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PER-LINK COLLISION DEPTH PREDICTION FOR REDUNDANT MANIPULATORS
IN OPERATIONAL ENVIRONMENTS

The subject matter of this study is a collision checking for redundant robotic manipulators operating in variable
environments, which remains a significant computational bottleneck in motion planning. The goal of this study
is to improve computational efficiency of collision checking for multi-joint robotic manipulators in sampling-
based motion planning, while preserving functional safety. This is achieved by developing and evaluating a
learning-based method that predicts per-link penetration depth and serves as a statistical pre-filter rather than
a replacement for exact collision checking. The tasks are as follows: 1) to propose a novel input representation
that fuses the manipulator's kinematic state with localized geometric context extracted from the environment via
voxel grids; 2) to design and implement a hybrid neural network architecture combining a fully-connected pro-
jection layer with a Kolmogorov-Arnold Network (KAN); 3) to train the network on a large, procedurally gen-
erated dataset of diverse collision scenarios; and 4) to evaluate the model's regression accuracy, classification
performance, and computational speedup over a direct physics-based checker. The following results were ob-
tained: the trained model achieves high regression accuracy with a low Mean Squared Error of 0.000148 on the
test set; the model achieves promising classification results with a per-link recall of 93.01%, which is an im-
portant indicator for its use as a pre-filter capable of screening out the majority of hazardous states; computa-
tional speedup - performance benchmarks for a batch of 8192 states show that the proposed approach, including
data preparation and inference, is approximately 3.7 times faster than a direct physics-based checker. Conclu-
sions. The scientific novelty of results obtained is as follows: 1) a neural network architecture combining fully-
connected and Kolmogorov—Arnold Network layers is proposed for predicting per-link collision depth of a re-
dundant manipulator; 2) integration of kinematic and voxel-based geometric features into a unified input repre-
sentation for accurate collision estimation. The proposed method effectively serves as a pre-filter for sampling-
based planners, reducing the number of expensive collisions checks and accelerating the overall motion planning
process.

Keywords: Robotic manipulator; collision check; voxel grids; Kolmogorov—-Arnold Networks.

98.5% binary accuracy on self-collision labels. The pre-
sent study extends that line of research to the realistic

1. Introduction

1.1. Motivation

Collision checking remains a dominant computa-
tional bottleneck in motion planning for redundant ro-
botic manipulators operating in varying operational envi-
ronments. In sampling-based pipelines (e.g., RRT-family
methods [1]) and trajectory planners alike, tens of thou-
sands of candidate arm states or dense waypoint se-
quences must be evaluated for collisions. Physics-based
collision queries (e.g., using the Bullet library [2]) pro-
vide reliable answers but are computationally expensive.
A fast, learning-based estimator that screens large
batches of states — with conservative use as a pre-filter —
can substantially reduce the number of expensive exact
checks, thereby shortening planning time.

Earlier work by the authors [3] addressed a simpler
setting: self-collision detection for a robot with a 7-DoF
arm without an environment map. Joint angles were en-
coded as sine/cosine pairs and fed to a KAN (Kolmogo-
rov—Arnold Network) [4] classifier, achieving about

case where the arm operates in a workspace with obsta-
cles: the environment is explicitly represented and the
prediction target changes from a binary self-collision in-
dicator to per-link penetration depth. To supply the
model with localized geometric context at inference time,
each link (and the wrist-mounted tool) is paired with a
small axis-aligned local voxel grid of collision depths
with the map and the base, and with the link pose ex-
pressed as a relative position and a unit quaternion with
a canonical sign. This design permits batched processing
on modern accelerators and amortizes repeated voxel
queries through caching voxel collision depths.

This research focuses on accelerating the collision
checking process for a robotic arm in varied environ-
ments by using neural networks to evaluate batches of
potential states.

The scientific novelty consists in: (i) proposing a
per-link input construction that fuses local, axis-aligned
voxel grids of collision depth with relative link poses; (ii)
formulating a general, batched per-link depth estimation
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approach that targets the screening stage of motion plan-
ning. The specific combination of localized voxel evi-
dence, pose features, and a compact FC (fully connected)
+ KAN architecture for per-link depth regression to the
best of our knowledge has not been previously reported
for redundant manipulators in mapped workspaces; fi-
nally, (iii) the work introduces a scalable per-link colli-
sion screening paradigm that explicitly targets the pre-
filtering stage of sampling-based motion planners rather
than replacing exact collision checking.

In this context, the proposed method focuses on
fixed-base redundant manipulators with a wrist-mounted
tool; environment states may vary, but are captured at
data-generation time through local voxel depth patches.
The model predicts per-link collision depths that can be
aggregated into state- or trajectory-level risk scores, sup-
porting planner heuristics. Importantly, the method ex-
plicitly designed as a pre-filter, not a replacement for ex-
act collision checking.

For clarity, in this work the term “redundant manip-
ulator” refers to kinematic redundancy, i.e., the presence
of more degrees of freedom than strictly required to
achieve a given end-effector pose. The proposed method
does not exploit redundancy for fault tolerance, joint fail-
ure recovery, or null-space optimization. Instead, redun-
dancy is relevant because it increases the dimensionality
of the configuration space, which amplifies the computa-
tional burden of collision checking. The proposed ap-
proach remains applicable to non-redundant manipula-
tors, but is particularly motivated by high-DoF systems.

Figure 1 illustrates the redundant seven-joint XArm7
manipulator by UFactory, along with the rotational joint
limits. The robot model with the manipulator mounted on
a robotic platform was used both to generate the training
data and to experimentally evaluate the proposed ap-
proach.
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Fig. 1. xArm 7 manipulator with joints limits [21]

Within the proposed planning pipeline, the learn-
ing-based pre-filter rapidly discards sampled states that
are likely to be in collision and forwards states that are
likely collision-free to the planner. Occasional false-neg-
ative predictions are acceptable, since all candidate states

are subsequently validated by an exact physics-based col-
lision checker. Likewise, false-positive predictions dis-
card valid states but do not compromise correctness, as
they only reduce sampling efficiency.

