16] introduced probabilistic 

roadmaps (PRMs), which became a cornerstone for high-

dimensional planning. Optimization-based planners such 

as CHOMP [17] and sequential convex optimization [18] 

advanced the integration of trajectory smoothness and 

collision constraints, while Quinlan & Khatib [19] devel-

oped the elastic bands method to bridge planning and 

control. Broad reviews such as Elbanhawi & Simic [20] 

provide systematic comparisons of sampling-based ap-

proaches. These classical methods typically rely on exact 

geometric collision checking, which remains a perfor-

mance bottleneck in high-dimensional redundant manip-

ulators. 

Comparative analysis and identified gap 

- GPU methods provide speed but are limited to 

binary outputs; 

- Proxy models accelerate planning but lack per-

link granularity; 

- Differentiable SDF-based methods are useful 

for optimization but not efficient for batched screening; 

- Implicit neural models reduce explicit contact 

computations but are costly to train and not per-link; 

- Redundancy-aware approaches focus on task-

level safety but still rely on geometric checkers; 

- Classical methods laid the groundwork but suf-

fer from scalability issues. 

Across all these directions, there remains a research 

gap: methods that can efficiently predict per-link pene-

tration depth, in large batches, conditioned on localized 

voxel evidence. This capability is particularly valuable 

for redundant manipulators, where link-wise risk estima-

tion enables more nuanced filtering and prioritization 
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during motion planning. 

The present work fills this gap by introducing a 

compact hybrid architecture (FC + KAN) that processes 

localized voxel depth patches together with link poses, 

delivering per-link penetration depth estimates. Unlike 

prior approaches, the proposed method explicitly targets 

the high-throughput pre-filtering stage, complementing 

rather than replacing exact physics-based collision 

checkers. 
 

1.3. Objectives and tasks 
 

The goal of this study is to accelerate collision 

checking for redundant robotic manipulators in mapped 

environments by designing a learning-based pre-filter 

that estimates per-link penetration depth, thereby reduc-

ing the number of expensive physics-based checks. 

The objectives are as follows: 

- to design a compact per-link input representa-

tion combining local voxel depth patches with link pose 

features; 

- to develop and train a hybrid FC+KAN model 

for per-link penetration depth regression; 

- to evaluate the proposed method against phys-

ics-based baselines in terms of regression accuracy, clas-

sification recall, and computational throughput; 

- to analyze the practical implications for sam-

pling-based motion planning pipelines. 

In addition to computational efficiency, the pro-

posed approach explicitly considers safety-related re-

quirements. Since false-negative collision predictions 

may lead to unsafe robot behavior if used alone, the 

model is designed as a conservative pre-filter that priori-

tizes recall over precision. All candidate states that pass 

the pre-filter are subsequently validated using an exact 

physics-based collision checker, which remains the final 

safety gate in the planning pipeline. 

The overall approach is to represent each candidate 

state with localized voxel evidence and pose features, 

predict per-link depths in batches, and use these predic-

tions to filter out low-risk states before invoking exact 

collision queries. 

The structure of the paper is as follows: the Section  

2. Materials and Methods of research contain the follow-

ing sub sections: 2.1. Data Representation and Input For-

mulation, 2.2. Network Architecture, 2.3. Training Data 

Generation, 2.4. Integration with Motion Planner, 2.5. 

Training Procedure, 2.6. Evaluation Metrics. Following 

sections are 3. Results and Discussion, and 4. Conclu-

sions. 

 

2. Materials and methods of research 
 

This section details the proposed method, covering 

the data representation, the neural network architecture, 

the training data generation pipeline, and the heuristic for 

integrating the trained model into a sampling-based mo-

tion planner. 

 

2.1. Data Representation and Input Formulation 

 

To enable the network to make predictions based on 

local geometry, a specific input representation is formu-

lated for each of the manipulator's links. The manipulator 

is modeled as a kinematic chain of 7 arm links plus a 

wrist-mounted tool, resulting in 8 distinct bodies for 

which collision depth is predicted. 

For each of these 8 bodies, the input vector is con-

structed from three components: 

1. Link Pose: The pose of a predefined reference 

point on the link is given relative to the robot's base 

frame. It is represented by its position and orientation, 

flattened into a 7-dimensional vector: 

 

7
link x y z wp [x, y,z,q ,q ,q ,q ]  ,          (1) 

 

where  x, y,z – a link translation in robot’s base coordi-

nates; 

 x y z wq ,q ,q ,q – a unit quaternion with a canonical 

representation ( wq 0 ). 

