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This study focuses on the development and evaluation of an explainable artificial intelligence (XAI) framework 

for multimodal sentiment analysis, specifically applied to territorial revitalization project management. The re-

search addresses the critical problem of “black box” AI models, whose lack of transparency hinders their adop-

tion by project managers who require trustworthy information for high-stakes decision-making in complex social 

environments. The goal of this study is to propose and rigorously validate a novel framework for multimodal 

sentiment analysis that is tailored to provide transparent, trustworthy, and actionable insights for decision-mak-

ing in territorial revitalization project management. The tasks to be solved include developing a hybrid XAI 
technique that fuses insights from cross-modal attention and gradient-based attribution, designing a cohesive, 

user-centric explanation format combining highlighted text and image heatmaps, constructing a custom Revital-

izeSent-MM dataset for this specific domain, and empirically evaluating the framework’s predictive accuracy 

and, crucially, the fidelity of its explanations. The methods used involve a transformer-based Multimodal Senti-

ment Analysis (MSA) model using BERT and ViT with cross-modal attention for information fusion. The explain-

ability component is a hybrid XAI technique that integrates cross-modal attention analysis with Integrated Gra-

dients to assign importance scores to input features. Evaluation was performed using standard classification 

metrics for performance and the “Accuracy Drop on Perturbation” metric for explanation fidelity. The results 

confirmed the efficacy of the framework. The multimodal model demonstrated superior accuracy over unimodal 

baselines, and the proposed XAI method achieved significantly higher fidelity than naive explanation ap-

proaches, demonstrating its ability to accurately reflect the model’s internal reasoning. The scientific novelty 
lies in three areas: the development of a fused, hybrid XAI technique specifically for transformer-based multi-

modal models, creation of a unique, domain-specific dataset for revitalization analysis, and validation of a meth-

odology for adapting advanced XAI to solve critical trust and adoption barriers, thereby confirming its practical 

significance in project management. 
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1. Introduction 

 

1.1. Motivation  

 

Territorial revitalization, particularly in post-con-

flict or post-disaster scenarios, represents a profoundly 

complex undertaking. As highlighted by S. Yao and L. 

Wang, such initiatives extend far beyond mere physical 

reconstruction, encompassing intricate social, economic, 

and political dimensions [1]. Therefore, successfully nav-

igating these projects requires not only effective resource 

allocation and infrastructure development but also care-

ful management of public perception, stakeholder align-

ment, and community engagement. These social factors 

are shown by B. Guo et al., are significantly influenced 

by social capital [2]. Gaining social acceptance, a concept 

explored by X. In urban revitalization contexts, Jin et al. 

[3] stated that ensuring that efforts meet the actual needs 

and address the concerns of affected populations are par-

amount for achieving long-term success and stability [3]. 

In this high-stakes environment, understanding the dy-

namic landscape of public sentiment becomes a critical 

project management function, enabling timely risk iden-

tification, proactive communication, and adaptive plan-

ning. 

The digital age offers unprecedented access to vast 

streams of public discourse through social media, news 

outlets, official reports, and community forums. As X. In 

the context of healthcare, Chen et al. observed that this 

information is increasingly multimodal, frequently com-

bining textual narratives with powerful visual elements, 

such as photographs and videos [4]. Images depicting de-

struction, reconstruction progress, community gather-

ings, or protests provide rich contextual layers, as demon-

strated by U. In machine translation, Sulubacak et al. of-

ten supplement, contradict, or nuance the accompanying 

text [5]. This fused multimodal data stream was noted by 

K. For health monitoring, Singh et al. holds immense po-

tential for project managers seeking a holistic and timely 

understanding of stakeholder sentiment, emerging issues, 
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and the overall social climate surrounding revitalization 

projects [6]. 

However, effectively leveraging this rich data 

source presents significant challenges. Traditional pro-

ject monitoring methods, which rely on surveys, focus 

groups, or manual media scanning, are often slow, costly, 

resource-intensive, and resource-intensive, as exempli-

fied by S. De Vito et al. struggled to capture the scale, 

speed, and nuances of online multimodal discourse in air 

quality monitoring [7]. The integration of AI and ma-

chine learning (ML) into project management has be-

come a rapidly growing field, offering potential enhance-

ments across various project phases, to address these lim-

itations, as discussed by D. Chernyshev et al. in the con-

text of smart construction [8–9]. Applications range from 

improved project duration and cost forecasting [10–11] 

to automated progress monitoring and risk prediction. 

Sentiment analysis, in particular, has been applied, pri-

marily utilizing text data from stakeholder communica-

tions or social media platforms, to gauge project recep-

tion or identify potential issues, with recent proposals 

such as that of R. M. Omas-as and Encarnacion focusing 

on unified feedback management using text analyt-

ics [12]. 

Despite their analytical power, these modern multi-

modal models frequently suffer from a critical limitation: 

the “black box” problem, a philosophical challenge dis-

cussed by von Eschenbach [13]. Their internal decision-

making processes are opaque, making it difficult, if not 

impossible, for users to understand why a particular sen-

timent prediction was made. This lack of transparency 

poses a fundamental barrier to adoption, particularly in 

high-stakes domains such as territorial revitalization pro-

ject management, where AI and BIM integration are be-

ing explored, as seen in the work of S. Dolhopolov et al. 

[14]. Project managers are understandably hesitant to 

base critical decisions on resource deployment, risk mit-

igation strategies, or public communication adjustments, 

areas also investigated by S. Dolhopolov et al. regarding 

site analysis [15] on AI outputs they cannot scrutinize or 

trust. An incorrect or misunderstood AI assessment could 

lead to misallocation of resources, ineffective interven-

tions, or even worsen social tensions. Therefore, the ina-

bility to explain how multimodal sentiment is derived 

prevents these powerful AI tools from reaching their full 

potential as trusted decision-support aids for revitaliza-

tion project managers. 

 

1.2. State of the art  

 

The challenges of analyzing public sentiment have 

driven significant advancements in Artificial Intelli-

gence, particularly in the fields of Multimodal Sentiment 

Analysis (MSA) and Explainable Artificial Intelligence 

(XAI). An examination of the state of the art in these ar-

eas reveals both the potential of current technologies and 

the critical gaps that hinder their practical application in 

project management. 

Multimodal Sentiment Analysis (MSA) has pro-

gressed significantly from its early focus on unimodal 

textual data, as noted in foundational work on modality-

invariant representations by D. Hazarika, R. Zimmer-

mann, and S. Poria [16]. The proliferation of multimedia 

content spurred intensive research into MSA, which aims 

to leverage information from text, visuals, and audio to 

achieve a more robust and context-aware understanding 

of sentiment – a challenge tackled early on by A. Zadeh 

et al. with their Tensor Fusion Network [17]. While Arti-

ficial Intelligence (AI), particularly sentiment analysis 

based on advanced models like the Bidirectional GRUs 

explored by W. Xu et al., offers powerful tools for pro-

cessing large volumes of text data [18], unimodal ap-

proaches fall short. Text-only analysis, as reviewed by Z. 