For manipulators with kinematic redundancy, this
trade-off is particularly favorable. Due to redundancy,
multiple collision-free paths typically exist between the
start and goal configurations. Therefore, rejecting a small
subset of valid states does not prevent the planner from
finding a feasible path. At the same time pre-filtering col-
liding states significantly reduces the number of expen-
sive collision checks.

This leads to a conceptual distinction between con-
ventional collision checking pipelines and the proposed
pre-filtered approach. In the baseline approach, every
sampled arm state is subjected to an exact collision
check, making collision detection the primary computa-
tional bottleneck in sampling-based planning.

In contrast, the proposed pipeline introduces a light-
weight learning-based pre-filter that operates on batches
of sampled states. Batch sampling and batch neural infer-
ence are essential to achieving computational gains, as
they amortize data preparation overhead and efficiently
utilize parallel hardware. The pre-filter reshapes the sam-
pling distribution by removing states that are likely to be
in collision before exact validation.

1.2. State of the art

Existing research can be grouped into several main
directions, which are analyzed below.

1) GPU-accelerated collision detection.

Early progress in accelerating collision queries was
achieved through parallelization on graphics hardware.
Pan and Manocha [5] introduced packetized BVH tra-
versal for GPUs, reporting very high throughput of bi-
nary queries for large sets of robot states. Their approach
demonstrated that parallel hardware can drastically re-
duce latency in collision checking. However, GPU-based
methods still rely on explicit geometric models and pro-
vide only a binary in/out-of-collision response at the con-
figuration level. They do not offer continuous severity
measures (e.g., penetration depth) or link-wise resolu-
tion, which limits their integration as heuristics into
higher-level motion planning. Despite these limitations,
GPU-based acceleration remains a strong baseline for ap-
plications where hardware parallelism is available and bi-
nary decisions are sufficient.

2) Configuration-space proxies and learning-based
classifiers.

A second research direction focuses on proxy mod-
els that approximate the collision boundary in configura-
tion space. Das et al. introduced the Fastron framework
[6], which uses online kernelized learning to approximate
the feasible space and allows fast incremental updates
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when the environment changes. This method has been
shown to accelerate planning loops significantly. Later,
Das and Yip [7] extended this work into a more compre-
hensive IEEE Transactions on Robotics study, analyzing
proxy collision detectors as formal approximations with
convergence properties and providing extensive evalua-
tions across robotic benchmarks. These studies showed
that learning-based proxies can achieve large speedups
while maintaining safety guarantees, provided that con-
servative thresholds are applied. However, proxy meth-
ods generally return only binary collision labels and lack
the ability to capture link-specific severity. This is a key
limitation for manipulators where different links may
contribute differently to collision risk.

3) Neural signed-distance field (SDF) approaches
and differentiable proxies.

Recent research has explored continuous collision
representations. DiffCo [8] proposed an auto-differentia-
ble proxy that outputs distance-like measures and sup-
ports gradient-based optimization. This allows trajectory
optimizers to receive smooth feedback signals rather than
discrete labels, enabling gradient-based planners to con-
verge faster. Similarly, iSDF [9] introduced a real-time
neural reconstruction of signed distance fields from depth
data, making it possible to query distance values for ar-
bitrary points in space during planning. These approaches
highlight the benefits of differentiability, but their pri-
mary focus is on optimization-based planning. They are
less effective in scenarios requiring the high-throughput
screening of tens of thousands of discrete candidate
states, as occurs in sampling-based planning.

4) Implicit neural geometry.

Another recent trend is the use of implicit neural
representations. Neural Collision Fields (NCF) [10] learn
implicit occupancy functions over mesh primitives, re-
ducing the need for explicit geometric contact queries.
Neural Implicit Swept Volumes (NISV) [11] extend this
to entire motion segments, predicting whether continuous
motion intervals will intersect with obstacles. These
methods are powerful for simulation, graphics, and phys-
ics applications where continuous reasoning is essential.
However, their training cost is high, and their applicabil-
ity to large-scale batched state filtering for motion plan-
ning remains limited. Importantly, these approaches typ-
ically operate at the level of primitives or trajectories, not
individual manipulator links.

5) Real-time redundancy-aware collision avoid-
ance.

With the rise of redundant and dual-arm manipula-
tors in industrial and service robotics, new works target
real-time collision avoidance in high-dimensional
spaces. Sun et al. [12] proposed a method for real-time
collision avoidance in dual-arm redundant robots operat-
ing in open environments. Their approach combines ge-
ometric reasoning with task-level redundancy resolution,

ensuring safe collaboration in constrained workspaces.
Zhang and Wang [13] present a redundancy-based mo-
tion-planning framework that explicitly enforces task
constraints for 7-DoF manipulators, leveraging redun-
dancy to improve connectivity yet still relying on geo-
metric collision checks. Scoccia et al. [14] propose an
online perturbation strategy of off-line generated trajec-
tories for dynamically varying environments, combining
potential-field planning with Bézier smoothing to main-
tain feasibility in real time. A recent survey by Zhang et
al. [15] further explores motion planning for redundant
space manipulators, identifying open challenges such as
dynamic planning under uncertainty, multi-arm coordi-
nation, and efficiency constraints that call for scalable
collision-checking front-ends. These studies show a clear
trend towards dynamic, constraint-aware planning. How-
ever, they still lack a fast screening primitive for batched,
per-link depth estimation, which is the specific gap this
work addresses.

6) Classical motion planning foundations.

The foundations of collision-aware planning were
established by classical methods that remain relevant to-
day. Kavraki et al. [16] introduced probabilistic
roadmaps (PRMs), which became a cornerstone for high-
dimensional planning. Optimization-based planners such
as CHOMP [17] and sequential convex optimization [18]
advanced the integration of trajectory smoothness and
collision constraints, while Quinlan & Khatib [19] devel-
oped the elastic bands method to bridge planning and
control. Broad reviews such as Elbanhawi & Simic [20]
provide systematic comparisons of sampling-based ap-
proaches. These classical methods typically rely on exact
geometric collision checking, which remains a perfor-
mance bottleneck in high-dimensional redundant manip-
ulators.