2. Voxel Grid Origin: The origin of the local voxel 

grid associated with the link, also expressed in the robot's 

base frame. This is represented by a 3-dimensional posi-

tion vector: 

 

3
grid g g gp [x , y ,z ]  ,         (2) 

 

where  g g gx , y ,z  - a translation of the local grid in a 

robot’s base frame. 

3. Local Voxel Grid: A small, axis-aligned cube of 

scalar values representing the pre-calculated signed pen-

etration depth of the static environment around the link. 

The size of this grid, iS {3,5,7} , is chosen heuristically 

based on the physical dimensions of the corresponding 

link i. The resolution of each voxel is 4 cm. The grid is 

flattened into a vector: 

 
3
i

3
i

s
grid 1 2 s

v [d ,d , ,d ]  ,            (3) 

 

where kd – a penetration depth of the k-th voxel in flat-

tened vector.  

The values kd  are negative if no collision is present 

at that voxel's location and positive otherwise, represent-

ing the penetration depth. 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 4(116)               ISSN 2663-2012 (online) 

116 

The complete input feature vector for a single arm 

state is formed by concatenating the representations for 

all 8 bodies, resulting in a total input dimension of 1854. 

The model's output is an 8-dimensional vector, where 

each component corresponds to the predicted penetration 

depth for one of the 8 bodies: 

 

* * * * 8
1 2 8d [d ,d , ,d ]  ,          (4) 

 

where 
*
kd  – a depth of collision of the 𝑘-th arm link with 

the environment, the robot's base, or other parts of the 

arm itself (self-collision). 

In Figure 2 a visualization of a voxel grid calculated 

for an instrument installed on a robot wrist can be seen. 

Voxels that don’t collide with a map are not displayed 

and voxels with a collision displayed as red cubes with 

side length the same as their collision depth. 

 

 
 

Fig. 2. Visualization of a voxel grid generated  

for an instrument link 

 

2.2. Network Architecture 

 

The proposed model is a hybrid architecture de-

signed to first reduce the high-dimensional input into a 

compact representation and then process it through a Kol-

mogorov-Arnold Network (KAN) for the final regression 

task. The architecture consists of three main stages: 

1. Projection Layer: The input vector 
1854x  is 

first passed through a linear layer without bias to project 

it into a lower-dimensional space of 256 features. 

 

                1 projh W x  ,   (5) 

 

where 256 1854
projW   - a projection layer. 

2. Normalization and Activation: The projected 

features are normalized using Layer Normalization to 

stabilize training, followed by a GELU (Gaussian Error 

Linear Unit) activation function 

 

2 1h GELU(LayerNorm(h )) .         (6) 

 

3. KAN Block: The resulting 256-dimensional 

vector is processed by a multi-layer KAN. The KAN ar-

chitecture is defined by the layer widths [256, 128, 64, 

8], consisting of three learnable layers that regress the fi-

nal 8-dimensional collision depth vector. The KAN im-

plementation is based on the work presented in [4]. 

In Figure 3 a diagram of the network architecture 

can be seen. 

 

 
 

Fig. 3. Diagram of a network architecture 

 

The choice of a Kolmogorov–Arnold Network 

(KAN) is motivated by its ability to approximate multi-

variate nonlinear functions through compositions of uni-

variate spline functions, resulting in a compact parame-

terization and stable training behavior for regression 

tasks. In preliminary experiments, KAN-based models 

demonstrated comparable accuracy to deeper multilayer 

perceptrons with fewer parameters, which is beneficial 

for high-throughput inference. 

While federated learning could in principle be con-

sidered for scenarios involving distributed robotic plat-

forms with privacy-constrained local datasets, it was not 

required in this work. The proposed model is trained en-

tirely in simulation, where collision labels can be gener-

ated at scale across diverse environments and configura-

tions using an exact physics-based collision checker. 

Therefore, centralized offline training was both feasible 

and more efficient than federated or distributed learning 

for the considered setting. 

 

2.3. Training Data Generation 

 

A large-scale dataset was procedurally generated to 

train the network using code partially provided in Appen-

dix A4. The process involves creating diverse collision 

scenarios by randomizing both the environment and the 

manipulator's configuration. 

1. Environment Generation: A set of 4096 unique 

environments was generated. Each environment is popu-

lated with 17 primitive objects placed randomly within 
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the robot's workspace: 8 boxes with random dimensions 

and poses, 6 spheres with random radii and positions, and 

3 thin walls with random positions and orientations. 

2. Arm State Sampling: For each of the 4096 envi-

ronments, 2048 random arm configurations (joint states) 

were uniformly sampled between the joint limits of the 

manipulator. 