Tang, misses the crucial context embedded in visuals, po-

tentially misinterpreting sarcasm, overlooking visual ev-

idence contradicting text, or failing to grasp the emo-

tional impact conveyed by an image [19]. Conversely, 

analyzing images alone lacks the specific details, opin-

ions, and arguments expressed in text. Consequently, ad-

vanced multimodal AI models, often employing sophis-

ticated transformer architectures and fusion mechanisms, 

sometimes questioning if “captions are all you need”, 

have emerged to analyze text and images jointly. These 

models offer significantly more accurate and context-

aware sentiment assessments, though their application re-

quires careful consideration, as shown by M. Aldeen et 

al. regarding adversarial attacks on multimodal systems 

[20]. Contemporary approaches within MSA are fre-

quently distinguished by their fusion strategy. Early fu-

sion techniques combine features from different modali-

ties at the input level before prediction. While straight-

forward, researchers like A. A. Beserra, R. M. Kishi, and 

R. Goularte have noted that this approach can struggle 

with heterogeneous feature spaces and dimensionality 

[21]. Conversely, late fusion involves training separate 

models for each modality and subsequently combining 

their outputs, often at the decision level. As demonstrated 

by J. Cheng et al. in RGB-Thermal crowd counting, this 

allows for modality-specific modeling but risks missing 

complex inter-modal interactions [22]. Seeking to cap-

ture these crucial interactions, hybrid fusion methods 

have gained prominence, operating at intermediate repre-

sentational stages. Dominant contemporary approaches, 

surveyed by M. Shaikh et al. in the context of action 

recognition, heavily involve attention mechanisms and 

transformer-based architectures [23]. Seminal models 

such as ViLBERT, developed by J. Lu et al. [24], 

LXMERT by H. H. Tan and M. Bansal [25], and 
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UNITER proposed by Y. Chen et al. [26], employ sophis-

ticated cross-modal attention layers. Recent research 

continues to refine these mechanisms, with novel ap-

proaches like the dual-attention model by Wang et al. 

[27], which simultaneously models intra- and inter-mo-

dality dynamics and introduces techniques like cross-cor-

relation loss to improve feature fusion. These allow tex-

tual and visual features to dynamically influence each 

other during processing, leading to high performance on 

diverse vision-and-language tasks, including MSA. 

Despite these advancements, significant hurdles re-

main in handling modality imbalance, noisy data, and the 

scarcity of domain-specific annotated datasets like MOSI 

or MOSEI, as discussed by W. Yu et al. [28] and Z. Liu 

et al. [29]. 

The increasing complexity and “black box” nature 

of these models have catalyzed the development of Ex-

plainable AI (XAI) [30–31]. As B. Pradhan et al. empha-

size that XAI methods aim to render AI predictions trans-

parent and understandable to humans, thereby fostering 

trust, enabling debugging, and promoting accountability 

[31]. The major paradigms within XAI include feature at-

tribution methods that assign importance scores to input 

features. Prominent examples of text include LIME, 

SHAP, and attention visualization, as applied by H. Jang 

et al. [32], whose utility was also explored using R. Ha-

san et al. [33] and reviewed in the context of genomics 

by S. R. Choi and M. Lee [34]. For image data, gradient-

based techniques such as Saliency Maps and Grad-CAM, 

along with its enhancements like Grad-CAM++ proposed 

by Y. Gao et al. [35] highlighted salient pixel regions. 

Recent comprehensive reviews, such as the one by Cheng 

et al. [36], categorize these computer vision XAI methods 

into attribution-based, perturbation-based, and trans-

former-based approaches, systematically evaluating their 

trade-offs in terms of key characteristics, such as faith-

fulness and computational efficiency. Other XAI ap-

proaches include example-based explanations, which ref-

erence influential training instances, a method compared 

to rule-based explanations by van der J. V. Waa et al. 

[37], and surrogate models, where simpler models mimic 

the complex model, as explored by A. Engel et al. [38]. 

Furthermore, emerging research is exploring novel para-

digms for achieving interpretability, such as the self-su-

pervised learning frameworks proposed by Sun et al. 

[39], which aim to automatically extract key sentiment 

cues from text to provide global, rather than instance-spe-

cific, explanations. 

XAI techniques for unimodal natural language pro-

cessing and computer vision are relatively mature, as sur-

veyed by R. Gipiškis et al. [40], achieving explainability 

for multimodal models remains a significant challenge. 

Recent research has demonstrated the value of applying 

XAI techniques, such as LIME and SHAP, to trans-

former-based language models for sentiment analysis, 

particularly to enhance transparency and trust in contexts 

such as low-resourced languages, as shown by Mabokela 

et al. [41]. However, these studies primarily focus on uni-

modal text and do not address the unique challenges of 

explaining fused, multimodal predictions. This has been 

highlighted in recent studies by F. Cerasuolo et al. fo-

cused on network traffic classification [42]. Applying 

unimodal XAI techniques independently to each modal-

ity fails to explain the crucial fusion process where mo-

dalities interact. This creates a clear and compelling re-

search gap: there is a notable lack of established, robust 

methods specifically designed to generate fused, intuitive 

explanations from complex multimodal models that are 

readily interpretable and actionable for domain experts, 

such as project managers. This paper addresses this gap 

by adapting and combining XAI techniques to produce 

explanations tailored specifically for decision support in 

revitalization project management.  

 

1.3. Objectives and tasks 

 

To bridge the critical gap identified between the ca-

pabilities of advanced multimodal AI and the practical 

needs of project managers for trustworthy, interpretable 

insights, this study aims to develop and rigorously eval-

uate a novel framework for explainable multimodal sen-

timent analysis. The primary objective of this study is to 

create a methodology tailored to provide transparent, 

trustworthy, and actionable insights for decision-making 

in territorial revitalization project management. 

To achieve this overarching objective, this research 

undertakes the following specific tasks: 

1. To develop and implement a novel hybrid XAI 

technique specifically adapted for modern transformer-

based multimodal sentiment analysis models, fusing in-

sights from cross-modal attention analysis and gradient-

based attribution methods. 

2. To design and propose a cohesive, user-centric 

explanation format that presents highlighted salient text 

words alongside image region heatmaps, making the 

model’s reasoning process transparent and intuitive for 

project managers. 

3. To construct and validate RevitalizeSent-MM, a 

custom, domain-specific dataset that accurately reflects 

the real-world challenges and linguistic nuances of terri-

torial revitalization, providing a robust foundation for 

model training and evaluation. 

4. To rigorously evaluate the proposed framework 

through comprehensive experiments, assess its sentiment 

prediction accuracy against unimodal baselines, and 

measure the fidelity and utility of its explanations via 

quantitative metrics. 

