
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)

112

UDC 004.94 doi: 10.32620/reks.2025.4.08

Andrii MEDVID, Vitaliy YAKOVYNA

Lviv Polytechnic National University, Lviv, Ukraine

PER-LINK COLLISION DEPTH PREDICTION FOR REDUNDANT MANIPULATORS

IN OPERATIONAL ENVIRONMENTS

The subject matter of this study is a collision checking for redundant robotic manipulators operating in variable
environments, which remains a significant computational bottleneck in motion planning. The goal of this study

is to improve computational efficiency of collision checking for multi-joint robotic manipulators in sampling-

based motion planning, while preserving functional safety. This is achieved by developing and evaluating a

learning-based method that predicts per-link penetration depth and serves as a statistical pre-filter rather than

a replacement for exact collision checking. The tasks are as follows: 1) to propose a novel input representation

that fuses the manipulator's kinematic state with localized geometric context extracted from the environment via

voxel grids; 2) to design and implement a hybrid neural network architecture combining a fully-connected pro-

jection layer with a Kolmogorov-Arnold Network (KAN); 3) to train the network on a large, procedurally gen-

erated dataset of diverse collision scenarios; and 4) to evaluate the model's regression accuracy, classification

performance, and computational speedup over a direct physics-based checker. The following results were ob-

tained: the trained model achieves high regression accuracy with a low Mean Squared Error of 0.000148 on the
test set; the model achieves promising classification results with a per-link recall of 93.01%, which is an im-

portant indicator for its use as a pre-filter capable of screening out the majority of hazardous states; computa-

tional speedup - performance benchmarks for a batch of 8192 states show that the proposed approach, including

data preparation and inference, is approximately 3.7 times faster than a direct physics-based checker. Conclu-

sions. The scientific novelty of results obtained is as follows: 1) a neural network architecture combining fully-

connected and Kolmogorov–Arnold Network layers is proposed for predicting per-link collision depth of a re-

dundant manipulator; 2) integration of kinematic and voxel-based geometric features into a unified input repre-

sentation for accurate collision estimation. The proposed method effectively serves as a pre-filter for sampling-

based planners, reducing the number of expensive collisions checks and accelerating the overall motion planning

process.

Keywords: Robotic manipulator; collision check; voxel grids; Kolmogorov–Arnold Networks.

1. Introduction

1.1. Motivation

Collision checking remains a dominant computa-

tional bottleneck in motion planning for redundant ro-

botic manipulators operating in varying operational envi-

ronments. In sampling-based pipelines (e.g., RRT-family

methods [1]) and trajectory planners alike, tens of thou-

sands of candidate arm states or dense waypoint se-

quences must be evaluated for collisions. Physics-based

collision queries (e.g., using the Bullet library [2]) pro-

vide reliable answers but are computationally expensive.

A fast, learning-based estimator that screens large

batches of states – with conservative use as a pre-filter –

can substantially reduce the number of expensive exact

checks, thereby shortening planning time.

Earlier work by the authors [3] addressed a simpler

setting: self-collision detection for a robot with a 7-DoF

arm without an environment map. Joint angles were en-

coded as sine/cosine pairs and fed to a KAN (Kolmogo-

rov–Arnold Network) [4] classifier, achieving about

98.5% binary accuracy on self-collision labels. The pre-

sent study extends that line of research to the realistic

case where the arm operates in a workspace with obsta-

cles: the environment is explicitly represented and the

prediction target changes from a binary self-collision in-

dicator to per-link penetration depth. To supply the

model with localized geometric context at inference time,

each link (and the wrist-mounted tool) is paired with a

small axis-aligned local voxel grid of collision depths

with the map and the base, and with the link pose ex-

pressed as a relative position and a unit quaternion with

a canonical sign. This design permits batched processing

on modern accelerators and amortizes repeated voxel

queries through caching voxel collision depths.

This research focuses on accelerating the collision

checking process for a robotic arm in varied environ-

ments by using neural networks to evaluate batches of

potential states.

The scientific novelty consists in: (i) proposing a

per-link input construction that fuses local, axis-aligned

voxel grids of collision depth with relative link poses; (ii)

formulating a general, batched per-link depth estimation

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Machine learning and intelligent systems

113

approach that targets the screening stage of motion plan-

ning. The specific combination of localized voxel evi-

dence, pose features, and a compact FC (fully connected)

+ KAN architecture for per-link depth regression to the

best of our knowledge has not been previously reported

for redundant manipulators in mapped workspaces; fi-

nally, (iii) the work introduces a scalable per-link colli-

sion screening paradigm that explicitly targets the pre-

filtering stage of sampling-based motion planners rather

than replacing exact collision checking.

In this context, the proposed method focuses on

fixed-base redundant manipulators with a wrist-mounted

tool; environment states may vary, but are captured at

data-generation time through local voxel depth patches.

The model predicts per-link collision depths that can be

aggregated into state- or trajectory-level risk scores, sup-

porting planner heuristics. Importantly, the method ex-

plicitly designed as a pre-filter, not a replacement for ex-

act collision checking.

For clarity, in this work the term “redundant manip-

ulator” refers to kinematic redundancy, i.e., the presence

of more degrees of freedom than strictly required to

achieve a given end-effector pose. The proposed method

does not exploit redundancy for fault tolerance, joint fail-

ure recovery, or null-space optimization. Instead, redun-

dancy is relevant because it increases the dimensionality

of the configuration space, which amplifies the computa-

tional burden of collision checking. The proposed ap-

proach remains applicable to non-redundant manipula-

tors, but is particularly motivated by high-DoF systems.

Figure 1 illustrates the redundant seven-joint xArm7

manipulator by UFactory, along with the rotational joint

limits. The robot model with the manipulator mounted on

a robotic platform was used both to generate the training

data and to experimentally evaluate the proposed ap-

proach.

Fig. 1. xArm 7 manipulator with joints limits [21]

Within the proposed planning pipeline, the learn-

ing-based pre-filter rapidly discards sampled states that

are likely to be in collision and forwards states that are

likely collision-free to the planner. Occasional false-neg-

ative predictions are acceptable, since all candidate states

are subsequently validated by an exact physics-based col-

lision checker. Likewise, false-positive predictions dis-

card valid states but do not compromise correctness, as

they only reduce sampling efficiency.

For manipulators with kinematic redundancy, this

trade-off is particularly favorable. Due to redundancy,

multiple collision-free paths typically exist between the

start and goal configurations. Therefore, rejecting a small

subset of valid states does not prevent the planner from

finding a feasible path. At the same time pre-filtering col-

liding states significantly reduces the number of expen-

sive collision checks.

This leads to a conceptual distinction between con-

ventional collision checking pipelines and the proposed

pre-filtered approach. In the baseline approach, every

sampled arm state is subjected to an exact collision

check, making collision detection the primary computa-

tional bottleneck in sampling-based planning.