3. Ground Truth Calculation: For each sampled 

arm state within a given environment, the ground truth 

collision data was calculated using the Bullet physics li-

brary [2]. An efficient voxel grid system with memoiza-

tion was employed. A wrapper class accepts requests 

with a batch of voxel indices. And after calculating the 

collision depth of each voxel the result is stored in a spe-

cial map by voxel index. So, the next time stored collision 

depth returned. If a robot’s base changed the position or 

map state changed, then the wrapper clears all the stored 

values. All scene objects (the environment and the robot) 

are inflated by 0.005 m. The exact penetration depth for 

each of the eight bodies is calculated and a 0.01 m offset 

(the doubled 0.005 m inflation margin) is subtracted from 

this depth, resulting in -0.01 m for collision-free states. 

This approach encourages the model to return a graded 

non-collision signal in the [-0.01, 0) range, providing 

more nuanced information for states that are close to a 

collision. 

This process resulted in a dataset of approximately 

8.4 million (4096 environments × 2048 states) unique in-

put-output pairs. 

 

2.4. Integration with Motion Planner 

 

The trained model is intended to be used as a fast 

pre-filter and heuristic guide within a sampling-based 

planner. As an example the following algorithm outlines 

a proposed integration strategy with an RRT-Connect-

like planner: 

1. Batch Sampling: Generate a large batch of N 

candidate arm states (e.g., N=1024). 

2. Batch Inference and Filtering: Perform a fast, 

batched inference pass with the trained network for all N 

states. Discard any states where the predicted collision 

depth 
*
id  for any link i exceeds a predefined threshold 

(e.g., 
*
id 0 ). 

3. Path Scoring and Prioritization: For the remain-

ing valid candidates, trace a path towards the goal, sam-

ple points along it, and use the network to predict a total 

collision score for the path. Sort the candidates based on 

this score, prioritizing those with paths that are "least in 

collision." 

4. Exact Validation: Select the top K most promis-

ing candidates and pass them to the standard planner ex-

tension step, which uses the exact collision checker to en-

sure safety. 

2.5. Training Procedure 

 

The model was trained for 20 epochs. The dataset 

was split into training (80%) and testing (20%) sets at the 

environment file level. The training was performed using 

the following hyperparameters: 

- Optimizer: Adam; 

- Loss Function: Mean Squared Error (MSE), de-

fined as: 

 

B L
* 2

MSE ij ij
i 1 j 1

1
L (d d )

B L
 

 

 , (7) 

 

where B – the number of samples in a batch; 

L 8  – the number of links; 

ijd  – the ground truth depth; 

*
ijd  – the predicted depth. 

- Initial Learning Rate: 0.002; 

- Learning Rate Scheduler: StepLR; 

- Batch Size: 1024. 

The implementation uses PyTorch. Training and ex-

periments were conducted on a system with a 12th Gen 

Intel(R) Core(TM) i7-12700H, 32GB of RAM, and a Ge-

Force RTX 3050 Mobile GPU. 

 

2.6. Evaluation Metrics 

 

The model's performance was evaluated from two 

perspectives: as a regression model and as a binary clas-

sifier. 

- Regression Accuracy: The primary metric is the 

final Mean Squared Error (MSE) between the actual 

value of the collision depth for each link and the result 

returned by the model on the test set. 

- Classification Accuracy: Binary labels were 

generated by comparing the collision depth with a thresh-

old of 0.0, i.e., binary classification answered the ques-

tion of whether there is a link collision with the surround-

ing world in this case. A full confusion matrix – True 

Positives (TP), True Negatives (TN), False Positives 

(FP), and False Negatives (FN) – was computed. 

 

3. Results and Discussion 
 

This section presents the quantitative results from 

the model evaluation after 20 epochs of training. 

The model demonstrates strong performance as a 

regression tool, achieving a final Mean Squared Error of 

0.000148 on the test set. The training progression showed 

stable convergence, as detailed in Figure 4. 
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Fig. 4. Train and Test Loss (MSE) per Epoch 

 

For its role as a pre-filter, the model's classification 

performance is crucial. Table 1 presents the per-link con-

fusion matrix on the test set. 

 

Table 1 

Per-link classification confusion matrix on the test set 

 
Predicted Colli-

sion 

Predicted No 

Collision 

Actual Colli-

sion 
TP: 4,242,931 FN: 319,092 

Actual No Col-

lision 
FP: 667,116 TN: 8,205,740 

 

Based on these results, the model achieves a per-

link accuracy of 92.66%, a recall (sensitivity) of 93.01%, 

and a precision of 86.41%. 