By addressing these tasks, this study aims to fill the 

identified research gap and generate valuable insights 

into the design principles for creating effective, domain-
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specific explanations. The application is firmly grounded 

within the domain of territorial revitalization project 

management, tailoring the generated explanations to sup-

port relevant decision-making tasks, such as risk identi-

fication and stakeholder analysis. Crucially, through em-

pirical evaluation, the impact of these explanations on in-

terpretability is explicitly investigated from a project 

management perspective. Ultimately, this work seeks to 

provide a validated methodology and a tangible pathway 

toward more responsible, transparent, and effective AI-

assisted decision support for managers navigating the 

complexities of territorial revitalization. 

The remainder of this article is structured to logi-

cally present the research findings. Section 2 details the 

proposed methodology, outlining the overall architec-

ture, data preprocessing steps, the multimodal sentiment 

analysis model, and the core XAI techniques. Section 3 

describes the experimental setup, including the custom 

dataset construction, implementation details, evaluation 

metrics, and baselines for comparison. Section 4 presents 

the results of the quantitative experiments and includes a 

practical Case Study to demonstrate the application of the 

framework. Section 5 provides a comprehensive Discus-

sion of the findings, their practical implications, and lim-

itations of this study. Finally, Section 6 offers the Con-

clusion, summarizing the key contributions and outlining 

promising directions for future research. 

 

2. Methodology 
 

This section details the proposed framework for ex-

plainable multimodal sentiment analysis, specifically tai-

lored to support decision-making in revitalization project 

management. This paper presents the overall architec-

ture, outlines the data preprocessing steps, describes the 

chosen multimodal sentiment analysis (MSA) model, 

elaborate on the core XAI techniques adapted for ex-

plaining fused predictions, and defines the format of the 

generated explanations. 

 

2.1. Overall Framework Architecture 

 

The proposed framework is designed to process 

pairs of text and images related to revitalization projects, 

predict the associated sentiment polarity (Positive, Neg-

ative, or Neutral), and provide interpretable explanations 

that link this prediction back to salient features within 

both the textual and visual modalities. The workflow 

consists of several interconnected modules, as shown in 

Figure 1. The process begins with the Input Module ac-

cepting text-image pairs, such as social media posts or 

news snippets with accompanying images. The Prepro-

cessing Module then independently prepares the text 

(through tokenization and cleaning) and images (through 

resizing and normalization) for their respective encoders. 

The multimodal sentiment analysis (MSA) module, 

which employs a deep learning model featuring separate 

text and image encoders followed by a fusion mechanism 

to integrate the information before predicting the senti-

ment, is central to the framework. Subsequently, the XAI 

Explanation Module receives the original input pair and 

the prediction of the MSA model. This module applies 

specifically adapted XAI techniques to identify and 

quantify the contribution of textual elements (words or 

sub-word tokens) and visual regions (pixels or image 

patches) to the final sentiment outcome. Then, the Expla-

nation Output Module renders these generated explana-

tions into a user-friendly, combined format optimized for 

project managers’ interpretability. Finally, a conceptual 

Interpretation Layer for PM represents the interface or 

cognitive process through which project managers utilize 

the sentiment prediction and its accompanying explana-

tion to inform critical decisions, such as risk assessment 

or communication strategy adjustments. 

 

2.2. Data Preprocessing 

 

Standard preprocessing steps are applied to ensure 

compatibility with deep learning models. The input text 

is cleaned to remove artifacts like URLs or excessive spe-

cial characters. It is then tokenized using a subword to-

kenizer compatible with the chosen text encoder, such as 

WordPiece for BERT models. The token sequences are 

padded or truncated to a fixed maximum length, and spe-

cial tokens (e.g., [CLS], [SEP]) are incorporated as re-

quired by the specific transformer architecture. The input 

images are decoded and resized to the precise input di-

mensions expected by the visual encoder (e.g., 224x224 

for a standard ViT model). 

 

 
 

Fig. 1. Proposed Framework Architecture. Text and image inputs are processed by the MSA module for sentiment 

prediction. The XAI module, accessing the MSA model, generates explanations by analyzing attention  

and gradients, which are then formatted for project manager interpretation and decision support 
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2.3. Multimodal Sentiment Analysis (MSA) 

Model 

 

A transformer-based architecture is employed to ef-

fectively capture the complex interplay between textual 

and visual information, which uses powerful pre-trained 

unimodal encoders coupled with a dedicated fusion 

mechanism. Specifically, the proposed model comprises 

a pre-trained BERT model (or a suitable multilingual or 

domain-adapted variant, e.g., bert-base-uncased) serving 

as the Text Encoder. This model processes the tokenized 

text to produce contextualized token embeddings. A pre-

trained vision transformer (ViT) model (e.g., google/vit-

base-patch16-224-in21k) [42] acts as the image encoder 

for the visual modality. It divides the input image into 

fixed-size patches, linearly embeds them, adds positional 

information, and processes these sequences through 

transformer layers to generate patch embeddings, typi-

cally including a [CLS] token embedding that summa-

rizes the global image context. The core of the multi-

modal integration lies in the Fusion Mechanism, for 

which cross-modal attention layers are utilized, drawing 

inspiration from seminal works such as ViLBERT and 

LXMERT [24–25]. These layers enable representations 

from one modality to dynamically attend to representa-

tions from the other (e.g., text tokens attending to image 

patches and vice versa), facilitating the learning of joint 

representations that capture inter-modal dependencies 

crucial for accurate sentiment prediction. Multiple such 

fusion layers can be stacked to deepen the interaction. Fi-

nally, the fused representation, often derived from the 

[CLS] tokens of both modalities or through a pooling op-

eration over the fused sequence, is passed to a simple Pre-

diction Head, typically a Multi-Layer Perceptron (MLP) 

classifier terminating in a softmax layer, which outputs 

the probability distribution over the predefined sentiment 

classes (Positive, Negative, Neutral). The entire model is 

trained end-to-end using a standard cross-entropy loss 

function. This architectural choice leverages strong pre-

trained unimodal representations while employing cross-

modal attention to effectively capture the nuanced inter-

play between text and visuals, which is essential for high-

performance MSA. 

 

2.4 XAI Technique Adaptation for Multimodal 

Explanations (Core Novelty) 

 

The central challenge addressed by this methodol-

ogy is explaining how the MSA model’s fused represen-

tation leads to a specific sentiment prediction, attributing 

importance back to the original input features, namely, 

text tokens (or words) and image regions (or patches). To 

achieve this, this study proposes adapting and combining 

two complementary XAI approaches, as detailed below. 