In contrast, the proposed pipeline introduces a light-

weight learning-based pre-filter that operates on batches

of sampled states. Batch sampling and batch neural infer-

ence are essential to achieving computational gains, as

they amortize data preparation overhead and efficiently

utilize parallel hardware. The pre-filter reshapes the sam-

pling distribution by removing states that are likely to be

in collision before exact validation.

1.2. State of the art

Existing research can be grouped into several main

directions, which are analyzed below.

1) GPU-accelerated collision detection.

Early progress in accelerating collision queries was

achieved through parallelization on graphics hardware.

Pan and Manocha [5] introduced packetized BVH tra-

versal for GPUs, reporting very high throughput of bi-

nary queries for large sets of robot states. Their approach

demonstrated that parallel hardware can drastically re-

duce latency in collision checking. However, GPU-based

methods still rely on explicit geometric models and pro-

vide only a binary in/out-of-collision response at the con-

figuration level. They do not offer continuous severity

measures (e.g., penetration depth) or link-wise resolu-

tion, which limits their integration as heuristics into

higher-level motion planning. Despite these limitations,

GPU-based acceleration remains a strong baseline for ap-

plications where hardware parallelism is available and bi-

nary decisions are sufficient.

2) Configuration-space proxies and learning-based

classifiers.

A second research direction focuses on proxy mod-

els that approximate the collision boundary in configura-

tion space. Das et al. introduced the Fastron framework

[6], which uses online kernelized learning to approximate

the feasible space and allows fast incremental updates

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)

114

when the environment changes. This method has been

shown to accelerate planning loops significantly. Later,

Das and Yip [7] extended this work into a more compre-

hensive IEEE Transactions on Robotics study, analyzing

proxy collision detectors as formal approximations with

convergence properties and providing extensive evalua-

tions across robotic benchmarks. These studies showed

that learning-based proxies can achieve large speedups

while maintaining safety guarantees, provided that con-

servative thresholds are applied. However, proxy meth-

ods generally return only binary collision labels and lack

the ability to capture link-specific severity. This is a key

limitation for manipulators where different links may

contribute differently to collision risk.

3) Neural signed-distance field (SDF) approaches

and differentiable proxies.

Recent research has explored continuous collision

representations. DiffCo [8] proposed an auto-differentia-

ble proxy that outputs distance-like measures and sup-

ports gradient-based optimization. This allows trajectory

optimizers to receive smooth feedback signals rather than

discrete labels, enabling gradient-based planners to con-

verge faster. Similarly, iSDF [9] introduced a real-time

neural reconstruction of signed distance fields from depth

data, making it possible to query distance values for ar-

bitrary points in space during planning. These approaches

highlight the benefits of differentiability, but their pri-

mary focus is on optimization-based planning. They are

less effective in scenarios requiring the high-throughput

screening of tens of thousands of discrete candidate

states, as occurs in sampling-based planning.

4) Implicit neural geometry.

Another recent trend is the use of implicit neural

representations. Neural Collision Fields (NCF) [10] learn

implicit occupancy functions over mesh primitives, re-

ducing the need for explicit geometric contact queries.

Neural Implicit Swept Volumes (NISV) [11] extend this

to entire motion segments, predicting whether continuous

motion intervals will intersect with obstacles. These

methods are powerful for simulation, graphics, and phys-

ics applications where continuous reasoning is essential.

However, their training cost is high, and their applicabil-

ity to large-scale batched state filtering for motion plan-

ning remains limited. Importantly, these approaches typ-

ically operate at the level of primitives or trajectories, not

individual manipulator links.

5) Real-time redundancy-aware collision avoid-

ance.

With the rise of redundant and dual-arm manipula-

tors in industrial and service robotics, new works target

real-time collision avoidance in high-dimensional

spaces. Sun et al. [12] proposed a method for real-time

collision avoidance in dual-arm redundant robots operat-

ing in open environments. Their approach combines ge-

ometric reasoning with task-level redundancy resolution,

ensuring safe collaboration in constrained workspaces.

Zhang and Wang [13] present a redundancy-based mo-

tion-planning framework that explicitly enforces task

constraints for 7-DoF manipulators, leveraging redun-

dancy to improve connectivity yet still relying on geo-

metric collision checks. Scoccia et al. [14] propose an

online perturbation strategy of off-line generated trajec-

tories for dynamically varying environments, combining

potential-field planning with Bézier smoothing to main-

tain feasibility in real time. A recent survey by Zhang et

al. [15] further explores motion planning for redundant

space manipulators, identifying open challenges such as

dynamic planning under uncertainty, multi-arm coordi-

nation, and efficiency constraints that call for scalable

collision-checking front-ends. These studies show a clear

trend towards dynamic, constraint-aware planning. How-

ever, they still lack a fast screening primitive for batched,

per-link depth estimation, which is the specific gap this

work addresses.

6) Classical motion planning foundations.

The foundations of collision-aware planning were

established by classical methods that remain relevant to-

day. Kavraki et al. [16] introduced probabilistic

roadmaps (PRMs), which became a cornerstone for high-

dimensional planning. Optimization-based planners such

as CHOMP [17] and sequential convex optimization [18]

advanced the integration of trajectory smoothness and

collision constraints, while Quinlan & Khatib [19] devel-

oped the elastic bands method to bridge planning and

control. Broad reviews such as Elbanhawi & Simic [20]

provide systematic comparisons of sampling-based ap-

proaches. These classical methods typically rely on exact

geometric collision checking, which remains a perfor-

mance bottleneck in high-dimensional redundant manip-

ulators.

Comparative analysis and identified gap

- GPU methods provide speed but are limited to

binary outputs;

- Proxy models accelerate planning but lack per-

link granularity;

- Differentiable SDF-based methods are useful

for optimization but not efficient for batched screening;

- Implicit neural models reduce explicit contact

computations but are costly to train and not per-link;

- Redundancy-aware approaches focus on task-

level safety but still rely on geometric checkers;

- Classical methods laid the groundwork but suf-

fer from scalability issues.

Across all these directions, there remains a research

gap: methods that can efficiently predict per-link pene-

tration depth, in large batches, conditioned on localized

voxel evidence. This capability is particularly valuable

for redundant manipulators, where link-wise risk estima-

tion enables more nuanced filtering and prioritization

Machine learning and intelligent systems

115

during motion planning.

The present work fills this gap by introducing a

compact hybrid architecture (FC + KAN) that processes

localized voxel depth patches together with link poses,

delivering per-link penetration depth estimates. Unlike

prior approaches, the proposed method explicitly targets

the high-throughput pre-filtering stage, complementing

rather than replacing exact physics-based collision

checkers.

1.3. Objectives and tasks

The goal of this study is to accelerate collision

checking for redundant robotic manipulators in mapped

environments by designing a learning-based pre-filter

that estimates per-link penetration depth, thereby reduc-

ing the number of expensive physics-based checks.