Comparative analysis and identified gap

- GPU methods provide speed but are limited to
binary outputs;

- Proxy models accelerate planning but lack per-
link granularity;

- Differentiable SDF-based methods are useful
for optimization but not efficient for batched screening;

- Implicit neural models reduce explicit contact
computations but are costly to train and not per-link;

- Redundancy-aware approaches focus on task-
level safety but still rely on geometric checkers;

- Classical methods laid the groundwork but suf-
fer from scalability issues.

Across all these directions, there remains a research
gap: methods that can efficiently predict per-link pene-
tration depth, in large batches, conditioned on localized
voxel evidence. This capability is particularly valuable
for redundant manipulators, where link-wise risk estima-
tion enables more nuanced filtering and prioritization
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during motion planning.

The present work fills this gap by introducing a
compact hybrid architecture (FC + KAN) that processes
localized voxel depth patches together with link poses,
delivering per-link penetration depth estimates. Unlike
prior approaches, the proposed method explicitly targets
the high-throughput pre-filtering stage, complementing
rather than replacing exact physics-based collision
checkers.

1.3. Objectives and tasks

The goal of this study is to accelerate collision
checking for redundant robotic manipulators in mapped
environments by designing a learning-based pre-filter
that estimates per-link penetration depth, thereby reduc-
ing the number of expensive physics-based checks.

The objectives are as follows:

- to design a compact per-link input representa-
tion combining local voxel depth patches with link pose
features;

- to develop and train a hybrid FC+KAN model
for per-link penetration depth regression;

- to evaluate the proposed method against phys-
ics-based baselines in terms of regression accuracy, clas-
sification recall, and computational throughput;

- to analyze the practical implications for sam-
pling-based motion planning pipelines.

In addition to computational efficiency, the pro-
posed approach explicitly considers safety-related re-
quirements. Since false-negative collision predictions
may lead to unsafe robot behavior if used alone, the
model is designed as a conservative pre-filter that priori-
tizes recall over precision. All candidate states that pass
the pre-filter are subsequently validated using an exact
physics-based collision checker, which remains the final
safety gate in the planning pipeline.

The overall approach is to represent each candidate
state with localized voxel evidence and pose features,
predict per-link depths in batches, and use these predic-
tions to filter out low-risk states before invoking exact
collision queries.

The structure of the paper is as follows: the Section
2. Materials and Methods of research contain the follow-
ing sub sections: 2.1. Data Representation and Input For-
mulation, 2.2. Network Architecture, 2.3. Training Data
Generation, 2.4. Integration with Motion Planner, 2.5.
Training Procedure, 2.6. Evaluation Metrics. Following
sections are 3. Results and Discussion, and 4. Conclu-
sions.

2. Materials and methods of research

This section details the proposed method, covering
the data representation, the neural network architecture,

the training data generation pipeline, and the heuristic for
integrating the trained model into a sampling-based mo-
tion planner.

2.1. Data Representation and Input Formulation

To enable the network to make predictions based on
local geometry, a specific input representation is formu-
lated for each of the manipulator's links. The manipulator
is modeled as a kinematic chain of 7 arm links plus a
wrist-mounted tool, resulting in 8 distinct bodies for
which collision depth is predicted.

For each of these 8 bodies, the input vector is con-
structed from three components:

1. Link Pose: The pose of a predefined reference
point on the link is given relative to the robot's base
frame. It is represented by its position and orientation,
flattened into a 7-dimensional vector:

Piink =[XY,Z,0x, 0y, 0z, dw] eR’, 1)

where (x,y,z)—alink translation in robot’s base coordi-
nates;

(qx,qy,qz,qw)f a unit quaternion with a canonical

representation (q,, =0).

2. Voxel Grid Origin: The origin of the local voxel
grid associated with the link, also expressed in the robot's
base frame. This is represented by a 3-dimensional posi-
tion vector:

Pgrid = [Xg Yg» Zg] eR® ) (2

where (xg,yg,zg) - a translation of the local grid in a

robot’s base frame.

3. Local Voxel Grid: A small, axis-aligned cube of
scalar values representing the pre-calculated signed pen-
etration depth of the static environment around the link.

The size of this grid, S; €{3,5, 7}, is chosen heuristically

based on the physical dimensions of the corresponding
link i. The resolution of each voxel is 4 cm. The grid is
flattened into a vector:

3
Vrid Z[dl!dzl'-"dSS]eRs' : ©)
1

where dy — a penetration depth of the k-th voxel in flat-
tened vector.
The values dy are negative if no collision is present

at that voxel's location and positive otherwise, represent-
ing the penetration depth.
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The complete input feature vector for a single arm
state is formed by concatenating the representations for
all 8 bodies, resulting in a total input dimension of 1854.
The model's output is an 8-dimensional vector, where
each component corresponds to the predicted penetration
depth for one of the 8 bodies:

d* =[d;,d5,....dg] e R®, @)

where d, —a depth of collision of the k-th arm link with

the environment, the robot's base, or other parts of the
arm itself (self-collision).

In Figure 2 a visualization of a voxel grid calculated
for an instrument installed on a robot wrist can be seen.
Voxels that don’t collide with a map are not displayed
and voxels with a collision displayed as red cubes with
side length the same as their collision depth.

Fig. 2. Visualization of a voxel grid generated
for an instrument link

2.2. Network Architecture

The proposed model is a hybrid architecture de-
signed to first reduce the high-dimensional input into a
compact representation and then process it through a Kol-
mogorov-Arnold Network (KAN) for the final regression
task. The architecture consists of three main stages:

1. Projection Layer: The input vector x e R s
first passed through a linear layer without bias to project
it into a lower-dimensional space of 256 features.

hy = Woroj - X, (5)

where Wy € R256X1854 _ 5 projection layer.

2. Normalization and Activation: The projected

features are normalized using Layer Normalization to
stabilize training, followed by a GELU (Gaussian Error
Linear Unit) activation function

h, = GELU(LayerNorm(h,)) . (6)

3. KAN Block: The resulting 256-dimensional
vector is processed by a multi-layer KAN. The KAN ar-
chitecture is defined by the layer widths [256, 128, 64,
8], consisting of three learnable layers that regress the fi-
nal 8-dimensional collision depth vector. The KAN im-
plementation is based on the work presented in [4].