 

2.4.1. Cross-Modal Attention Analysis 

 

Transformer architectures inherently rely on atten-

tion mechanisms that calculate relevance scores between 

different elements in the input sequences. The proposed 

approach analyzes these weights, focusing on both self-

attention (interactions within a single modality) and, 

more critically, cross-attention (interactions between text 

and image modalities) derived from the trained MSA 

model’s fusion layers. The adaptation involves moving 

beyond visualizing raw attention weights, which can be 

noisy or misleading. Instead, techniques potentially in-

spired by methods such as Attention Rollout are em-

ployed, or simple attention weight aggregation strategies 

across relevant layers and heads are used. The flow of 

information can be traced more reliably by aggregating 

attention across multiple layers, smoothing out anomalies 

from single layers and capturing a more holistic view of 

the model’s reasoning. This process estimates the effec-

tive contribution or focus directed from specific input 

text tokens to specific image patches, and vice versa, as 

relevant to the final prediction. The process involves 

identifying the attention heads and layers most influential 

in the final classification step and aggregating the self-

attention weights that are cross-modal and potentially 

modulated. The output yields scores indicating the 

model’s “attention focus” on specific words and image 

patches resulting from its internal interaction patterns. 

 

2.4.2. Multimodal Gradient-based Attribution 

 

Gradient-based methods form another cornerstone 

of the presented XAI approach. These techniques are 

used to calculate the gradient of the model’s output score 

(e.g., the predicted probability for the target sentiment 

class) with respect to its input features. The magnitude of 

this gradient signifies how a small change in a particular 

feature would influence the prediction, indicating its im-

portance. Established gradient-based methods are 

adapted to the multimodal architecture, with a preference 

for Integrated Gradients (IG) due to its desirable theoret-

ical properties, such as obvious satisfaction. The adapta-

tion process involves calculating the target class proba-

bility gradient with respect to the final fused representa-

tion generated before the classification head. This gradi-

ent is then backpropagated through the fusion layers and 

subsequently routed separately down through the text and 

image encoder pathways to their respective input embed-

ding layers (i.e., token embeddings for text and patch em-

beddings for images) or even to the raw input level (i.e., 

input IDs and pixel values). For text, attribution scores 

derived at the sub-word token level are aggregated to pro-

duce word-level importance scores. For images, attribu-

tions calculated for patch embeddings are mapped back 

to the original pixel space and typically visualized as a 
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heatmap, analogous to methods like Grad-CAM but de-

rived differently based on the transformer architecture. 

This process yields attribution scores signifying the di-

rect influence or importance of each word and image re-

gion in driving the model’s specific sentiment prediction. 

The format typically includes a Visual Component, 

where the input image is displayed overlaid with a 

heatmap. This heatmap, primarily derived from gradient-

based attribution methods (or potentially attention maps), 

highlights the pixel regions or patches deemed most in-

fluential for the predicted sentiment, with intensity or 

color indicating the influence’s strength. Complementing 

this is the Textual Component, where the original input 

text is presented with highlighted important words or 

phrases. Highlighting intensity or color reflects the ag-

gregated importance scores derived from a combination 

of attention analysis and gradient-based methods for the 

corresponding sub-word tokens. Figure 2 shows an ex-

ample of this target fused explanation format. This dual-

method approach captures both the model’s “focus” 

(from attention) and its “feature influence” (from gradi-

ents). Optionally, this core visual-textual explanation can 

be augmented with Summary Metrics or Text, such as a 

brief automatically generated textual summary (e.g., 

“Positive sentiment linked to ‘reconstruction’ in text and 

bridge structure in image”) or feature importance bar 

charts enumerating the top contributing words and image 

regions. This combined format is designed to allow pro-

ject managers to quickly grasp which parts of the text and 

image contributed most significantly to the AI’s senti-

ment assessment, thereby facilitating a more grounded, 

transparent, and trustworthy interpretation compared to 

receiving only a simple prediction label. The design em-

phasizes direct visual evidence (heatmaps) and textual 

pointers (highlights) as potentially more intuitive for 

non-AI experts than abstract numerical scores alone. 

Figures 3 and 4 illustrate the process of mapping ab-

stract model outputs back to a user-interpretable visual 

format. The initial output, shown in Figure 3, is a raw, 

low-resolution attribution map, where each square repre-

sents a patch of the original image, and its color indicates 

the importance score. This raw map is then upscaled and 

smoothly interpolated to be overlaid on the original im-

age (Figure 4). This final heatmap provides an intuitive 

visual guide to the regions considered most salient by the 

model for its decision. While these figures showcase the 

visualization of attention scores, the principle for map-

ping gradient-based attributions is analogous. 

 

 
 

Fig. 3. A raw, patch-based attention map 
 

2.5. Mathematical Formulation  

of the Hybrid XAI Method 

 

This section provides the detailed mathematical and 

algorithmic formulations for the hybrid XAI approach to 

ensure methodological rigor and experimental reproduc-

ibility, covering attention aggregation, gradient routing, 

and the final score combination. 

 

 
Fig. 2. Example of the target fused explanation format, showing the etalon explanation  

for the Zdvizh bridge revitalization 
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Fig. 4. The final attention heatmap overlaid  

on the original image 

 

2.5.1. Cross-Modal Attention Score Aggregation 

 

The attention scores are derived directly from the 

cross-modal attention mechanisms within the fusion lay-

ers of the model. For a model with L fusion layers and H 

attention heads per layer, the attention matrix for a given 

layer l and head h is denoted as A(l,h). These matrices are 

aggregated by averaging them to obtain a single, robust 

attention map: 

 

Aagg =
1

|L′|∙H
∑ ∑ A(l,h)H

h=1l∈L′ ,                  (1) 

 

where L′ is the subset of “relevant” layers selected for ex-

planation. For this analysis, the attention matrices from 

the final two cross-modal fusion layers (L′ = {L-1, L}) 

were exclusively utilized because they have the most di-

rect influence on the final fused representation that feeds 

into the prediction head. The resulting aggregated matrix 

Aagg provides the raw attention-based importance scores, 

Sattn.  

 

2.5.2. Multimodal Gradient-based Attribution 

 

The gradient-based component is calculated using 

Integrated Gradients (IG), which require defining a base-

line (an information less input). 

For the textual modality, the baseline (Tbaseline) was 

a sequence of embeddings corresponding to the [PAD] 

token. 

For the visual modality, the baseline (Vbaseline) was 

a black image with all pixel values set to zero. 

The attribution for a given input feature embedding 

is calculated by integrating the gradients along a straight-

line path from the baseline to the input. In practice, this 

integral is approximated using a summation over several 

steps, as shown in the following formula: 

    Attr(Ei) ≈ (Ei − (Ei
′) ∙

1

m
∑

∂yc(E′+
k

m
(E−E′))

∂Ei

m
k=1 ,    (2) 

 

where Attr(Ei) is the Integrated Gradients attribution 

score for the i-th feature embedding. Ei is the embedding 

of the input feature (a text token or an image patch). Ei
′ is 

the corresponding baseline embedding. m is the number 

of steps used to approximate the integral. ∂yc(. . . ) /  ∂Ei 

is the output gradient of the model for predicted class c 

with respect to the feature embedding, evaluated at step 

k along the path from the baseline to the input. 

 

2.5.3. Hybrid Explanation Generation 

 

The raw scores from both attention and gradient 

methods are combined to generate the final, unified ex-

planation. First, both sets of scores are independently 

normalized to a [0, 1] range using min-max scaling to en-

sure that they are comparable. 