The objectives are as follows:

- to design a compact per-link input representa-

tion combining local voxel depth patches with link pose

features;

- to develop and train a hybrid FC+KAN model

for per-link penetration depth regression;

- to evaluate the proposed method against phys-

ics-based baselines in terms of regression accuracy, clas-

sification recall, and computational throughput;

- to analyze the practical implications for sam-

pling-based motion planning pipelines.

In addition to computational efficiency, the pro-

posed approach explicitly considers safety-related re-

quirements. Since false-negative collision predictions

may lead to unsafe robot behavior if used alone, the

model is designed as a conservative pre-filter that priori-

tizes recall over precision. All candidate states that pass

the pre-filter are subsequently validated using an exact

physics-based collision checker, which remains the final

safety gate in the planning pipeline.

The overall approach is to represent each candidate

state with localized voxel evidence and pose features,

predict per-link depths in batches, and use these predic-

tions to filter out low-risk states before invoking exact

collision queries.

The structure of the paper is as follows: the Section

2. Materials and Methods of research contain the follow-

ing sub sections: 2.1. Data Representation and Input For-

mulation, 2.2. Network Architecture, 2.3. Training Data

Generation, 2.4. Integration with Motion Planner, 2.5.

Training Procedure, 2.6. Evaluation Metrics. Following

sections are 3. Results and Discussion, and 4. Conclu-

sions.

2. Materials and methods of research

This section details the proposed method, covering

the data representation, the neural network architecture,

the training data generation pipeline, and the heuristic for

integrating the trained model into a sampling-based mo-

tion planner.

2.1. Data Representation and Input Formulation

To enable the network to make predictions based on

local geometry, a specific input representation is formu-

lated for each of the manipulator's links. The manipulator

is modeled as a kinematic chain of 7 arm links plus a

wrist-mounted tool, resulting in 8 distinct bodies for

which collision depth is predicted.

For each of these 8 bodies, the input vector is con-

structed from three components:

1. Link Pose: The pose of a predefined reference

point on the link is given relative to the robot's base

frame. It is represented by its position and orientation,

flattened into a 7-dimensional vector:

7
link x y z wp [x, y,z,q ,q ,q ,q]  , (1)

where  x, y,z – a link translation in robot’s base coordi-

nates;

 x y z wq ,q ,q ,q – a unit quaternion with a canonical

representation (wq 0).

2. Voxel Grid Origin: The origin of the local voxel

grid associated with the link, also expressed in the robot's

base frame. This is represented by a 3-dimensional posi-

tion vector:

3
grid g g gp [x , y ,z]  , (2)

where  g g gx , y ,z - a translation of the local grid in a

robot’s base frame.

3. Local Voxel Grid: A small, axis-aligned cube of

scalar values representing the pre-calculated signed pen-

etration depth of the static environment around the link.

The size of this grid, iS {3,5,7} , is chosen heuristically

based on the physical dimensions of the corresponding

link i. The resolution of each voxel is 4 cm. The grid is

flattened into a vector:

3
i

3
i

s
grid 1 2 s

v [d ,d , ,d]  , (3)

where kd – a penetration depth of the k-th voxel in flat-

tened vector.

The values kd are negative if no collision is present

at that voxel's location and positive otherwise, represent-

ing the penetration depth.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)

116

The complete input feature vector for a single arm

state is formed by concatenating the representations for

all 8 bodies, resulting in a total input dimension of 1854.

The model's output is an 8-dimensional vector, where

each component corresponds to the predicted penetration

depth for one of the 8 bodies:

* * * * 8
1 2 8d [d ,d , ,d]  , (4)

where
*
kd – a depth of collision of the 𝑘-th arm link with

the environment, the robot's base, or other parts of the

arm itself (self-collision).

In Figure 2 a visualization of a voxel grid calculated

for an instrument installed on a robot wrist can be seen.

Voxels that don’t collide with a map are not displayed

and voxels with a collision displayed as red cubes with

side length the same as their collision depth.

Fig. 2. Visualization of a voxel grid generated

for an instrument link

2.2. Network Architecture

The proposed model is a hybrid architecture de-

signed to first reduce the high-dimensional input into a

compact representation and then process it through a Kol-

mogorov-Arnold Network (KAN) for the final regression

task. The architecture consists of three main stages:

1. Projection Layer: The input vector
1854x is

first passed through a linear layer without bias to project

it into a lower-dimensional space of 256 features.

 1 projh W x  , (5)

where 256 1854
projW  - a projection layer.

2. Normalization and Activation: The projected

features are normalized using Layer Normalization to

stabilize training, followed by a GELU (Gaussian Error

Linear Unit) activation function

2 1h GELU(LayerNorm(h)) . (6)

3. KAN Block: The resulting 256-dimensional

vector is processed by a multi-layer KAN. The KAN ar-

chitecture is defined by the layer widths [256, 128, 64,

8], consisting of three learnable layers that regress the fi-

nal 8-dimensional collision depth vector. The KAN im-

plementation is based on the work presented in [4].

In Figure 3 a diagram of the network architecture

can be seen.

Fig. 3. Diagram of a network architecture

The choice of a Kolmogorov–Arnold Network

(KAN) is motivated by its ability to approximate multi-

variate nonlinear functions through compositions of uni-

variate spline functions, resulting in a compact parame-

terization and stable training behavior for regression

tasks. In preliminary experiments, KAN-based models

demonstrated comparable accuracy to deeper multilayer

perceptrons with fewer parameters, which is beneficial

for high-throughput inference.

While federated learning could in principle be con-

sidered for scenarios involving distributed robotic plat-

forms with privacy-constrained local datasets, it was not

required in this work. The proposed model is trained en-

tirely in simulation, where collision labels can be gener-

ated at scale across diverse environments and configura-

tions using an exact physics-based collision checker.

Therefore, centralized offline training was both feasible

and more efficient than federated or distributed learning

for the considered setting.

2.3. Training Data Generation

A large-scale dataset was procedurally generated to

train the network using code partially provided in Appen-

dix A4. The process involves creating diverse collision

scenarios by randomizing both the environment and the

manipulator's configuration.

1. Environment Generation: A set of 4096 unique

environments was generated. Each environment is popu-

lated with 17 primitive objects placed randomly within

Machine learning and intelligent systems

117

the robot's workspace: 8 boxes with random dimensions

and poses, 6 spheres with random radii and positions, and

3 thin walls with random positions and orientations.

2. Arm State Sampling: For each of the 4096 envi-

ronments, 2048 random arm configurations (joint states)

were uniformly sampled between the joint limits of the

manipulator.

3. Ground Truth Calculation: For each sampled

arm state within a given environment, the ground truth

collision data was calculated using the Bullet physics li-

brary [2]. An efficient voxel grid system with memoiza-

tion was employed. A wrapper class accepts requests

with a batch of voxel indices. And after calculating the

collision depth of each voxel the result is stored in a spe-

cial map by voxel index. So, the next time stored collision

depth returned. If a robot’s base changed the position or

map state changed, then the wrapper clears all the stored

values. All scene objects (the environment and the robot)

are inflated by 0.005 m. The exact penetration depth for

each of the eight bodies is calculated and a 0.01 m offset

(the doubled 0.005 m inflation margin) is subtracted from

this depth, resulting in -0.01 m for collision-free states.