In Figure 3 a diagram of the network architecture
can be seen.

o N e W N O N N
KAN
Linear ot Hiac
Input Peices Norm (256 Output
Vector 9| ion —> G+ > 128 Vtz;t)or
(1854) ELU
(256) (256) —64
—8)
N = b J/ b S/ b =~ e =4

Fig. 3. Diagram of a network architecture

The choice of a Kolmogorov—Arnold Network
(KAN) is motivated by its ability to approximate multi-
variate nonlinear functions through compositions of uni-
variate spline functions, resulting in a compact parame-
terization and stable training behavior for regression
tasks. In preliminary experiments, KAN-based models
demonstrated comparable accuracy to deeper multilayer
perceptrons with fewer parameters, which is beneficial
for high-throughput inference.

While federated learning could in principle be con-
sidered for scenarios involving distributed robotic plat-
forms with privacy-constrained local datasets, it was not
required in this work. The proposed model is trained en-
tirely in simulation, where collision labels can be gener-
ated at scale across diverse environments and configura-
tions using an exact physics-based collision checker.
Therefore, centralized offline training was both feasible
and more efficient than federated or distributed learning
for the considered setting.

2.3. Training Data Generation

A large-scale dataset was procedurally generated to
train the network using code partially provided in Appen-
dix A4. The process involves creating diverse collision
scenarios by randomizing both the environment and the
manipulator's configuration.

1. Environment Generation: A set of 4096 unique
environments was generated. Each environment is popu-
lated with 17 primitive objects placed randomly within
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the robot's workspace: 8 boxes with random dimensions
and poses, 6 spheres with random radii and positions, and
3 thin walls with random positions and orientations.

2. Arm State Sampling: For each of the 4096 envi-
ronments, 2048 random arm configurations (joint states)
were uniformly sampled between the joint limits of the
manipulator.

3. Ground Truth Calculation: For each sampled
arm state within a given environment, the ground truth
collision data was calculated using the Bullet physics li-
brary [2]. An efficient voxel grid system with memoiza-
tion was employed. A wrapper class accepts requests
with a batch of voxel indices. And after calculating the
collision depth of each voxel the result is stored in a spe-
cial map by voxel index. So, the next time stored collision
depth returned. If a robot’s base changed the position or
map state changed, then the wrapper clears all the stored
values. All scene objects (the environment and the robot)
are inflated by 0.005 m. The exact penetration depth for
each of the eight bodies is calculated and a 0.01 m offset
(the doubled 0.005 m inflation margin) is subtracted from
this depth, resulting in -0.01 m for collision-free states.
This approach encourages the model to return a graded
non-collision signal in the [-0.01, O) range, providing
more nuanced information for states that are close to a
collision.

This process resulted in a dataset of approximately
8.4 million (4096 environments % 2048 states) unique in-
put-output pairs.

2.4. Integration with Motion Planner

The trained model is intended to be used as a fast
pre-filter and heuristic guide within a sampling-based
planner. As an example the following algorithm outlines
a proposed integration strategy with an RRT-Connect-
like planner:

1. Batch Sampling: Generate a large batch of N
candidate arm states (e.g., N=1024).

2. Batch Inference and Filtering: Perform a fast,
batched inference pass with the trained network for all N
states. Discard any states where the predicted collision

depth d? for any link i exceeds a predefined threshold

(e.g., d? >0).

3. Path Scoring and Prioritization: For the remain-
ing valid candidates, trace a path towards the goal, sam-
ple points along it, and use the network to predict a total
collision score for the path. Sort the candidates based on
this score, prioritizing those with paths that are "least in
collision."

4. Exact Validation: Select the top K most promis-
ing candidates and pass them to the standard planner ex-
tension step, which uses the exact collision checker to en-
sure safety.

2.5. Training Procedure

The model was trained for 20 epochs. The dataset
was split into training (80%) and testing (20%) sets at the
environment file level. The training was performed using
the following hyperparameters:

- Optimizer: Adam;

- Loss Function: Mean Squared Error (MSE), de-
fined as:

Luse ~=2 35 @-di2 .
MSE — B.-L ij ij/
i—1 j=L

where B — the number of samples in a batch;
L =8 —the number of links;

dj; —the ground truth depth;

d;} — the predicted depth.

Initial Learning Rate: 0.002;

- Learning Rate Scheduler: StepLR;

- Batch Size: 1024.

The implementation uses PyTorch. Training and ex-
periments were conducted on a system with a 12th Gen
Intel(R) Core(TM) i7-12700H, 32GB of RAM, and a Ge-
Force RTX 3050 Mobile GPU.

2.6. Evaluation Metrics

The model's performance was evaluated from two
perspectives: as a regression model and as a binary clas-
sifier.

- Regression Accuracy: The primary metric is the
final Mean Squared Error (MSE) between the actual
value of the collision depth for each link and the result
returned by the model on the test set.

- Classification Accuracy: Binary labels were
generated by comparing the collision depth with a thresh-
old of 0.0, i.e., binary classification answered the ques-
tion of whether there is a link collision with the surround-
ing world in this case. A full confusion matrix — True
Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN) —was computed.

3. Results and Discussion

This section presents the quantitative results from
the model evaluation after 20 epochs of training.

The model demonstrates strong performance as a
regression tool, achieving a final Mean Squared Error of
0.000148 on the test set. The training progression showed
stable convergence, as detailed in Figure 4.
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Fig. 4. Train and Test Loss (MSE) per Epoch

For itsrole as a pre-filter, the model's classification
performance is crucial. Table 1 presents the per-link con-
fusion matrix on the test set.

Table 1
Per-link classification confusion matrix on the test set
Predicted Colli- Predicted No
sion Collision
Actual Colli- | 15 1 942 931 | FN: 319,092
sion
ﬁ;t;’rf" NoCol- | b 667116 | TN: 8,205,740

Based on these results, the model achieves a per-
link accuracy of 92.66%, a recall (sensitivity) of 93.01%,
and a precision of 86.41%.