 

Si
′ =

Si −min(S)

max(S)−min(S)
,                         (3) 

 

where Si
′ is the normalized importance score for the i-th 

feature. Si  is the raw importance score (either from atten-

tion, Sattn, or gradients, Sgrad). min(S) and max(S)  are 

the minimum and maximum scores across all features for 

the method. 

Then, the normalized scores are linearly combined 

to produce the final hybrid score: 

 

Shybrid = α ∙ Sattn
′ + (1 − α) ∙ Sgrad

′ ,           (4) 

 

where Shybrid is the final hybrid importance score. Sattn
′  

and Sgrad
′  are the normalized scores obtained from the at-

tention and gradient methods, respectively. α is a 

weighting coefficient between 0 and 1. In the experi-

ments, α was set to 0.5 to give equal importance to both 

the model’s focus (attention) and the features’ influence 

(gradients). 

Finally, since the text encoder operates on sub-word 

tokens, the resulting attribution scores Shybrid for text 

must be aggregated to the word level for human interpret-

ability. For any given word w, which comprises a set of 

sub-word tokens Tw, its final score is determined by the 

maximum attribution score among its constituent tokens: 
 

Scorew = max(Shybrid(t) | t ∈ Tw),           (5) 
 

where Scorew is the final importance score for the word 

w. Shybrid(t) is the hybrid score for an individual sub-

word token t. 

This aggregation method ensures that the word’s 

most influential part determines its overall importance in 

the final explanation. 
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3. Experimental Setup 
 

This section details the experimental design em-

ployed to rigorously evaluate the proposed framework 

for explainable multimodal sentiment analysis within the 

specific context of territorial revitalization project  

management. This section describes the construction and 

characteristics of the RevitalizeSent-MM domain-spe-

cific dataset, the implementation specifics for the MSA 

model and XAI techniques, the evaluation metrics used 

for both quantitative and qualitative assessment, and the 

baseline methods used for comparative analysis. 

 

3.1. Dataset: RevitalizeSent-MM 

 

Recognizing the absence of publicly available da-

tasets tailored to multimodal sentiment capture during 

territorial revitalization, particularly in post-conflict set-

tings like Ukraine post-2022, a new dataset named Revi-

talizeSent-MM was constructed. Data pairs consisting of 

text snippets and associated images were collected from 

publicly accessible sources pertinent to ongoing revitali-

zation efforts. These sources primarily included publicly 

available news articles and reports from reputable na-

tional and international news outlets covering reconstruc-

tion and recovery activities, public posts from official 

government and municipal channels detailing project 

progress, and publicly shared content from social media 

platforms (such as X, Facebook, and relevant Telegram 

channels, adhering to platform Terms of Service and user 

privacy settings) identified using keywords such as #re-

construction, #recovery, and relevant project names. 

Only pairs in which an image was directly associated 

with the text were retained. 

An initial large collection of data pairs was filtered 

to ensure relevance to the revitalization context. The se-

lection criteria included keywords indicating revitaliza-

tion activities (e.g., rebuilding, repair, recovery, and re-

stored), associated geotags or explicit location mentions 

within the targeted revitalization zones, and the require-

ment for both meaningful textual content (exceeding sim-

ple captions) and a contextually relevant image. Pairs 

containing generic stock photos that were unrelated to the 

textual narrative were discarded where feasible. 

A crucial phase involved the manual annotation of the 

filtered text-image pairs to assign the sentiment labels. A 

team of five annotators, fluent in both Ukrainian and 

English and specifically briefed on the revitalization con-

text’s nuances, performed the labeling task. Each pair 

was assigned one of three sentiment labels: Positive (ex-

pressing satisfaction, hope, progress, and successful 

completion), Negative (expressing dissatisfaction, criti-

cism, despair, destruction, lack of progress, and danger), 

or Neutral (typically objective reporting or factual state-

ments lacking strong sentiment). Annotators were  

explicitly instructed to consider the combined meaning 

conveyed by both the text and the image. To ensure an-

notation quality, a subset comprising 15% of the data was 

independently annotated by at least two annotators, al-

lowing for the calculation of inter-annotator agreement 

(IAA). Using Cohen’s Kappa, a score of 0.78 was 

achieved, indicating substantial agreement among the an-

notators. Instances with disagreements were subse-

quently resolved through moderated discussion to reach 

a consensus label. The final dataset was randomly parti-

tioned into training (70%), validation (15%), and test 

(15%) sets, ensuring no overlap between the splits for un-

biased evaluation. Data collection strictly adhered to eth-

ical considerations, using only publicly available sources. 

For social media data, identifiable user information was 

anonymized during the analysis and was not present in 

any published examples, in accordance with privacy 

norms and platform guidelines. The analysis focuses on 

aggregated sentiment trends rather than individual user 

profiling. Table 1 summarizes the key statistics charac-

terizing the resulting RevitalizeSent-MM dataset. 

 

Table 1 

Summary Statistics for the RevitalizeSent-MM Dataset 

Statistic 
Training 

Set 

Validation 

Set 
Test Set Total 

Total Samples 

(Text+Img) 
5.810 1.245 1.245 8.300 

Positive 

Samples 
1.980 415 425 2.820 

Negative 

Samples 
2.250 490 485 3.225 

Neutral 

Samples 
1.580 340 335 2.255 

Avg. Text 

Length 

(Tokens) 

65 68 66 66 

Unique Tokens 

(Vocabulary) 
~25.000 - - ~25.000 

Image 

Dimensions 

(Avg.) 

~600x450 ~600x450 
~600x45

0 
~600x450 

IAA (Kappa 

Score) 
- - - 0.78 

 

3.2. Implementation Details 
 

The models and experimental workflow were im-

plemented using Python 3.11. The primary deep learning 

framework employed was PyTorch (version 1.13+). The 

Hugging Face transformers library (version 4.25+) was 

utilized to leverage pre-trained transformer models, spe-

cifically for accessing BERT (bert-base-multilingual-

cased chosen for broader language support) and ViT 

(google/vit-base-patch16-224-in21k) architectures. The 

Captum library (version 0.6+) was used to implement ex-

plainability functionalities, particularly gradient-based 

methods like Integrated Gradients, supplemented by cus-

tom scripts for extracting and analyzing attention weights 

where applicable. Standard image processing tasks were 
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performed using Pillow and OpenCV, while data manip-

ulation and visualization relied on Pandas, NumPy, Mat-

plotlib, and Seaborn. 

The Multimodal Sentiment Analysis (MSA) model, 

featuring the BERT and ViT backbones combined via 

cross-modal attention fusion layers, was specifically 

fine-tuned on the RevitalizeSent-MM training dataset. 