From a motion planning perspective, the reported 

per-link recall of 93.01% should be interpreted in the 

context of sampling-based algorithms. Since exact colli-

sion checking remains the final validation step, false-neg-

ative predictions do not result in unsafe trajectories but 

only reduce the effectiveness of early pruning. Similarly, 

false-positive predictions reduce the diversity of sampled 

states but do not affect probabilistic completeness, par-

ticularly for kinematically redundant manipulators where 

multiple feasible paths typically exist. 

Performance benchmarks were conducted to com-

pare the proposed method against direct collision check-

ing with the Bullet physics engine. The total time for the 

proposed pipeline includes both the generation of local 

voxel grids (data preparation) and the neural network in-

ference. The results for a batch of 8192 states are shown 

in Table 2. 

The experimental results show that the proposed ap-

proach is effective. The low final MSE of 0.000148 (Fig-

ure 4) indicates that the model successfully learned the 

complex relationship between the robot's configuration, 

local geometry, and penetration depth. 

From a practical standpoint, the classification met-

rics are more revealing. The model's high recall of 

93.01% is particularly important; it means that about 

93% of all actual collisions are correctly identified. A 

missed collision prediction (False Negative cases) is un-

desirable, as it reduces the effectiveness of early pruning. 

However, it does not compromise functional safety, since 

all candidate states are subsequently validated using an 

exact physics-based collision checker. The model's FP 

rate is also reasonably low, ensuring that the majority of 

collision-free states are correctly identified as such. 

 

Table 2 

Performance comparison for a single state,  

averaged over a large batch 

 

Batch 

Size 

Total 

Time 

Spent, 

ms 

Time 

Per 

State, 

ms 

Time 

Relative 

to Bul-

let 

Collision 
detection 

with Bul-

let 

8192 1892 0.231 100% 

Voxel 

grids gen-

eration 

8192 319 0.039 16.9% 

Neural 

network 
inference 

8192 192 0.023 10.1% 

Voxel 

grids gen-

eration + 

NN infer-

ence 

8192 511 0.062 27.0% 

 

Although Table 2 reports performance results for a 

batch size of 8192, additional profiling indicates that the 

relative speedup remains stable between 1024 and 8192 

batch size. In this range both voxel grid generation with 

caching and neural network inference scale approxi-

mately linearly with batch size, whereas physics-based 

collision checking exhibits higher constant overhead. 

Therefore, the reported 3.7x speedup can be considered 

representative of typical operating conditions in sam-

pling-based motion planning pipelines. At the same time 

with batch size lower than 1024 the relative speed-up 

drops, which indicates that this approach is most effec-

tive when applied to large batches of sampled states. 

The proposed approach primarily targets different 

objectives than contemporary learning-based methods 

such as DiffCo [8] and Neural Collision Fields (NCF) 

[10], although all aim to accelerate collision reasoning. 

DiffCo provides a fully auto-differentiable collision 

proxy, making it highly suitable for gradient-based  
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trajectory optimization; its design goal is to supply stable 

gradients rather than to maximize the throughput of 

batched screening of independent configurations. NCF 

learns implicit collision representations at the triangle-

primitive level, which is geared toward continuous con-

tact handling in physics/graphics simulations rather than 

high-throughput per-configuration screening for robotic 

manipulators. 

In contrast, the presented approach is optimized as 

a fast, batched pre-filter within sampling-based planners: 

it outputs per-link penetration-depth estimates (without 

exposing gradients), enabling both the filtering of invalid 

states and the prioritization of promising candidates via a 

nuanced collision score. It makes the approach comple-

mentary to optimization-focused or simulation-focused 

techniques, targeting a distinct stage of the planning pipe-

line. A direct head-to-head comparison is beyond the 

scope of this work due to differing problem formulations 

and evaluation metrics, instead, we report throughput and 

false-negative rates appropriate for pre-filter use. 

The performance benchmarks in Table 2 quantify 

the primary motivation for this work. The complete pro-

posed pipeline (data preparation + inference) requires 

only 0.062 ms per state, a 3.7-fold speedup compared to 

the 0.231 ms required by the exact checker. This shows 

great potential for accelerating sampling-based planners, 

which must evaluate tens of thousands of states. 

A key factor in this performance is the use of an ef-

ficient, two-level system for generating voxel grids. 

While constructing these grids could be computationally 

intensive, the heavy lifting is done once per static envi-

ronment by pre-calculating a global grid. The per-state 

cost is then reduced to a fast lookup operation. As a prac-

tical example, generating the input data for a batch of 

8192 states required instead of 15,157,968 (8,192x1,854) 

only 69,349 unique contact tests with the physics engine 

due to caching by voxel index. This optimization is criti-

cal to the method's efficiency, making the data prepara-

tion step significantly faster than direct collision check-

ing. 