From a motion planning perspective, the reported
per-link recall of 93.01% should be interpreted in the
context of sampling-based algorithms. Since exact colli-
sion checking remains the final validation step, false-neg-
ative predictions do not result in unsafe trajectories but
only reduce the effectiveness of early pruning. Similarly,
false-positive predictions reduce the diversity of sampled
states but do not affect probabilistic completeness, par-
ticularly for kinematically redundant manipulators where
multiple feasible paths typically exist.

Performance benchmarks were conducted to com-
pare the proposed method against direct collision check-
ing with the Bullet physics engine. The total time for the
proposed pipeline includes both the generation of local
voxel grids (data preparation) and the neural network in-
ference. The results for a batch of 8192 states are shown
in Table 2.

The experimental results show that the proposed ap-
proach is effective. The low final MSE of 0.000148 (Fig-
ure 4) indicates that the model successfully learned the
complex relationship between the robot's configuration,
local geometry, and penetration depth.

From a practical standpoint, the classification met-
rics are more revealing. The model's high recall of

93.01% is particularly important; it means that about
93% of all actual collisions are correctly identified. A
missed collision prediction (False Negative cases) is un-
desirable, as it reduces the effectiveness of early pruning.
However, it does not compromise functional safety, since
all candidate states are subsequently validated using an
exact physics-based collision checker. The model's FP
rate is also reasonably low, ensuring that the majority of
collision-free states are correctly identified as such.

Table 2
Performance comparison for a single state,
averaged over a large batch

Total Time Time
Batch Time Per Relative
Size Spent, State, | toBul-
ms ms let
Collision 8192 1892 0.231 100%
detection
with Bul-
let
Voxel 8192 319 0.039 16.9%
grids gen-
eration
Neural 8192 192 0.023 10.1%
network
inference
Voxel 8192 511 0.062 27.0%
grids gen-
eration +
NN infer-
ence

Although Table 2 reports performance results for a
batch size of 8192, additional profiling indicates that the
relative speedup remains stable between 1024 and 8192
batch size. In this range both voxel grid generation with
caching and neural network inference scale approxi-
mately linearly with batch size, whereas physics-based
collision checking exhibits higher constant overhead.
Therefore, the reported 3.7x speedup can be considered
representative of typical operating conditions in sam-
pling-based motion planning pipelines. At the same time
with batch size lower than 1024 the relative speed-up
drops, which indicates that this approach is most effec-
tive when applied to large batches of sampled states.

The proposed approach primarily targets different
objectives than contemporary learning-based methods
such as DiffCo [8] and Neural Collision Fields (NCF)
[10], although all aim to accelerate collision reasoning.
DiffCo provides a fully auto-differentiable collision
proxy, making it highly suitable for gradient-based
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trajectory optimization; its design goal is to supply stable
gradients rather than to maximize the throughput of
batched screening of independent configurations. NCF
learns implicit collision representations at the triangle-
primitive level, which is geared toward continuous con-
tact handling in physics/graphics simulations rather than
high-throughput per-configuration screening for robotic
manipulators.

In contrast, the presented approach is optimized as
a fast, batched pre-filter within sampling-based planners:
it outputs per-link penetration-depth estimates (without
exposing gradients), enabling both the filtering of invalid
states and the prioritization of promising candidates via a
nuanced collision score. It makes the approach comple-
mentary to optimization-focused or simulation-focused
techniques, targeting a distinct stage of the planning pipe-
line. A direct head-to-head comparison is beyond the
scope of this work due to differing problem formulations
and evaluation metrics, instead, we report throughput and
false-negative rates appropriate for pre-filter use.

The performance benchmarks in Table 2 quantify
the primary motivation for this work. The complete pro-
posed pipeline (data preparation + inference) requires
only 0.062 ms per state, a 3.7-fold speedup compared to
the 0.231 ms required by the exact checker. This shows
great potential for accelerating sampling-based planners,
which must evaluate tens of thousands of states.

A key factor in this performance is the use of an ef-
ficient, two-level system for generating voxel grids.
While constructing these grids could be computationally
intensive, the heavy lifting is done once per static envi-
ronment by pre-calculating a global grid. The per-state
cost is then reduced to a fast lookup operation. As a prac-
tical example, generating the input data for a batch of
8192 states required instead of 15,157,968 (8,192x1,854)
only 69,349 unique contact tests with the physics engine
due to caching by voxel index. This optimization is criti-
cal to the method's efficiency, making the data prepara-
tion step significantly faster than direct collision check-

ing.
4. Conclusions

This paper demonstrated that learning-based per-
link penetration depth prediction can significantly reduce
collision-checking time for multi-joint robotic manipula-
tors without compromising correctness. The proposed
method reshapes the sampling distribution by acting as a
statistical pre-filter, enabling the early rejection of colli-
sion-prone states while preserving functional safety
through mandatory exact collision checking. Experi-
mental results show a 3.7x speedup compared to direct
physics-based collision checking, while maintaining a
high per-link recall of 93.01%. Although the experiments

focus on a kinematically redundant manipulator, the pro-
posed pre-filtering approach is equally applicable to non-
redundant multi-joint manipulators, as it does not rely on
redundancy-specific properties.

The current approach has several limitations that
define clear directions for future research. First, the
model operates on a "snapshot” of the world, assuming
the environment is static for the duration of a single plan-
ning query. Adaptation to dynamic obstacles moving dur-
ing the planning cycle remains an open challenge. Sec-
ond, and relatedly, this work assumes the manipulator's
base is stationary relative to the environment within that
same planning instance; extending the methodology to
mobile manipulators, where the base and arm may move
simultaneously, would introduce additional kinematic
and state-representation complexity. Crucially, the final
validation by an exact collision checker remains the man-
datory safety gate; the False Negative rate, while low,
must be carefully monitored in deployment, for instance,
on a per-batch basis.