This approach encourages the model to return a graded

non-collision signal in the [-0.01, 0) range, providing

more nuanced information for states that are close to a

collision.

This process resulted in a dataset of approximately

8.4 million (4096 environments × 2048 states) unique in-

put-output pairs.

2.4. Integration with Motion Planner

The trained model is intended to be used as a fast

pre-filter and heuristic guide within a sampling-based

planner. As an example the following algorithm outlines

a proposed integration strategy with an RRT-Connect-

like planner:

1. Batch Sampling: Generate a large batch of N

candidate arm states (e.g., N=1024).

2. Batch Inference and Filtering: Perform a fast,

batched inference pass with the trained network for all N

states. Discard any states where the predicted collision

depth
*
id for any link i exceeds a predefined threshold

(e.g.,
*
id 0).

3. Path Scoring and Prioritization: For the remain-

ing valid candidates, trace a path towards the goal, sam-

ple points along it, and use the network to predict a total

collision score for the path. Sort the candidates based on

this score, prioritizing those with paths that are "least in

collision."

4. Exact Validation: Select the top K most promis-

ing candidates and pass them to the standard planner ex-

tension step, which uses the exact collision checker to en-

sure safety.

2.5. Training Procedure

The model was trained for 20 epochs. The dataset

was split into training (80%) and testing (20%) sets at the

environment file level. The training was performed using

the following hyperparameters:

- Optimizer: Adam;

- Loss Function: Mean Squared Error (MSE), de-

fined as:

B L
* 2

MSE ij ij
i 1 j 1

1
L (d d)

B L
 

 

 , (7)

where B – the number of samples in a batch;

L 8 – the number of links;

ijd – the ground truth depth;

*
ijd – the predicted depth.

- Initial Learning Rate: 0.002;

- Learning Rate Scheduler: StepLR;

- Batch Size: 1024.

The implementation uses PyTorch. Training and ex-

periments were conducted on a system with a 12th Gen

Intel(R) Core(TM) i7-12700H, 32GB of RAM, and a Ge-

Force RTX 3050 Mobile GPU.

2.6. Evaluation Metrics

The model's performance was evaluated from two

perspectives: as a regression model and as a binary clas-

sifier.

- Regression Accuracy: The primary metric is the

final Mean Squared Error (MSE) between the actual

value of the collision depth for each link and the result

returned by the model on the test set.

- Classification Accuracy: Binary labels were

generated by comparing the collision depth with a thresh-

old of 0.0, i.e., binary classification answered the ques-

tion of whether there is a link collision with the surround-

ing world in this case. A full confusion matrix – True

Positives (TP), True Negatives (TN), False Positives

(FP), and False Negatives (FN) – was computed.

3. Results and Discussion

This section presents the quantitative results from

the model evaluation after 20 epochs of training.

The model demonstrates strong performance as a

regression tool, achieving a final Mean Squared Error of

0.000148 on the test set. The training progression showed

stable convergence, as detailed in Figure 4.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)

118

Fig. 4. Train and Test Loss (MSE) per Epoch

For its role as a pre-filter, the model's classification

performance is crucial. Table 1 presents the per-link con-

fusion matrix on the test set.

Table 1

Per-link classification confusion matrix on the test set

Predicted Colli-

sion

Predicted No

Collision

Actual Colli-

sion
TP: 4,242,931 FN: 319,092

Actual No Col-

lision
FP: 667,116 TN: 8,205,740

Based on these results, the model achieves a per-

link accuracy of 92.66%, a recall (sensitivity) of 93.01%,

and a precision of 86.41%.

From a motion planning perspective, the reported

per-link recall of 93.01% should be interpreted in the

context of sampling-based algorithms. Since exact colli-

sion checking remains the final validation step, false-neg-

ative predictions do not result in unsafe trajectories but

only reduce the effectiveness of early pruning. Similarly,

false-positive predictions reduce the diversity of sampled

states but do not affect probabilistic completeness, par-

ticularly for kinematically redundant manipulators where

multiple feasible paths typically exist.

Performance benchmarks were conducted to com-

pare the proposed method against direct collision check-

ing with the Bullet physics engine. The total time for the

proposed pipeline includes both the generation of local

voxel grids (data preparation) and the neural network in-

ference. The results for a batch of 8192 states are shown

in Table 2.

The experimental results show that the proposed ap-

proach is effective. The low final MSE of 0.000148 (Fig-

ure 4) indicates that the model successfully learned the

complex relationship between the robot's configuration,

local geometry, and penetration depth.

From a practical standpoint, the classification met-

rics are more revealing. The model's high recall of

93.01% is particularly important; it means that about

93% of all actual collisions are correctly identified. A

missed collision prediction (False Negative cases) is un-

desirable, as it reduces the effectiveness of early pruning.

However, it does not compromise functional safety, since

all candidate states are subsequently validated using an

exact physics-based collision checker. The model's FP

rate is also reasonably low, ensuring that the majority of

collision-free states are correctly identified as such.

Table 2

Performance comparison for a single state,

averaged over a large batch

Batch

Size

Total

Time

Spent,

ms

Time

Per

State,

ms

Time

Relative

to Bul-

let

Collision
detection

with Bul-

let

8192 1892 0.231 100%

Voxel

grids gen-

eration

8192 319 0.039 16.9%

Neural

network
inference

8192 192 0.023 10.1%

Voxel

grids gen-

eration +

NN infer-

ence

8192 511 0.062 27.0%

Although Table 2 reports performance results for a

batch size of 8192, additional profiling indicates that the

relative speedup remains stable between 1024 and 8192

batch size. In this range both voxel grid generation with

caching and neural network inference scale approxi-

mately linearly with batch size, whereas physics-based

collision checking exhibits higher constant overhead.

Therefore, the reported 3.7x speedup can be considered

representative of typical operating conditions in sam-

pling-based motion planning pipelines. At the same time

with batch size lower than 1024 the relative speed-up

drops, which indicates that this approach is most effec-

tive when applied to large batches of sampled states.

The proposed approach primarily targets different

objectives than contemporary learning-based methods

such as DiffCo [8] and Neural Collision Fields (NCF)

[10], although all aim to accelerate collision reasoning.

DiffCo provides a fully auto-differentiable collision

proxy, making it highly suitable for gradient-based

Machine learning and intelligent systems

119

trajectory optimization; its design goal is to supply stable

gradients rather than to maximize the throughput of

batched screening of independent configurations. NCF

learns implicit collision representations at the triangle-

primitive level, which is geared toward continuous con-

tact handling in physics/graphics simulations rather than

high-throughput per-configuration screening for robotic

manipulators.