The text and image encoders were initialized with their 

respective pre-trained weights to leverage transfer learn-

ing. Model optimization was performed using the 

AdamW optimizer with a learning rate of 2e-5, incorpo-

rating a linear warmup phase over the first 10% of train-

ing steps followed by linear decay. Training was con-

ducted with a batch size of 16, which was constrained by 

the available GPU memory (NVIDIA GeForce RTX 

4080 SUPER). The model was trained for a maximum of 

10 epochs, employing early stopping based on the vali-

dation set’s F1-score performance, with a patience of 2 

epochs to prevent overfitting. 

For the XAI implementation, cross-modal attention 

analysis involved extracting aggregated attention weights 

from the trained MSA model’s final fusion layer. Multi-

modal Integrated Gradients were implemented using 

Captum’s LayerIntegratedGradients targeting word em-

beddings for text and standard IntegratedGradients tar-

geting pixel values for images, relative to appropriate 

baselines (padding token embeddings for text, zero-pixel 

image for visuals). Fifty steps were used for the Inte-

grated Gradients approximation path integral. 

 

3.3. Evaluation Metrics 
 

The evaluation strategy employed a combination of 

quantitative metrics to assess both the performance of the 

underlying MSA model and the characteristics of the 

generated explanations, alongside qualitative user-based 

assessments focused on interpretability and trust. 

 

3.4. MSA Model Performance 
 

The predictive capability of the fine-tuned MSA 

model was evaluated on the held-out test set using the 

following standard multi-class classification metrics: 

overall Accuracy, Precision, Recall, and F1-Score. To ac-

count for potential class imbalance, precision, recall, and 

F1-Score were calculated both per class (positive, nega-

tive, neutral) and as macro and weighted averages. 

 

3.5. Quantitative XAI Evaluation 
 

The “quality” of explanations is inherently chal-

lenging to quantify. Two metrics commonly used in XAI 

literature were adopted to assess the properties of the ex-

planation: Fidelity and Sparsity. Fidelity was measured 

using the Accuracy Drop on Perturbation. This involved 

identifying the top-k% (with k=15%) most important  

features (i.e., aggregated words for text based on token 

attributions, image patches based on aggregated pixel at-

tributions, or attention scores) according to the XAI 

method. These features were then removed or masked 

from the input (e.g., replacing text tokens with [MASK], 

blacking out image patches), and the resulting drop in the 

prediction accuracy of the MSA model was measured. A 

higher accuracy drop suggests higher fidelity, indicating 

that the explanation successfully identified features that 

were genuinely influential to the decision of the model. 

This was compared against the accuracy drop caused by 

removing random features of the same proportion. Spar-

sity, often linked to comprehensibility, was measured by 

the average percentage of features (words for text, 

patches for image) highlighted as belonging to the top-

k% importance level. Simpler explanations (lower spar-

sity) are generally preferred, provided that fidelity is 

maintained. 

The chosen metrics are aligned with a formal model 

of explainability to ground the evaluation in established 

quality frameworks for AI systems, such as the hierar-

chical quality model proposed by Kharchenko et al. [43] 

In this model, the high-level characteristic “Explainabil-

ity” (EXP) is decomposed into several measurable sub-

characteristics, including Comprehensibility (CMH), In-

terpretability (INP), and Verifiability (VFB). The selec-

tion of Fidelity and Sparsity was deliberately driven by 

the need to quantify these key aspects within the applica-

tion context. 

Fidelity, which measures the faithfulness of an ex-

planation to the model’s internal logic, serves as a quan-

titative measure of Verifiability. Establishing that an ex-

planation accurately reflects the model’s reasoning is a 

prerequisite for user trust in a high-stakes domain such as 

territorial revitalization. Sparsity was chosen as a critical 

proxy for Comprehensibility and Interpretability. For 

end-users who are not AI experts, concise explanations 

that isolate the most critical sentiment drivers are more 

effective and less prone to information overload than 

dense, complex explanations. While other XAI evalua-

tion metrics, such as stability or consistency, exist, Fidel-

ity and Sparsity were considered the most relevant for as-

sessing the practical utility of explanations in this specific 

decision-support context, as they directly measure the 

core components of a formal XAI quality model and 

align with the primary goals of the research: providing 

trustworthy and actionable insights. 

 

3.6. Baselines for Comparison 
 

Several baseline methods were established for com-

parison to effectively evaluate the contribution of the pro-

posed explainable multimodal framework: 

1. MSA Model (No XAI). Performance and user 
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perception (trust, understanding) of the base multimodal 

sentiment analysis model when predictions are presented 

without any accompanying explanation. This serves as 

the fundamental baseline. 

2. Unimodal XAI (Text-Only) A BERT model was 

trained exclusively on the textual data from  

RevitalizeSent-MM. Its predictions were explained using 

a standard text XAI method (Integrated Gradients attrib-

uting to word embeddings, visualized via text highlight-

ing). 

3. Unimodal XAI (Image-Only). A ViT model 

trained solely on the image data. Explanations were gen-

erated using a standard vision XAI method (Integrated 

Gradients attributing to input pixels, visualized as a 

heatmap). 

4. Naive Multimodal XAI. Applying the chosen 

unimodal XAI techniques (IG for text embeddings, IG 

for image pixels) independently to the respective streams 

within the trained multimodal model, but visualizing 

them separately without the fused explanation format or 

cross-modal consideration during the XAI calculation it-

self. 

5. Attention Rollout. It was included as a direct 

baseline for attention-based explanation. This technique, 

which is readily applicable to transformer architectures, 

generates explanations by aggregating attention scores 

across all model layers. The attention mechanism is 

treated as a flow network and the contribution of input 

tokens to the final representation is computed by recur-

sively multiplying attention matrices. This method was 

applied to the trained MSA model’s cross-modal atten-

tion layers to generate separate importance scores for text 

and image features. Including this baseline is crucial as it 

allows for a direct comparison of the hybrid gradient-at-

tention approach against a well-established method that 

relies solely on attention, highlighting the specific bene-

fits of incorporating gradient-based information. 

These baselines enable a multi-faceted evaluation: 

assessing the benefit of multimodality (comparing MSA 

vs. Unimodal models), the value of adding any explana-

tion (comparing No XAI vs. XAI baselines), and the spe-

cific advantage of the adapted multimodal XAI approach 

and fused explanation format over simpler, non-inte-

grated, and purely attention-based explanation strategies. 

 

4. Case Study 
 

This section presents the experimental evaluation 

findings, comparing the performance of the proposed 

multimodal sentiment analysis model and its associated 

explainability framework against established baselines. 

This section reports on the predictive accuracy of the core 

model and then delve into quantitative and qualitative as-

sessments of the generated explanations. 

4.1. Multimodal Sentiment  

Analysis Model Performance 
 

The proposed MSA model, which integrates BERT 

and ViT encoders with cross-attention fusion, was first 

evaluated against unimodal baselines (Text-Only BERT, 

Image-Only ViT) trained on the RevitalizeSent-MM da-

taset. Table 2 summarizes the performance, measured on 

the held-out test set using weighted average metrics 

across the three sentiment classes (positive, negative, and 

neutral). 