Future work will focus on two main directions.
First, the model will be integrated into a full motion plan-
ning framework to benchmark the end-to-end reduction
in planning time on standardized tasks. Second, the ap-
plicability of this approach to other manipulator geome-
tries and a wider range of tools will be explored to assess
its generalization capabilities.
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Appendix A: C++ Source Code Snippets

This appendix contains key C++ code snippets for reproducibility, illustrating the core components of the data

generation pipeline. The code is simplified for clarity.
A.1 Voxel Grid Cache

To avoid redundant collision checks for the same voxel in space, a simple cache is used. It maps 3D integer
coordinates to a pre-calculated collision depth value, using a 3D-to-1D index mapping for storage in a flat vector.

#include <vector>
#include <limits>
#include <stdexcept>

// Caches collision depth values for voxel indices to avoid redundant checks.

struct VoxelGridCache {
static constexpr int MAX INDEX = 75;
static constexpr int N = 2 * MAX INDEX + 1;

// Defines the grid bounds, e.g.,

from -75 to 75.

// Side length of the cache cube.

static constexpr float EMPTY VALUE = std::numeric limits<float>::infinity();

VoxelGridCache () : depthValues (N * N * N,

EMPTY VALUE) ({}

// Checks if a depth value has already been computed for the given coordinates.

[ [nodiscard]]
return GetStoredDepth(x, y, 2z)

// Retrieves the cached depth value.
[ [nodiscard]]
checkRange (x, vy, z);
return depthValues [index(x, vy,

z)1;

// Stores a new depth value in the cache.
void SetStoredDepth (const int x,
checkRange (x, vy, z);

depthValues [index(x, y, z)] = val;

private:

bool HasValue (const int x, const int y, const int z)
I= EMPTY VALUE;

float GetStoredDepth (const int x,

const int y, const int z,

const {

const int y, const int z) const {

const float wval) {

// Converts 3D voxel coordinates to a 1D vector index.

static size t index(int x, int y, int z) {
const int ix = x + MAX INDEX;
const int iy = y + MAX INDEX;
const int iz = z + MAX INDEX;

return static cast<size t>((ix * N + iy)

* N + iz);

// Ensures voxel coordinates are within the defined bounds.

static void checkRange (int x,
if (x < -MAX INDEX ||
|| z > MAX_INDEX) {

int y, int z)
x > MAX INDEX ||

y < -MAX INDEX ||

y > MAX INDEX || z < -MAX INDEX
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throw std::out_of range ("VoxelGridCache: index out of range");

}
std::vector<float> depthValues ;

}i

A.2 Bullet Physics Contact Callback
A custom callback for Bullet's contactTest is used to find the maximum penetration depth. When a "probe™ object
collides with the environment, this callback records the deepest penetration found.

#include <btBulletDynamicsCommon.h>
// Custom callback to find the maximum penetration depth during a contact test.
class ProbeContactCallback : public btCollisionWorld::ContactResultCallback {
public:
// Stores the maximum penetration found. Negative for separation, positive for penetration.

btScalar maxPenetration = -0.01f;

btScalar addSingleResult (
btManifoldPoint& cp,
const btCollisionObjectWrapper*, int, int,
const btCollisionObjectWrapper*, int, int
) override {
// Penetration distance is negative, so we invert it.
btScalar penetration = -cp.getDistance();
if (penetration > maxPenetration)
maxPenetration = penetration;

return 0; // Continue checking for deeper penetrations.

A.3 Voxel Grid Population
This method is responsible for computing a local part of the global voxel grid. It iterates through the requested
volume, checks the cache, and if a value is missing, performs a contactTest with Bullet to calculate it.

// (Inside VoxelCollisionGrid class)

// Computes a part of the grid, using the cache to avoid re-computation.

std::vector<std::vector<std::vector<float>>> VoxelCollisionGrid::ComputeGridPart (
int startX, int startyY, int startZ, int partSize) noexcept {

std::vector<std::vector<std::vector<float>>> depthGrid/(
partSize, std::vector (partSize, std::vector (partSize, 0.0f)));

for (int x = 0; x < partSize; ++x) {
for (int y = 0; y < partSize; ++y) {

for (int z = 0; z < partSize; ++z) {
int currentX = startX + x;
int currentY = start¥ + y;
int currentZ = startZ + z;

// 1. Check cache first.
if (calculatedDepths .HasValue (currentX, currentY, currentZ)) ({

depthGrid[x] [y] [z] = calculatedDepths .GetStoredDepth (currentX, currentY, cur-
rentZ) ;
continue;
}
// 2. If not in cache, compute using Bullet.
auto voxelPos = WorldVoxelCenterIsometry(currentX, currentY, currentZ).Transla-
tion () ;

btTransform tf;
tf.setOrigin (btVector3 (voxelPos.x (), voxelPos.y (), voxelPos.z()));
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probeObjectPtr ->setWorldTransform(tf);

ProbeContactCallback callback;
world .contactTest (probeObjectPtr , callback)

’

contactTestCount ++; // For performance analysis.

float depth = callback.maxPenetration;
depthGrid[x][yl[z] = depth;

// 3. Store the newly computed value in the cache.

calculatedDepths .SetStoredDepth (currentX, currentY, currentZ, depth);

}
return depthGrid;

A.4 Random Scene Generation

The following functions are used to populate the simulation world with random obstacles for each of the 4096

environments.