In contrast, the presented approach is optimized as

a fast, batched pre-filter within sampling-based planners:

it outputs per-link penetration-depth estimates (without

exposing gradients), enabling both the filtering of invalid

states and the prioritization of promising candidates via a

nuanced collision score. It makes the approach comple-

mentary to optimization-focused or simulation-focused

techniques, targeting a distinct stage of the planning pipe-

line. A direct head-to-head comparison is beyond the

scope of this work due to differing problem formulations

and evaluation metrics, instead, we report throughput and

false-negative rates appropriate for pre-filter use.

The performance benchmarks in Table 2 quantify

the primary motivation for this work. The complete pro-

posed pipeline (data preparation + inference) requires

only 0.062 ms per state, a 3.7-fold speedup compared to

the 0.231 ms required by the exact checker. This shows

great potential for accelerating sampling-based planners,

which must evaluate tens of thousands of states.

A key factor in this performance is the use of an ef-

ficient, two-level system for generating voxel grids.

While constructing these grids could be computationally

intensive, the heavy lifting is done once per static envi-

ronment by pre-calculating a global grid. The per-state

cost is then reduced to a fast lookup operation. As a prac-

tical example, generating the input data for a batch of

8192 states required instead of 15,157,968 (8,192x1,854)

only 69,349 unique contact tests with the physics engine

due to caching by voxel index. This optimization is criti-

cal to the method's efficiency, making the data prepara-

tion step significantly faster than direct collision check-

ing.

4. Conclusions

This paper demonstrated that learning-based per-

link penetration depth prediction can significantly reduce

collision-checking time for multi-joint robotic manipula-

tors without compromising correctness. The proposed

method reshapes the sampling distribution by acting as a

statistical pre-filter, enabling the early rejection of colli-

sion-prone states while preserving functional safety

through mandatory exact collision checking. Experi-

mental results show a 3.7x speedup compared to direct

physics-based collision checking, while maintaining a

high per-link recall of 93.01%. Although the experiments

focus on a kinematically redundant manipulator, the pro-

posed pre-filtering approach is equally applicable to non-

redundant multi-joint manipulators, as it does not rely on

redundancy-specific properties.

The current approach has several limitations that

define clear directions for future research. First, the

model operates on a "snapshot" of the world, assuming

the environment is static for the duration of a single plan-

ning query. Adaptation to dynamic obstacles moving dur-

ing the planning cycle remains an open challenge. Sec-

ond, and relatedly, this work assumes the manipulator's

base is stationary relative to the environment within that

same planning instance; extending the methodology to

mobile manipulators, where the base and arm may move

simultaneously, would introduce additional kinematic

and state-representation complexity. Crucially, the final

validation by an exact collision checker remains the man-

datory safety gate; the False Negative rate, while low,

must be carefully monitored in deployment, for instance,

on a per-batch basis.

Future work will focus on two main directions.

First, the model will be integrated into a full motion plan-

ning framework to benchmark the end-to-end reduction

in planning time on standardized tasks. Second, the ap-

plicability of this approach to other manipulator geome-

tries and a wider range of tools will be explored to assess

its generalization capabilities.

Contributions of authors: conceptualization,

methodology – Andrii Medvid; formulation of tasks,

analysis – Vitaliy Yakovyna; development of model,

software, verification – Andrii Medvid; analysis of re-

sults, visualization – Andrii Medvid; writing – original

draft preparation – Andrii Medvid; writing – review and

editing – Vitaliy Yakovyna.

Conflict of Interest

The authors declare that they have no conflict of in-

terest in relation to this research, whether financial, per-

sonal, authorship or otherwise, that could affect the re-

search and its results presented in this paper.

Financing

This study was conducted without financial support.

Data Availability

Data will be made available upon reasonable re-

quest.

Code Availability

The Python code for the model architecture, train-

ing, and evaluation is publicly available in a GitHub re-

pository: https://github.com/amedvid/ArmLinksColli-

sionPredictor. The C++ code for data generation is not

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)

120

fully available due to non-disclosure agreements. C++

code snippets added to the Appendix section.

Use of Artificial Intelligence

Generative AI tools (Gemini 2.5 Pro, ChatGPT 5)

have been used for grammar checks, text polishing and

additionally to assist in writing portions of the source

code. The authors reviewed and edited all AI-generated

content and took the responsibility for the final content

of this publication.

Acknowledgments

The authors would like to express their deep grati-

tude to Somatic Holdings LTD, whose codebase greatly

facilitated the development of the algorithm presented in

this paper.

All the authors have read and agreed to the pub-

lished version of this manuscript.

References

1. LaValle, S. M. Rapidly-exploring random trees: A

new tool for path planning. Technical Report, 1998.

Available at: https://lavalle.pl/papers/Lav98c.pdf

(accessed September 2, 2025).

2. Coumans, E. Bullet collision detection & physics

library. Available at: https://pybullet.org/

Bullet/BulletFull/index.html (accessed October 2, 2025).

3. Medvid, A., & Yakovyna, V. Robot self collision

prediction using Kolmogorov-Arnold networks.

Collection of scientific works of XXIII International

scientific conference "Neural network technologies and

their application – NNTA-2024", Kramatorsk-Vinnytsia-

Ternopil, Ukraine, 2024, pp. 11-16. Available at:

http://www.dgma.donetsk.ua/docs/news/2024/

Збірник%20NNTA-2024.pdf (accessed September 2,

2025).

4. Liu, Z. Efficient-KAN: An efficient pure-PyTorch

implementation of Kolmogorov-Arnold Network (KAN).

Available at: https://github.com/Blealtan/efficient-kan

(accessed September 2, 2025).

5. Pan, J., & Manocha, D. GPU-Based Parallel

Collision Detection for Real-Time Motion Planning. In:

Hsu, D., Isler, V., Latombe, JC., Lin, M.C. (eds)

Algorithmic Foundations of Robotics IX. Springer

Tracts in Advanced Robotics, vol 68, 2010, Springer,

Berlin, Heidelberg. DOI: 10.1007/978-3-642-17452-

0_13.

6. Das, N., Gupta, N., & Yip, M. Fastron: An online

learning-based model and active learning strategy for

proxy collision detection. Proceedings of the 1st

Conference on Robot Learning (CoRL 2017), Mountain

View, CA, USA, 2017. pp. 496-504. Available at:

https://proceedings.mlr.press/v78/das17a.html (accessed

September 2, 2025).

7. Das, N., & Yip, M. Learning-Based Proxy

Collision Detection for Robot Motion Planning

Applications. IEEE Transactions on Robotics, 2020, vol.

36, iss. 4, pp. 1096–1114. DOI: 110.1109/

TRO.2020.2974094.

8. Zhi, Y., Das, N., & Yip, M. DiffCo: Auto-

differentiable proxy collision detection with multi-class

labels for safety-aware trajectory optimization.

arXiv.org, 2021. DOI: 10.48550/arxiv.2102.07413.

9. Ortiz, J., Clegg, A., Dong, J., Sucar, E., Novotny,

D., Zollhoefer, M., & Mukadam, M. ISDF: Real-time

neural signed distance fields for robot perception.

arXiv.org, 2022. DOI: 10.48550/arxiv.2204.02296.