 

4. Conclusions 
 

This paper demonstrated that learning-based per-

link penetration depth prediction can significantly reduce 

collision-checking time for multi-joint robotic manipula-

tors without compromising correctness. The proposed 

method reshapes the sampling distribution by acting as a 

statistical pre-filter, enabling the early rejection of colli-

sion-prone states while preserving functional safety 

through mandatory exact collision checking. Experi-

mental results show a 3.7x speedup compared to direct 

physics-based collision checking, while maintaining a 

high per-link recall of 93.01%. Although the experiments 

focus on a kinematically redundant manipulator, the pro-

posed pre-filtering approach is equally applicable to non-

redundant multi-joint manipulators, as it does not rely on 

redundancy-specific properties. 

The current approach has several limitations that 

define clear directions for future research. First, the 

model operates on a "snapshot" of the world, assuming 

the environment is static for the duration of a single plan-

ning query. Adaptation to dynamic obstacles moving dur-

ing the planning cycle remains an open challenge. Sec-

ond, and relatedly, this work assumes the manipulator's 

base is stationary relative to the environment within that 

same planning instance; extending the methodology to 

mobile manipulators, where the base and arm may move 

simultaneously, would introduce additional kinematic 

and state-representation complexity. Crucially, the final 

validation by an exact collision checker remains the man-

datory safety gate; the False Negative rate, while low, 

must be carefully monitored in deployment, for instance, 

on a per-batch basis. 

Future work will focus on two main directions. 

First, the model will be integrated into a full motion plan-

ning framework to benchmark the end-to-end reduction 

in planning time on standardized tasks. Second, the ap-

plicability of this approach to other manipulator geome-

tries and a wider range of tools will be explored to assess 

its generalization capabilities. 
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Appendix A: C++ Source Code Snippets 

 

This appendix contains key C++ code snippets for reproducibility, illustrating the core components of the data 

generation pipeline. The code is simplified for clarity. 

A.1 Voxel Grid Cache 

To avoid redundant collision checks for the same voxel in space, a simple cache is used. It maps 3D integer 

coordinates to a pre-calculated collision depth value, using a 3D-to-1D index mapping for storage in a flat vector. 

 
#include <vector> 

#include <limits> 

#include <stdexcept> 

 

// Caches collision depth values for voxel indices to avoid redundant checks. 

struct VoxelGridCache { 

    static constexpr int MAX_INDEX = 75; // Defines the grid bounds, e.g., from -75 to 75. 

    static constexpr int N = 2 * MAX_INDEX + 1; // Side length of the cache cube. 

    static constexpr float EMPTY_VALUE = std::numeric_limits<float>::infinity(); 

 

    VoxelGridCache() : depthValues_(N * N * N, EMPTY_VALUE) {} 

 

    // Checks if a depth value has already been computed for the given coordinates. 

    [[nodiscard]] bool HasValue(const int x, const int y, const int z) const { 

        return GetStoredDepth(x, y, z) != EMPTY_VALUE; 

    } 

 

    // Retrieves the cached depth value. 

    [[nodiscard]] float GetStoredDepth(const int x, const int y, const int z) const { 

        checkRange(x, y, z); 

        return depthValues_[index(x, y, z)]; 

    } 

 

    // Stores a new depth value in the cache. 

    void SetStoredDepth(const int x, const int y, const int z, const float val) { 

        checkRange(x, y, z); 

        depthValues_[index(x, y, z)] = val; 

    } 

 

private: 

    // Converts 3D voxel coordinates to a 1D vector index. 

    static size_t index(int x, int y, int z) { 

        const int ix = x + MAX_INDEX; 

        const int iy = y + MAX_INDEX; 

        const int iz = z + MAX_INDEX; 

        return static_cast<size_t>((ix * N + iy) * N + iz); 

    } 

 

    // Ensures voxel coordinates are within the defined bounds. 

    static void checkRange(int x, int y, int z) { 

        if (x < -MAX_INDEX || x > MAX_INDEX || y < -MAX_INDEX || y > MAX_INDEX || z < -MAX_INDEX 

|| z > MAX_INDEX) { 

https://eu.robotshop.com/collections/ufactory-xarm-7-robotic-arms
https://eu.robotshop.com/collections/ufactory-xarm-7-robotic-arms
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            throw std::out_of_range("VoxelGridCache: index out of range"); 

        } 

    } 

    std::vector<float> depthValues_; 

}; 

 

A.2 Bullet Physics Contact Callback 

A custom callback for Bullet's contactTest is used to find the maximum penetration depth. When a "probe" object 

collides with the environment, this callback records the deepest penetration found. 