// (Inside CollisionScene class)
// Populates the scene with a fixed set of random objects.
void CollisionScene::AddRandomObjects () noexcept {
randomObjects .push_back (AddRandomBox()) ;
randomObjects .push_back (AddRandomBox()) ;
// ... (8 boxes total)
randomObjects .push _back (AddRandomSphere ()) ;
// ... (6 spheres total)
randomObjects .push_back (AddRandomWall ()) ;
// ... (3 walls total)

// Creates a single random wall and adds it to the Bullet world.

btCollisionObject* CollisionScene::AddRandomWall () const noexcept {

constexpr float minWallThickness = 0.01f;
constexpr float maxWallThickness = 0.12f;
constexpr float wallSize = 1.6f;

const float thickness = RandFloat (minWallThickness, maxWallThickness);

btVector3 halfExtents(wallSize * 0.5f, thickness * 0.5f,

auto* shape = new btBoxShape (halfExtents);
auto* obj = new btCollisionObject();
obj->setCollisionShape (shape) ;

wallSize * 0.5f);

obj->setCollisionFlags (btCollisionObject::CF _NO CONTACT RESPONSE) ;

const float x = RandFloat (gridOffset .x()
const float y = RandFloat (gridOffset .y()
const float angleZ = RandFloat(0.0f, M PI

, gridOffset .x(
, gridOffset .y(
)i
btTransform tf;

tf.setOrigin (btVector3(x, y, wallSize * 0.5f));

)
tf.setRotation (btQuaternion (btVector3 (0, 0, 1)
obj->setWorldTransform(tf) ;

angleZ));

collisionWorld ->addCollisionObject (obj, int(CollisionGroup::RANDOM MAP OBJECT),

return obj;

)
)

+ gridSize .x());
+ gridSize .y());

// Creates a single random sphere and adds it to the Bullet world.

btCollisionObject* CollisionScene::AddRandomSphere () const noexcept {

-1);
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constexpr float minSphereRadius = 0.01f;

constexpr float maxSphereRadius = 0.3f;

const float radius = RandFloat (minSphereRadius, maxSphereRadius);
auto* shape = new btSphereShape (radius);

auto* obj = new btCollisionObject();
obj->setCollisionShape (shape) ;
obj->setCollisionFlags (btCollisionObject::CF NO CONTACT RESPONSE) ;

const float x = RandFloat(gridOffset .x(), gridOffset .x() + gridSize .x());
const float y = RandFloat (gridOffset .y(), gridOffset .y () + gridSize .y ());
const float z = RandFloat(gridOffset .z (), gridOffset .z () + gridSize .z ());

btTransform tf;

tf.setOrigin (btVector3(x, y, z));
tf.setRotation (btQuaternion::getIdentity());
obj->setWorldTransform(tf);

collisionWorld ->addCollisionObject (obj, int(CollisionGroup::RANDOM MAP OBJECT), -1);
return obj;

// Creates a single random box and adds it to the Bullet world.

btCollisionObject* CollisionScene::AddRandomBox () const noexcept {
constexpr float minBoxSize = 0.01f;
constexpr float maxBoxSize = 0.5f;

const float sx = RandFloat (minBoxSize, maxBoxSize);
const float sy = RandFloat (minBoxSize, maxBoxSize);

const float sz = RandFloat (minBoxSize, maxBoxSize);
auto* shape = new btBoxShape (btVector3(sx / 2, sy / 2, sz / 2));

auto* obj = new btCollisionObject();
obj->setCollisionShape (shape) ;

// Random position and orientation

const float x = RandFloat (gridOffset .x(), gridOffset .x() + gridSize .x());
const float y = RandFloat (gridOffset .y(), gridOffset .y () + gridSize .y());
const float z = RandFloat (gridOffset .z (), gridOffset .z () + gridSize_ .z());

btQuaternion rot;
rot.setEuler (RandFloat (0, M_PI), RandFloat(0, M PI), RandFloat (0, M PI));

btTransform tf;

tf.setOrigin (btVector3(x, vy, z));
tf.setRotation(rot);
obj->setWorldTransform(tf);

collisionWorld ->addCollisionObject (obj, int(CollisionGroup::RANDOM MAP OBJECT), -1);
return obj;

A.5 Main Data Generation and Writing
This function orchestrates the entire data generation process for a single environment file. It samples arm states,
calculates ground truth collisions and voxel grids, and writes all data to a binary file.

// (Inside CollisionNetTrainingGenerator class)
// Generates and writes training data for a number of arm states to a file.
void CollisionNetTrainingGenerator::WriteToFileArmCollisionsData (
CollisionEngine& collisionEngine,
model: :ToolType toolType,
const size t numArmStates,
const std::string& fileName
) const noexcept {
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// Define output file path
auto fullOutFilePath = std::string("/path/to/output/data/") + ... + ".data";
std::ofstream outFile (fullOutFilePath, std::ios::binary);

// Creates a voxel grid cache object

auto voxelGrid = collisionEngine.CreateVoxelGridForArm(worldType , math::Isometry3d::Iden-
tity(), toolType);

// Generate random arm states.
auto states = arm::BoundingBoxStatesGenerator::GenerateStatesForRRISArmOnly (...);

for (auto& state : states) {
// 1. Calculate ground truth collision depths for all links.
std::vector<float> collisionDepths (8, minCollisionDepth) ;

auto collisions = collisionEngine.CollisionsList (state, worldType );
for (auto& collision : collisions) {
ModifyCollisionDepths (collisionDepths, ...); // Update max depth per link
}
auto linksPositions = GetLinksWorldIsometries(collisionEngine.RobotModel (), state);

// 2. For each link, write its pose and local voxel grid to the file.
for (size_t linkIndex = 0; linkIndex < 8; linkIndex++) {
// Write link pose (7 floats: x,y,z,9x,dy,dz,dqw)
auto linkPosFlat = Isometry3dToFlatNumbers (linksPositions[linkIndex]);

outFile.write(reinterpret cast<const char*>(linkPosFlat.data()), linkPosFlat.size() *
sizeof (float));

// Write voxel grid origin (3 floats: x,y,z)

int localGridSize = localVoxelGridSizes [linkIndex];

auto [x, vy, 2z, voxelPosition] = GetVoxelOffsetAndPosition(linksPositions[linkIndex],
localGridSize);

float pos[3] = {(float)voxelPosition.x (), (float)voxelPosition.y (), (float)voxelPosi-
tion.z () };

outFile.write(reinterpret cast<const char*>(pos), sizeof (pos));

// Get local grid from the global grid (using the cache) and write it
auto voxelGridPart = voxelGrid.ComputeGridPart(x, y, z, localGridSize);

for (int i = 0; i < localGridSize; ++1i) {
for (int j = 0; j < localGridSize; ++j) {
outFile.write(reinterpret cast<const char*>(voxelGridPart[i][j].data()), 1lo-

calGridSize * sizeof (float));