10. Zesch, R. S., Modi, V., Sueda, S., & Levin, D. I.

W. Neural collision fields for triangle primitives. SA’23:

SIGGRAPH Asia 2023 Conference Papers, Sydney,

NSW, Australia, 2023, article no. 76, pp. 1–10. DOI:

10.1145/3610548.3618225.

11. Joho, D., Schwinn, J., & Safronov, K. Neural

implicit swept volume models for fast collision detection.

arXiv.org, 2024. DOI: 10.48550/arxiv.2402.15281.

12. Wu, Y., Jia, X., Li, T., & Liu, J. A real-time

collision avoidance method for redundant dual-arm

robots in an open operational environment. Robotics and

Computer-Integrated Manufacturing, 2025, vol. 92,

article no. 102894. DOI: 10.1016/j.rcim.2024.102894.

13. Zhang. Y., & Wang, H. Redundancy-Based

Motion Planning with Task Constraints for Robot

Manipulators. Sensors. 2025, vol. 25, iss. 6, article no.

1900. DOI: 10.3390/s25061900.

14. Scoccia, C., Palmieri G., Palpacelli,M. C., &

Callegari, M. A Collision Avoidance Strategy for

Redundant Manipulators in Dynamically Variable

Environments: On-Line Perturbations of Off-Line

Generated Trajectories. Machines, 2021, vol. 9, iss. 2,

article no. 30. DOI: 10.3390/machines9020030.

15. Zhang, Z., Liu, X., Ning, M., Li, X., Liu, W., &

Lu, Y. A review of motion planning for redundant space

manipulators. Science China Technological Sciences,

2025, vol. 68, iss. 3, article no. 1310401. DOI:

10.1007/s11431-024-2841-y.

16. Kavraki, L. E., Svestka, P., Latombe, J. C., &

Overmars, M. H. Probabilistic Roadmaps for Path

Planning in High-Dimensional Configuration Spaces.

IEEE Transactions on Robotics and Automation, 1996,

vol. 12, iss. 4, pp. 566–580. DOI: 10.1109/70.508439.

17. Zucker, M., Ratliff, N., Dragan, A., Pivtoraiko,

M., Klingensmith, M., Dellin, C., Bagnell, J.A., &

Srinivasa, S. S. CHOMP: Covariant Hamiltonian

Optimization for Motion Planning. The International

Journal of Robotics Research, 2013, vol. 32, iss. 9–10,

pp. 1164–1193. DOI: 10.1177/0278364913488805.

18. Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal,

https://lavalle.pl/papers/Lav98c.pdf
https://pybullet.org/Bullet/BulletFull/index.html
https://pybullet.org/Bullet/BulletFull/index.html
http://www.dgma.donetsk.ua/docs/news/2024/%0bЗбірник%20NNTA-2024.pdf
http://www.dgma.donetsk.ua/docs/news/2024/%0bЗбірник%20NNTA-2024.pdf
https://github.com/Blealtan/efficient-kan
https://proceedings.mlr.press/v78/das17a.html

Machine learning and intelligent systems

121

I., Bradlow, H., Pan, J., & Abbeel, P. Motion Planning

with Sequential Convex Optimization and Convex

Collision Checking. The International Journal of

Robotics Research, 2014, vol. 33, iss. 9, pp. 1251–1270.

DOI: 10.1177/0278364914528132.

19. Quinlan, S., & Khatib, O. Elastic bands:

connecting path planning and control. Proceedings of the

IEEE International Conference on Robotics and

Automation, Atlanta, GA, USA, 1993, vol. 2, pp. 802–

807. DOI: 10.1109/ROBOT.1993.291936.

20. Elbanhawi, M., & Simic, M. Sampling-Based

Robot Motion Planning: A Review. IEEE Access, 2014,

vol. 2, pp. 56–77. DOI: 10.1109/ACCESS.

2014.2302442.

21. UFACTORY XArm 7 Robotic Arms. RobotShop

Europe. (n.d.). Available at:

https://eu.robotshop.com/collections/ufactory-xarm-7-

robotic-arms (accessed September 2, 2025).

Appendix A: C++ Source Code Snippets

This appendix contains key C++ code snippets for reproducibility, illustrating the core components of the data

generation pipeline. The code is simplified for clarity.

A.1 Voxel Grid Cache

To avoid redundant collision checks for the same voxel in space, a simple cache is used. It maps 3D integer

coordinates to a pre-calculated collision depth value, using a 3D-to-1D index mapping for storage in a flat vector.

#include <vector>

#include <limits>

#include <stdexcept>

// Caches collision depth values for voxel indices to avoid redundant checks.

struct VoxelGridCache {

 static constexpr int MAX_INDEX = 75; // Defines the grid bounds, e.g., from -75 to 75.

 static constexpr int N = 2 * MAX_INDEX + 1; // Side length of the cache cube.

 static constexpr float EMPTY_VALUE = std::numeric_limits<float>::infinity();

 VoxelGridCache() : depthValues_(N * N * N, EMPTY_VALUE) {}

 // Checks if a depth value has already been computed for the given coordinates.

 [[nodiscard]] bool HasValue(const int x, const int y, const int z) const {

 return GetStoredDepth(x, y, z) != EMPTY_VALUE;

 }

 // Retrieves the cached depth value.

 [[nodiscard]] float GetStoredDepth(const int x, const int y, const int z) const {

 checkRange(x, y, z);

 return depthValues_[index(x, y, z)];

 }

 // Stores a new depth value in the cache.

 void SetStoredDepth(const int x, const int y, const int z, const float val) {

 checkRange(x, y, z);

 depthValues_[index(x, y, z)] = val;

 }

private:

 // Converts 3D voxel coordinates to a 1D vector index.

 static size_t index(int x, int y, int z) {

 const int ix = x + MAX_INDEX;

 const int iy = y + MAX_INDEX;

 const int iz = z + MAX_INDEX;

 return static_cast<size_t>((ix * N + iy) * N + iz);

 }

 // Ensures voxel coordinates are within the defined bounds.

 static void checkRange(int x, int y, int z) {

 if (x < -MAX_INDEX || x > MAX_INDEX || y < -MAX_INDEX || y > MAX_INDEX || z < -MAX_INDEX

|| z > MAX_INDEX) {

https://eu.robotshop.com/collections/ufactory-xarm-7-robotic-arms
https://eu.robotshop.com/collections/ufactory-xarm-7-robotic-arms

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)

122

 throw std::out_of_range("VoxelGridCache: index out of range");

 }

 }

 std::vector<float> depthValues_;

};

A.2 Bullet Physics Contact Callback

A custom callback for Bullet's contactTest is used to find the maximum penetration depth. When a "probe" object

collides with the environment, this callback records the deepest penetration found.