 
#include <btBulletDynamicsCommon.h> 

// Custom callback to find the maximum penetration depth during a contact test. 

class ProbeContactCallback : public btCollisionWorld::ContactResultCallback { 

public: 

    // Stores the maximum penetration found. Negative for separation, positive for penetration. 

    btScalar maxPenetration = -0.01f; 

 

    btScalar addSingleResult( 

            btManifoldPoint& cp, 

            const btCollisionObjectWrapper*, int, int, 

            const btCollisionObjectWrapper*, int, int 

    ) override { 

        // Penetration distance is negative, so we invert it. 

        btScalar penetration = -cp.getDistance(); 

        if (penetration > maxPenetration) 

            maxPenetration = penetration; 

        return 0; // Continue checking for deeper penetrations. 

    } 

}; 

 

A.3 Voxel Grid Population 

This method is responsible for computing a local part of the global voxel grid. It iterates through the requested 

volume, checks the cache, and if a value is missing, performs a contactTest with Bullet to calculate it. 

 
// (Inside VoxelCollisionGrid class) 

// Computes a part of the grid, using the cache to avoid re-computation. 

std::vector<std::vector<std::vector<float>>> VoxelCollisionGrid::ComputeGridPart( 

        int startX, int startY, int startZ, int partSize) noexcept { 

     

    std::vector<std::vector<std::vector<float>>> depthGrid( 

        partSize, std::vector(partSize, std::vector(partSize, 0.0f))); 

 

    for (int x = 0; x < partSize; ++x) { 

        for (int y = 0; y < partSize; ++y) { 

            for (int z = 0; z < partSize; ++z) { 

                int currentX = startX + x; 

                int currentY = startY + y; 

                int currentZ = startZ + z; 

 

                // 1. Check cache first. 

                if (calculatedDepths_.HasValue(currentX, currentY, currentZ)) { 

                    depthGrid[x][y][z] = calculatedDepths_.GetStoredDepth(currentX, currentY, cur-

rentZ); 

                    continue; 

                } 

 

                // 2. If not in cache, compute using Bullet. 

                auto voxelPos = WorldVoxelCenterIsometry(currentX, currentY, currentZ).Transla-

tion(); 

                btTransform tf; 

                tf.setOrigin(btVector3(voxelPos.x(), voxelPos.y(), voxelPos.z())); 
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                probeObjectPtr_->setWorldTransform(tf); 

 

                ProbeContactCallback callback; 

                world_.contactTest(probeObjectPtr_, callback); 

                contactTestCount_++; // For performance analysis. 

 

                float depth = callback.maxPenetration; 

                depthGrid[x][y][z] = depth; 

                 

                // 3. Store the newly computed value in the cache. 

                calculatedDepths_.SetStoredDepth(currentX, currentY, currentZ, depth); 

            } 

        } 

    } 

    return depthGrid; 

} 

 

A.4 Random Scene Generation 

The following functions are used to populate the simulation world with random obstacles for each of the 4096 

environments. 

 
// (Inside CollisionScene class) 

// Populates the scene with a fixed set of random objects. 

void CollisionScene::AddRandomObjects() noexcept { 

    randomObjects_.push_back(AddRandomBox()); 

    randomObjects_.push_back(AddRandomBox()); 

    // ... (8 boxes total) 

    randomObjects_.push_back(AddRandomSphere()); 

    // ... (6 spheres total) 

    randomObjects_.push_back(AddRandomWall()); 

    // ... (3 walls total) 

} 

 

// Creates a single random wall and adds it to the Bullet world. 

btCollisionObject* CollisionScene::AddRandomWall() const noexcept { 

    constexpr float minWallThickness = 0.01f; 

    constexpr float maxWallThickness = 0.12f; 

    constexpr float wallSize = 1.6f; 

    const float thickness = RandFloat(minWallThickness, maxWallThickness); 

    btVector3 halfExtents(wallSize * 0.5f, thickness * 0.5f, wallSize * 0.5f); 

 

    auto* shape = new btBoxShape(halfExtents); 

    auto* obj = new btCollisionObject(); 

    obj->setCollisionShape(shape); 

    obj->setCollisionFlags(btCollisionObject::CF_NO_CONTACT_RESPONSE); 

 

    const float x = RandFloat(gridOffset_.x(), gridOffset_.x() + gridSize_.x()); 

    const float y = RandFloat(gridOffset_.y(), gridOffset_.y() + gridSize_.y()); 

    const float angleZ = RandFloat(0.0f, M_PI); 

 

    btTransform tf; 

    tf.setOrigin(btVector3(x, y, wallSize * 0.5f)); 

    tf.setRotation(btQuaternion(btVector3(0, 0, 1), angleZ)); 

    obj->setWorldTransform(tf); 