As shown in Ошибка! Источник ссылки не 

найден., the proposed multimodal model significantly 

outperforms both the text-only and image-only baselines 

across all standard evaluation metrics. The substantial 

improvement in F1-score from 0.716 (text-only) and 

0.570 (image-only) to 0.803 for the fused model confirms 

the synergistic benefit of integrating both textual narra-

tives and visual cues for accurately assessing sentiment 

within the dataset’s complex revitalization context. This 

highlights the need for a multimodal approach, as visual 

information often provides crucial context absent in text 

alone and vice versa. 

 

4.2. Quantitative XAI Evaluation 
 

The explanations produced by the adapted XAI 

framework, which combines insights from cross-modal 

attention and Integrated Gradients (IG), were then quan-

titatively assessed, and its characteristics were compared 

against baseline explanation methods using Fidelity and 

Sparsity metrics. 

 

Table 2 

Sentiment Classification Performance  

on the RevitalizeSent-MM Test Set  

(Weighted Averages) 

Model Accuracy Precision Recall 
F1-

Score 

Text-Only 

(BERT Baseline) 
0.718 0.715 0.718 0.716 

Image-Only (ViT 

Baseline) 
0.572 0.569 0.572 0.57 

Proposed MSA 

(BERT+ViT+Fus

ion) 

0.805 0.802 0.805 0.803 

 

4.2.1. Fidelity 

 

Fidelity measures how well an explanation reflects 

the internal reasoning of the model by evaluating the im-

pact of removing the most important features identified 

using the XAI method. The drop in the accuracy of the 

MSA model on the test set was calculated after masking 

the top 15% most important features (tokens aggregated 

to words for text, image patches derived from pixel/em-

bedding attributions for image) identified by each XAI 
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approach. A larger accuracy drop indicates higher fidel-

ity. The results, compared against removing random fea-

tures, are shown in Figure 5. 

The proposed fused XAI method demonstrated sig-

nificantly higher fidelity, inducing an average accuracy 

drop of 17.6%, compared to only 1.9% when removing 

random features (p < 0.001, via paired t-test). It also sig-

nificantly outperformed the naive application of multi-

modal IG (which yielded a 11.8% drop, p < 0.01) and the 

unimodal baselines applied within the multimodal frame-

work (Text-Only IG: 8.5% drop; Image-Only IG: 6.9% 

drop). This strongly suggests that the adapted method, 

designed to account for cross-modal interactions during 

explanation generation, is more effective at identifying 

the input features that are truly critical to the complex 

multimodal model’s final prediction. 

The hybrid approach also showed a substantial im-

provement over the Attention Rollout baseline, which 

yielded a 14.2% accuracy drop. While Attention Rollout 

proved more faithful than naive methods by effectively 

propagating attention scores through the model’s layers, 

its lower fidelity compared to the proposed method high-

lights the limitations of relying solely on attention mech-

anisms. This result strongly suggests that the gradient-

based information integrated into the proposed approach 

captures signals of critical feature importance that are 

missed by purely attention-based explanations. This con-

firms that the adapted method, which is designed to ac-

count for both attention patterns and feature influence via 

gradients, is more effective at identifying the input fea-

tures that are critical to the final prediction of the com-

plex multimodal model. 
 

4.2.2. Sparsity 
 

Sparsity is related to the conciseness of an explana-

tion, which is often correlated with comprehensibility. 

The average percentage of input features (words for text, 

patches for image) was measured and highlighted as be-

longing to the top 15% importance level by each method. 

The results are presented in Table 3. 

As expected, the sparsity levels were broadly com-

parable across the different attribution-based methods 

when selecting a fixed percentage (top 15%), as shown 

in Table 3. The proposed method provides focused expla-

nations by highlighting approximately 14.2% of text 

words and 14.5% of image patches, achieving high fidel-

ity without excessive visual clutter, thus balancing faith-

fulness to the model with potential user comprehensibil-

ity. 

Table 3 

Sparsity of Explanations (Average % of Features  

Highlighted in Top 15% Attribution) 

XAI Model Modality 

Avg. % 

Features 

Highlighted 

Proposed Fused XAI 
Text 14.2% 

Image 14.5% 

Naive Multimodal 

IG 

Text 14.3% 

Image 14.6% 

Attention Rollout 
Text 14.3% 

Image 14.6% 

Unimodal Text-Only 

IG 
Text 14.1% 

Unimodal Image-

Only IG 
Image 14.4% 

 

 

 
 

Fig. 5. Fidelity evaluation: Mean accuracy drop (%) on the test set after removing the top 15% of features  

identified using different XAI methods. Higher bars indicate higher fidelity. Error bars represent 95%  
Confidence Intervals 
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5. Discussion 
 

The results of this study offer compelling evidence 

for the efficacy of the proposed framework for explaina-

ble multimodal sentiment analysis in the context of  

territorial revitalization. This section dissects these find-

ings, interprets their broader implications for both project 

management practice and the academic field of Explain-

able AI (XAI), and acknowledges the inherent limitations 

of this study. 

 

5.1. Interpretation of Key Findings 
 

The experimental evaluation yielded two central 

findings. The first is the superior predictive performance 

of the multimodal sentiment analysis (MSA) model com-

pared to its unimodal counterparts. The second is the sig-

nificantly higher fidelity of the proposed hybrid XAI 

method compared with naive or unimodal explanation 

techniques and, notably, a strong attention-based base-

line. 

The synergy of multimodality is clearly demon-

strated by the marked improvement in accuracy and F1-

score of the fused BERT-ViT model. This underscores a 

fundamental truth about human communication, which is 

particularly salient in revitalization contexts, that is, 

meaning is co-constructed from multiple channels. Text 

alone can be ambiguous. A statement such as “Work is 

progressing on the bridge” could be neutral, but when 

paired with an image of a fully reconstructed bridge, the 

sentiment becomes unequivocally positive. Conversely, 

an image of a desolate site could render the same text sar-

castic. The ability of the model to capture these synergis-

tic and sometimes contradictory signals through its cross-

modal attention mechanism is the primary driver of its 

enhanced performance. It moves beyond simple feature 

concatenation toward a more profound, contextual under-

standing that is essential for the nuanced domain of pub-

lic sentiment. 

The critical importance of fused explanations repre-

sents the most significant contribution of this study. The 

quantitative evaluation of explanation fidelity revealed 

that the proposed hybrid XAI method, which back-prop-

agates gradients through fusion layers, dramatically out-

performs naive approaches. More importantly, it sur-

passed the performance of Attention Rollout, a well-es-

tablished method that relies solely on attention scores. 