#include <btBulletDynamicsCommon.h>

// Custom callback to find the maximum penetration depth during a contact test.

class ProbeContactCallback : public btCollisionWorld::ContactResultCallback {

public:

 // Stores the maximum penetration found. Negative for separation, positive for penetration.

 btScalar maxPenetration = -0.01f;

 btScalar addSingleResult(

 btManifoldPoint& cp,

 const btCollisionObjectWrapper*, int, int,

 const btCollisionObjectWrapper*, int, int

) override {

 // Penetration distance is negative, so we invert it.

 btScalar penetration = -cp.getDistance();

 if (penetration > maxPenetration)

 maxPenetration = penetration;

 return 0; // Continue checking for deeper penetrations.

 }

};

A.3 Voxel Grid Population

This method is responsible for computing a local part of the global voxel grid. It iterates through the requested

volume, checks the cache, and if a value is missing, performs a contactTest with Bullet to calculate it.

// (Inside VoxelCollisionGrid class)

// Computes a part of the grid, using the cache to avoid re-computation.

std::vector<std::vector<std::vector<float>>> VoxelCollisionGrid::ComputeGridPart(

 int startX, int startY, int startZ, int partSize) noexcept {

 std::vector<std::vector<std::vector<float>>> depthGrid(

 partSize, std::vector(partSize, std::vector(partSize, 0.0f)));

 for (int x = 0; x < partSize; ++x) {

 for (int y = 0; y < partSize; ++y) {

 for (int z = 0; z < partSize; ++z) {

 int currentX = startX + x;

 int currentY = startY + y;

 int currentZ = startZ + z;

 // 1. Check cache first.

 if (calculatedDepths_.HasValue(currentX, currentY, currentZ)) {

 depthGrid[x][y][z] = calculatedDepths_.GetStoredDepth(currentX, currentY, cur-

rentZ);

 continue;

 }

 // 2. If not in cache, compute using Bullet.

 auto voxelPos = WorldVoxelCenterIsometry(currentX, currentY, currentZ).Transla-

tion();

 btTransform tf;

 tf.setOrigin(btVector3(voxelPos.x(), voxelPos.y(), voxelPos.z()));

Machine learning and intelligent systems

123

 probeObjectPtr_->setWorldTransform(tf);

 ProbeContactCallback callback;

 world_.contactTest(probeObjectPtr_, callback);

 contactTestCount_++; // For performance analysis.

 float depth = callback.maxPenetration;

 depthGrid[x][y][z] = depth;

 // 3. Store the newly computed value in the cache.

 calculatedDepths_.SetStoredDepth(currentX, currentY, currentZ, depth);

 }

 }

 }

 return depthGrid;

}

A.4 Random Scene Generation

The following functions are used to populate the simulation world with random obstacles for each of the 4096

environments.

// (Inside CollisionScene class)

// Populates the scene with a fixed set of random objects.

void CollisionScene::AddRandomObjects() noexcept {

 randomObjects_.push_back(AddRandomBox());

 randomObjects_.push_back(AddRandomBox());

 // ... (8 boxes total)

 randomObjects_.push_back(AddRandomSphere());

 // ... (6 spheres total)

 randomObjects_.push_back(AddRandomWall());

 // ... (3 walls total)

}

// Creates a single random wall and adds it to the Bullet world.

btCollisionObject* CollisionScene::AddRandomWall() const noexcept {

 constexpr float minWallThickness = 0.01f;

 constexpr float maxWallThickness = 0.12f;

 constexpr float wallSize = 1.6f;

 const float thickness = RandFloat(minWallThickness, maxWallThickness);

 btVector3 halfExtents(wallSize * 0.5f, thickness * 0.5f, wallSize * 0.5f);

 auto* shape = new btBoxShape(halfExtents);

 auto* obj = new btCollisionObject();

 obj->setCollisionShape(shape);

 obj->setCollisionFlags(btCollisionObject::CF_NO_CONTACT_RESPONSE);

 const float x = RandFloat(gridOffset_.x(), gridOffset_.x() + gridSize_.x());

 const float y = RandFloat(gridOffset_.y(), gridOffset_.y() + gridSize_.y());

 const float angleZ = RandFloat(0.0f, M_PI);

 btTransform tf;

 tf.setOrigin(btVector3(x, y, wallSize * 0.5f));

 tf.setRotation(btQuaternion(btVector3(0, 0, 1), angleZ));

 obj->setWorldTransform(tf);

 collisionWorld_->addCollisionObject(obj, int(CollisionGroup::RANDOM_MAP_OBJECT), -1);

 return obj;

}

// Creates a single random sphere and adds it to the Bullet world.

btCollisionObject* CollisionScene::AddRandomSphere() const noexcept {

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)

124

 constexpr float minSphereRadius = 0.01f;

 constexpr float maxSphereRadius = 0.3f;

 const float radius = RandFloat(minSphereRadius, maxSphereRadius);

 auto* shape = new btSphereShape(radius);

 auto* obj = new btCollisionObject();

 obj->setCollisionShape(shape);

 obj->setCollisionFlags(btCollisionObject::CF_NO_CONTACT_RESPONSE);

 const float x = RandFloat(gridOffset_.x(), gridOffset_.x() + gridSize_.x());

 const float y = RandFloat(gridOffset_.y(), gridOffset_.y() + gridSize_.y());

 const float z = RandFloat(gridOffset_.z(), gridOffset_.z() + gridSize_.z());

 btTransform tf;

 tf.setOrigin(btVector3(x, y, z));

 tf.setRotation(btQuaternion::getIdentity());

 obj->setWorldTransform(tf);

 collisionWorld_->addCollisionObject(obj, int(CollisionGroup::RANDOM_MAP_OBJECT), -1);

 return obj;

}

// Creates a single random box and adds it to the Bullet world.

btCollisionObject* CollisionScene::AddRandomBox() const noexcept {

 constexpr float minBoxSize = 0.01f;

 constexpr float maxBoxSize = 0.5f;

 const float sx = RandFloat(minBoxSize, maxBoxSize);

 const float sy = RandFloat(minBoxSize, maxBoxSize);

 const float sz = RandFloat(minBoxSize, maxBoxSize);

 auto* shape = new btBoxShape(btVector3(sx / 2, sy / 2, sz / 2));

 auto* obj = new btCollisionObject();

 obj->setCollisionShape(shape);

 // Random position and orientation

 const float x = RandFloat(gridOffset_.x(), gridOffset_.x() + gridSize_.x());

 const float y = RandFloat(gridOffset_.y(), gridOffset_.y() + gridSize_.y());

 const float z = RandFloat(gridOffset_.z(), gridOffset_.z() + gridSize_.z());

 btQuaternion rot;

 rot.setEuler(RandFloat(0, M_PI), RandFloat(0, M_PI), RandFloat(0, M_PI));

 btTransform tf;

 tf.setOrigin(btVector3(x, y, z));

 tf.setRotation(rot);

 obj->setWorldTransform(tf);

 collisionWorld_->addCollisionObject(obj, int(CollisionGroup::RANDOM_MAP_OBJECT), -1);

 return obj;

}

A.5 Main Data Generation and Writing

This function orchestrates the entire data generation process for a single environment file. It samples arm states,

calculates ground truth collisions and voxel grids, and writes all data to a binary file.