 

    collisionWorld_->addCollisionObject(obj, int(CollisionGroup::RANDOM_MAP_OBJECT), -1); 

    return obj; 

} 

 

 

// Creates a single random sphere and adds it to the Bullet world. 

btCollisionObject* CollisionScene::AddRandomSphere() const noexcept { 
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    constexpr float minSphereRadius = 0.01f; 

    constexpr float maxSphereRadius = 0.3f; 

    const float radius = RandFloat(minSphereRadius, maxSphereRadius); 

    auto* shape = new btSphereShape(radius); 

 

    auto* obj = new btCollisionObject(); 

    obj->setCollisionShape(shape); 

    obj->setCollisionFlags(btCollisionObject::CF_NO_CONTACT_RESPONSE); 

 

    const float x = RandFloat(gridOffset_.x(), gridOffset_.x() + gridSize_.x()); 

    const float y = RandFloat(gridOffset_.y(), gridOffset_.y() + gridSize_.y()); 

    const float z = RandFloat(gridOffset_.z(), gridOffset_.z() + gridSize_.z()); 

 

    btTransform tf; 

    tf.setOrigin(btVector3(x, y, z)); 

    tf.setRotation(btQuaternion::getIdentity()); 

    obj->setWorldTransform(tf); 

 

    collisionWorld_->addCollisionObject(obj, int(CollisionGroup::RANDOM_MAP_OBJECT), -1); 

    return obj; 

} 

 

// Creates a single random box and adds it to the Bullet world. 

btCollisionObject* CollisionScene::AddRandomBox() const noexcept { 

    constexpr float minBoxSize = 0.01f; 

    constexpr float maxBoxSize = 0.5f; 

    const float sx = RandFloat(minBoxSize, maxBoxSize); 

    const float sy = RandFloat(minBoxSize, maxBoxSize); 

    const float sz = RandFloat(minBoxSize, maxBoxSize); 

    auto* shape = new btBoxShape(btVector3(sx / 2, sy / 2, sz / 2)); 

 

    auto* obj = new btCollisionObject(); 

    obj->setCollisionShape(shape); 

 

    // Random position and orientation 

    const float x = RandFloat(gridOffset_.x(), gridOffset_.x() + gridSize_.x()); 

    const float y = RandFloat(gridOffset_.y(), gridOffset_.y() + gridSize_.y()); 

    const float z = RandFloat(gridOffset_.z(), gridOffset_.z() + gridSize_.z()); 

    btQuaternion rot; 

    rot.setEuler(RandFloat(0, M_PI), RandFloat(0, M_PI), RandFloat(0, M_PI)); 

     

    btTransform tf; 

    tf.setOrigin(btVector3(x, y, z)); 

    tf.setRotation(rot); 

    obj->setWorldTransform(tf); 

 

    collisionWorld_->addCollisionObject(obj, int(CollisionGroup::RANDOM_MAP_OBJECT), -1); 

    return obj; 

} 

 

A.5 Main Data Generation and Writing 

This function orchestrates the entire data generation process for a single environment file. It samples arm states, 

calculates ground truth collisions and voxel grids, and writes all data to a binary file. 

 
// (Inside CollisionNetTrainingGenerator class) 

// Generates and writes training data for a number of arm states to a file. 

void CollisionNetTrainingGenerator::WriteToFileArmCollisionsData( 

        CollisionEngine& collisionEngine, 

        model::ToolType toolType, 

        const size_t numArmStates, 

        const std::string& fileName 

) const noexcept { 
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    // Define output file path 

    auto fullOutFilePath = std::string("/path/to/output/data/") + ... + ".data"; 

    std::ofstream outFile(fullOutFilePath, std::ios::binary); 

 

    // Creates a voxel grid cache object 

  auto voxelGrid = collisionEngine.CreateVoxelGridForArm(worldType_, math::Isometry3d::Iden-

tity(), toolType); 

 

    // Generate random arm states. 

    auto states = arm::BoundingBoxStatesGenerator::GenerateStatesForRRISArmOnly(...); 

 

    for (auto& state : states) { 

        // 1. Calculate ground truth collision depths for all links. 

        std::vector<float> collisionDepths(8, minCollisionDepth); 

        auto collisions = collisionEngine.CollisionsList(state, worldType_); 

        for (auto& collision : collisions) { 

            ModifyCollisionDepths(collisionDepths, ...); // Update max depth per link 

        } 

         

        auto linksPositions = GetLinksWorldIsometries(collisionEngine.RobotModel(), state); 

 