}

// 3. Write the ground truth collision depths vector (8 floats).

outFile.write(reinterpret cast<const char*>(collisionDepths.data()), colli-
sionDepths.size () * sizeof (float)):;

}

outFile.close();
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INOJIAHKOBE ITPOI'HO3YBAHHSA I''IMBUHU INTPOHUKHEHHSA J1JIA HA VIMITKOBUX
MAHIITYJATOPIB Y POBOYUX CEPEJJOBUIIAX

A. A. Meogios, B. C. Axosuna

IIpeameTom 11bOr0 AOCIIIKEHHS € TIEpeBipKa KOMi3iil I HAUTMIIKOBUX POOOTHU30BAaHUX MAaHIITYJISATOPIB, IO
TMIPAIIOIOTh Y 3MIHHHX CEpPeIOBUIIAX, SIKa 3ATUIIAETHCS CyTTEBUM OOUHCITIOBAILHIM BY3bKHM MICLIEM Y 3a/1adax Iia-
HyBaHHS pyXy. MeTOI0 TOCIi/PKEHHS € ITiABUIIEHHS e(heKTUBHOCTI MEPEBiPKU 31TKHEHB 151 0araTolaHKOBUX Po0o-
THU30BaHUX MaHIMYJISATOPIB Y BUOIPKOBUX METO/aX TUIAHYBAHHS PyXY 3 OJHOYACHUM 30epekeHHsIM ()yHKITIOHATIbHOT
6e3mneku. Le mocsraeThbest IUIIXOM po3po0IIeHHS Ta OLIHIOBAHHS METOY Ha OCHOBI MAIIMHHOTO HABYAHHS, SIKHI ITPO-
THO3Y€E TIIMOMHY NPOHUKHEHHS ISl KOXKHOI JIAHKM Ta CIYT'Y€ CTAaTHUCTUYHUM TONepeaHiM (LIBTPOM, a He 3aMiHO0
TOYHOI IIepeBipKH 3iTKHEHb. [locTaBieH] Taki 3aBAaHHS: 3aIIPOITOHYBATH HOBE ITOJaHHS BXiTHUX JIaHHX, SIKE TOETHYE
KiHEMaTUYHHUH CTaH MaHIMyJIATOpa 3 JIOKaJi30BaHUM r€OMETPUYHIM KOHTEKCTOM, OTPUMAaHHM i3 CEpeA0BHIIIA 3a JI0-
TIOMOT'OI0 BOKCEJIBHHX I'PaT; CIPOEKTYBATH Ta peajli3yBaTH TiOpHIHY apXiTeKTypy HEHpOHHOI MEpexi, 0 MOEHYE
TIOBHO3B sI3aHUI MPOEKLiiHMI map i3 mepexeto KonmmoropoBa—ApHonsaa (KAN); HaBUUTH MOJEh Ha BEIUKOMY,
MIPOLIEIYPHO 3Tr€HEPOBaHOMY HAa0Opi IaHKX 13 PI3HOMaHITHUMH CLIEHAPISIMU KOJi31i1; OL[IHNTH TOYHICTH perpecii, Kia-
cuikamiitHi XapaKTepUCTUKU Ta MPUCKOPEHHSI 00YMCIICHb MOPIBHSHO 3 MPSIMUM (hi3UYHUM NEPEeBIPHUKOM KOJi3iil.
OtpuMaHi Taki pe3yJIbTaTH: HAaBUYEHA MOJENb JIEMOHCTPYE BUCOKY PETPECIHHY TOUHICTb 13 HU3bKUM CEPETHbOKBA/I-
patuunnM BigxuwieHHsM 0.000148 Ha TecToBIN BHOIpIIi; ToCATae OOHAMIMIMBIX PE3YIbTATIB Kiacu(iKalii 3 BiATYKOM
93.01 % i1t KOXKHOIO JIiHKa — 1€ € BAXKJIMBUM MOKA3HUKOM ii MPHUAATHOCTI SIK MONEPEIHbOro (iibTpa, 37aTHOTO
BiJICIFOBaTH OUIBILICTH HEOE3MEUHHX CTaHIB; 32 pe3yJbTaTaMH MPOJYKTHBHOCTI, JUIst akera 3 8192 craHiB 3amnporno-
HOBaHUH Mi/IXiJ (BKJIFOYHO 3 MiITOTOBKOIO JIAaHKX Ta iH(epeHcoM) proin3Ho y 3.7 pa3u MBUALINMHN 32 NpsAaMui (izu-
YHU nepeBipHUK KOMi3id. BucHoBKH. HaykoBa HOBU3HA OTPUMAaHUX PE3yJIbTaTiB MOJNATAE Y HACTYITHOMY: 1) 3arpo-
MIOHOBAHO apXiTEeKTypy HEHPOHHOI Mepexi, 110 MOEHYE MTOBHO3B si3aHui Ta KoMOoropoBo—ApHONBIiBCbKHIT MapH
JUIsl Tiepet0aYeHHsl TIIMOMHN KOJi31i JITHKIB Ha/UTMIIIKOBOTO MaHIIMyJsATOpa; 2) iHTErpoOBaHO KiHEMaTH4YHI Ta BOKCeE-
JIbHO-TEOMETPHYHI O3HAKH Y €JIMHE BXiJ[HE IOAAHHSI JIJIsl TOUHOTO OI[iHIOBAaHHS KOJi3iii. 3anpornoHoBanuii MeTos ede-
KTHBHO BHKOHYE POJIb MONEPeAHbOro (inbTpa IS IUIaHyBaJbHUKIB HA OCHOBI BUOIPKH, 3MEHIIYIOUH KiJBbKICTh JI0-
pOruX MepeBipoK KOoJi3iH 1 MPUCKOPIOIOYH 3aralibHUi MPOIeC MIaHyBaHHS PYXY.

Koarwuosi ciioBa: pob0oTH30BaHi MaHIMyNIsTOPH; MEpeBipKa KOJi3ii; BOKCeNbHI CiTku; Mepexi Kommoroposa-
ApHonpaa.
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