// (Inside CollisionNetTrainingGenerator class)

// Generates and writes training data for a number of arm states to a file.

void CollisionNetTrainingGenerator::WriteToFileArmCollisionsData(

 CollisionEngine& collisionEngine,

 model::ToolType toolType,

 const size_t numArmStates,

 const std::string& fileName

) const noexcept {

Machine learning and intelligent systems

125

 // Define output file path

 auto fullOutFilePath = std::string("/path/to/output/data/") + ... + ".data";

 std::ofstream outFile(fullOutFilePath, std::ios::binary);

 // Creates a voxel grid cache object

 auto voxelGrid = collisionEngine.CreateVoxelGridForArm(worldType_, math::Isometry3d::Iden-

tity(), toolType);

 // Generate random arm states.

 auto states = arm::BoundingBoxStatesGenerator::GenerateStatesForRRISArmOnly(...);

 for (auto& state : states) {

 // 1. Calculate ground truth collision depths for all links.

 std::vector<float> collisionDepths(8, minCollisionDepth);

 auto collisions = collisionEngine.CollisionsList(state, worldType_);

 for (auto& collision : collisions) {

 ModifyCollisionDepths(collisionDepths, ...); // Update max depth per link

 }

 auto linksPositions = GetLinksWorldIsometries(collisionEngine.RobotModel(), state);

 // 2. For each link, write its pose and local voxel grid to the file.

 for (size_t linkIndex = 0; linkIndex < 8; linkIndex++) {

 // Write link pose (7 floats: x,y,z,qx,qy,qz,qw)

 auto linkPosFlat = Isometry3dToFlatNumbers(linksPositions[linkIndex]);

 outFile.write(reinterpret_cast<const char*>(linkPosFlat.data()), linkPosFlat.size() *

sizeof(float));

 // Write voxel grid origin (3 floats: x,y,z)

 int localGridSize = localVoxelGridSizes_[linkIndex];

 auto [x, y, z, voxelPosition] = GetVoxelOffsetAndPosition(linksPositions[linkIndex],

localGridSize);

 float pos[3] = {(float)voxelPosition.x(), (float)voxelPosition.y(), (float)voxelPosi-

tion.z()};

 outFile.write(reinterpret_cast<const char*>(pos), sizeof(pos));

 // Get local grid from the global grid (using the cache) and write it

 auto voxelGridPart = voxelGrid.ComputeGridPart(x, y, z, localGridSize);

 for (int i = 0; i < localGridSize; ++i) {

 for (int j = 0; j < localGridSize; ++j) {

 outFile.write(reinterpret_cast<const char*>(voxelGridPart[i][j].data()), lo-

calGridSize * sizeof(float));

 }

 }

 }

 // 3. Write the ground truth collision depths vector (8 floats).

 outFile.write(reinterpret_cast<const char*>(collisionDepths.data()), colli-

sionDepths.size() * sizeof(float));

 }

 outFile.close();

}

Received 28.09.2025, Received in revised form 08.10.2025

Accepted date 17.11.2025, Published date 08.12.2025

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2025, no. 4(116) ISSN 2663-2012 (online)

126

ПОЛАНКОВЕ ПРОГНОЗУВАННЯ ГЛИБИНИ ПРОНИКНЕННЯ ДЛЯ НАДЛИШКОВИХ

МАНІПУЛЯТОРІВ У РОБОЧИХ СЕРЕДОВИЩАХ

А. Я. Медвідь, В. С. Яковина

Предметом цього дослідження є перевірка колізій для надлишкових роботизованих маніпуляторів, що

працюють у змінних середовищах, яка залишається суттєвим обчислювальним вузьким місцем у задачах пла-

нування руху. Метою дослідження є підвищення ефективності перевірки зіткнень для багатоланкових робо-

тизованих маніпуляторів у вибіркових методах планування руху з одночасним збереженням функціональної

безпеки. Це досягається шляхом розроблення та оцінювання методу на основі машинного навчання, який про-

гнозує глибину проникнення для кожної ланки та слугує статистичним попереднім фільтром, а не заміною
точної перевірки зіткнень. Поставлені такі завдання: запропонувати нове подання вхідних даних, яке поєднує

кінематичний стан маніпулятора з локалізованим геометричним контекстом, отриманим із середовища за до-

помогою воксельних ґрат; спроєктувати та реалізувати гібридну архітектуру нейронної мережі, що поєднує

повнозв’язаний проєкційний шар із мережею Колмогорова–Арнольда (KAN); навчити модель на великому,

процедурно згенерованому наборі даних із різноманітними сценаріями колізій; оцінити точність регресії, кла-

сифікаційні характеристики та прискорення обчислень порівняно з прямим фізичним перевірником колізій.

Отримані такі результати: навчена модель демонструє високу регресійну точність із низьким середньоквад-

ратичним відхиленням 0.000148 на тестовій вибірці; досягає обнадійливих результатів класифікації з відгуком

93.01 % для кожного лінка — це є важливим показником її придатності як попереднього фільтра, здатного

відсіювати більшість небезпечних станів; за результатами продуктивності, для пакета з 8192 станів запропо-

нований підхід (включно з підготовкою даних та інференсом) приблизно у 3.7 рази швидший за прямий фізи-
чний перевірник колізій. Висновки. Наукова новизна отриманих результатів полягає у наступному: 1) запро-

поновано архітектуру нейронної мережі, що поєднує повнозв’язаний та Колмогорово–Арнольдівський шари

для передбачення глибини колізій лінків надлишкового маніпулятора; 2) інтегровано кінематичні та воксе-

льно-геометричні ознаки у єдине вхідне подання для точного оцінювання колізій. Запропонований метод ефе-

ктивно виконує роль попереднього фільтра для планувальників на основі вибірки, зменшуючи кількість до-

рогих перевірок колізій і прискорюючи загальний процес планування руху.

Ключові слова: роботизовані маніпулятори; перевірка колізій; воксельні сітки; мережі Колмогорова-

Арнольда.

Медвідь Андрій Ярославович – асп. каф. Систем Штучного Інтелекту, Національний Університет

“Львівська політехніка”, Львів, Україна.
Яковина Віталій Степанович – д-р техн. наук, проф., проф. каф. Систем Штучного Інтелекту, Націона-

льний Університет “Львівська політехніка”, Львів, Україна.

Andrii Medvid – PhD Student of the Department of Artificial Intelligence Systems, Lviv Polytechnic National

University, Lviv, Ukraine,

e-mail: andrii.y.medvid@lpnu.ua, ORCID: 0009-0001-4128-4973.

Vitaliy Yakovyna – Doctor of Technical Sciences, Professor, Professor of the Department of Artificial

Intelligence Systems, Lviv Polytechnic National University, Lviv, Ukraine,

e-mail: vitaliy.s.yakovyna@lpnu.ua, ORCID: 0000-0003-0133-8591.