        // 2. For each link, write its pose and local voxel grid to the file. 

        for (size_t linkIndex = 0; linkIndex < 8; linkIndex++) { 

            // Write link pose (7 floats: x,y,z,qx,qy,qz,qw) 

            auto linkPosFlat = Isometry3dToFlatNumbers(linksPositions[linkIndex]); 

            outFile.write(reinterpret_cast<const char*>(linkPosFlat.data()), linkPosFlat.size() * 

sizeof(float)); 

 

            // Write voxel grid origin (3 floats: x,y,z) 

            int localGridSize = localVoxelGridSizes_[linkIndex]; 

            auto [x, y, z, voxelPosition] = GetVoxelOffsetAndPosition(linksPositions[linkIndex], 

localGridSize); 

            float pos[3] = {(float)voxelPosition.x(), (float)voxelPosition.y(), (float)voxelPosi-

tion.z()}; 

            outFile.write(reinterpret_cast<const char*>(pos), sizeof(pos)); 

 

            // Get local grid from the global grid (using the cache) and write it 

            auto voxelGridPart = voxelGrid.ComputeGridPart(x, y, z, localGridSize); 

            for (int i = 0; i < localGridSize; ++i) { 

                for (int j = 0; j < localGridSize; ++j) { 

                    outFile.write(reinterpret_cast<const char*>(voxelGridPart[i][j].data()), lo-

calGridSize * sizeof(float)); 

                } 

            } 

        } 

 

        // 3. Write the ground truth collision depths vector (8 floats). 

   outFile.write(reinterpret_cast<const char*>(collisionDepths.data()), colli-

sionDepths.size() * sizeof(float)); 

    } 

    outFile.close(); 

} 
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ПОЛАНКОВЕ ПРОГНОЗУВАННЯ ГЛИБИНИ ПРОНИКНЕННЯ ДЛЯ НАДЛИШКОВИХ 

МАНІПУЛЯТОРІВ У РОБОЧИХ СЕРЕДОВИЩАХ 

А. Я. Медвідь, В. С. Яковина 

Предметом цього дослідження є перевірка колізій для надлишкових роботизованих маніпуляторів, що 

працюють у змінних середовищах, яка залишається суттєвим обчислювальним вузьким місцем у задачах пла-

нування руху. Метою дослідження є підвищення ефективності перевірки зіткнень для багатоланкових робо-

тизованих маніпуляторів у вибіркових методах планування руху з одночасним збереженням функціональної 

безпеки. Це досягається шляхом розроблення та оцінювання методу на основі машинного навчання, який про-

гнозує глибину проникнення для кожної ланки та слугує статистичним попереднім фільтром, а не заміною 
точної перевірки зіткнень. Поставлені такі завдання: запропонувати нове подання вхідних даних, яке поєднує 

кінематичний стан маніпулятора з локалізованим геометричним контекстом, отриманим із середовища за до-

помогою воксельних ґрат; спроєктувати та реалізувати гібридну архітектуру нейронної мережі, що поєднує 

повнозв’язаний проєкційний шар із мережею Колмогорова–Арнольда (KAN); навчити модель на великому, 

процедурно згенерованому наборі даних із різноманітними сценаріями колізій; оцінити точність регресії, кла-

сифікаційні характеристики та прискорення обчислень порівняно з прямим фізичним перевірником колізій. 

Отримані такі результати: навчена модель демонструє високу регресійну точність із низьким середньоквад-

ратичним відхиленням 0.000148 на тестовій вибірці; досягає обнадійливих результатів класифікації з відгуком 

93.01 % для кожного лінка — це є важливим показником її придатності як попереднього фільтра, здатного 

відсіювати більшість небезпечних станів; за результатами продуктивності, для пакета з 8192 станів запропо-

нований підхід (включно з підготовкою даних та інференсом) приблизно у 3.7 рази швидший за прямий фізи-
чний перевірник колізій. Висновки. Наукова новизна отриманих результатів полягає у наступному: 1) запро-

поновано архітектуру нейронної мережі, що поєднує повнозв’язаний та Колмогорово–Арнольдівський шари 

для передбачення глибини колізій лінків надлишкового маніпулятора; 2) інтегровано кінематичні та воксе-

льно-геометричні ознаки у єдине вхідне подання для точного оцінювання колізій. Запропонований метод ефе-

ктивно виконує роль попереднього фільтра для планувальників на основі вибірки, зменшуючи кількість до-

рогих перевірок колізій і прискорюючи загальний процес планування руху. 

Ключові слова: роботизовані маніпулятори; перевірка колізій; воксельні сітки; мережі Колмогорова-

Арнольда. 
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