This specific comparison is particularly insightful be-

cause it demonstrates that while attention mechanisms ef-

fectively show where the model is looking during the fu-

sion process, gradient-based methods reveal the influ-

ence of those features on the final decision. The hybrid 

approach’s superior fidelity proves that combining both 

sources of information – the model’s focus (attention) 

and the features’ influence (gradients) provides a more 

complete and faithful explanation of its reasoning than 

either method alone. This confirms that gradients contrib-

ute critical information that is not captured by attention 

analysis alone. The core of true multimodal explainabil-

ity is this ability to trace sentiment back to the interplay 

between modalities. Achieving this high fidelity without 

sacrificing conciseness also ensures that the explanations 

are both faithful and comprehensible. 
 

5.2. Implications for Territorial Revitalization 

Project Management 
 

The practical implications of this research for  

project managers are substantial. The proposed frame-

work can transform how decision-makers interact with 

public feedback by moving beyond opaque sentiment 

scores toward transparent, evidence-based insights. Fa-

cilitates enhanced situational awareness and proactive 

risk mitigation. Project managers can move from reactive 

problem-solving to proactive management. If the frame-

work consistently highlights negative sentiment linked to 

keywords like “delay” paired with images of stalled pro-

gress, managers receive a clear, early warning to investi-

gate and adjust strategies before public discontent esca-

lates. 

The framework also provides a data-driven justifi-

cation for decisions. Every decision in high-stakes envi-

ronments requires justification. A manager can defend al-

locating more resources to a sub-project by presenting 

data showing it is a major source of positive public sen-

timent, with explanations pointing directly to specific 

words and images. This strengthens accountability and 

builds trust with stakeholders. Most importantly, it fos-

ters trust in AI-assisted tools. Lack of trust is the primary 

barrier to AI adoption in critical domains. By demystify-

ing the “black box,” the XAI framework presented here 

serves as a crucial trust-building mechanism. When man-

agers can see why the AI concluded and verify its reason-

ing, they are far more likely to integrate the tool into their 

workflows. 
 

5.3. Contributions to the Field  

of Explainable AI 
 

This work contributes a validated methodology for 

the challenging subfield of multimodal XAI from a sci-

entific standpoint. This demonstrates that simply extend-

ing unimodal XAI techniques is insufficient for models 

in which cross-modal fusion is the centerpiece. The hy-

brid approach of combining gradient-based attribution 

with an analysis of cross-modal attention provides a tem-

plate for developing explanations for other sophisticated 

fusion models. This underscores the principle that an ex-

planation method must be architecturally aware of the 

model it seeks to explain, particularly of the mechanisms 

that integrate disparate data streams. 
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5.4. Limitations of the Study 
 

Despite the promising results, the limitations of this 

study should be acknowledged. The RevitalizeSent-MM 

dataset, while a crucial asset for this domain-specific 

task, is inherently limited in size and scope. This study is 

primarily focused on the Ukrainian post-2022 context, 

which may introduce cultural and linguistic biases that 

could affect the model’s generalizability to other revital-

ization scenarios. Furthermore, the evaluation of expla-

nation quality relied on quantitative proxy metrics, such 

as fidelity. While these metrics are valuable for assessing 

the model’s internal logic’s faithfulness, they do not di-

rectly measure the “goodness” or utility of an explanation 

from a human perspective. The ultimate test of an expla-

nation’s value lies in its comprehension and use by the 

target audience, which was not formally assessed in this 

study. Finally, the proposed approach was validated on a 

specific transformer-based architecture, and its applica-

bility to other model families with different fusion mech-

anisms is yet to be explored. These limitations naturally 

lead to several avenues for future work, which will be 

discussed in the concluding section. 

 

6. Conclusion 
 

This study tackled the critical challenge of enhanc-

ing the trustworthiness and practical utility of advanced 

AI within the high-stakes domain of territorial revitaliza-

tion project management. While powerful at processing 

diverse data streams, standard multimodal sentiment 

analysis models often function as opaque “black boxes,” 

creating a significant barrier to adoption for project man-

agers who depend on transparent and reliable insights for 

effective decision-making in complex social environ-

ments. 

To overcome this limitation, a novel framework 

specifically designed for explainable multimodal senti-

ment analysis tailored to the revitalization context was 

introduced and rigorously evaluated. In doing so, the re-

search successfully achieved its primary objective of cre-

ating a methodology that provides project managers with 

transparent and actionable insights. The proposed ap-

proach synergizes a high-performing transformer-based 

multimodal sentiment model with a custom-adapted XAI 

methodology, integrating BERT and ViT via cross-

modal attention. This methodology fuses insights from 

both cross-modal attention analysis and gradient-based 

attributions (Integrated Gradients) to generate cohesive, 

human-understandable explanations that pinpoint key 

sentiment drivers across both textual narratives and vis-

ual evidence. 

Comprehensive experiments, performed on the spe-

cially constructed RevitalizeSent-MM dataset reflecting 

real-world revitalization scenarios, empirically validated 

the proposed system’s efficacy. The underlying multi-

modal model demonstrated superior sentiment prediction 

accuracy compared with unimodal baselines, confirming 

the value of the fused data. More importantly, the adapted 

XAI method exhibited significantly higher fidelity in 

identifying critical predictive features than naive or uni-

modal explanation techniques, demonstrating its ability 

to accurately represent the model’s complex internal rea-

soning. These results confirm the successful completion 

of the core tasks set out in this study: developing a hybrid 

XAI technique, designing a user-centric explanation for-

mat, creating a domain-specific dataset, and rigorously 

evaluating the framework’s performance and fidelity. 

In conclusion, this study contributes a validated 

methodology for developing explainable multimodal AI 

systems specifically designed for deployment in sensi-

tive, high-stakes domains. By effectively bridging the 

gap between sophisticated AI capabilities and project 

managers’ practical requirements for transparent, action-

able intelligence, the proposed framework offers a tangi-

ble pathway toward more responsible, trustworthy, and 

ultimately more effective AI-assisted decision-making in 

the vital efforts of territorial revitalization. 

Recognizing the potential for further advancement, 

future work will prioritize several key directions. The 

first crucial step of human-centric evaluation is Although 

the quantitative metrics confirmed the fidelity of the ex-

planations, future research must involve real-world de-

ployment studies in collaboration with project teams. 

Such studies are necessary to assess the tangible impact 

of the proposed framework on decision-making pro-

cesses and refine the practical utility of the user feed-

back-based explanations. Second, future work will focus 

on developing interactive explanation interfaces. Manag-

ers can probe model reasoning more deeply by adjusting 

input data to observe changes in predictions or by directly 

querying the relationships between highlighted text and 

image regions. Third, the framework should be extended 

to incorporate additional modalities, such as video and 

structured data (e.g., project timelines and budgets), to 

provide a more holistic analytical view. Finally, explor-

ing the application of these explainability principles to 

other complex project management domains and differ-

ent fusion architectures represents another promising av-

enue for continued research, ensuring that the benefits of 

transparent AI can be realized more broadly. 
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ПОЯСНЕННИЙ ШТУЧНИЙ ІНТЕЛЕКТ ДЛЯ МУЛЬТИМОДАЛЬНОГО  

СЕНТИМЕНТ-АНАЛІЗУ В УПРАВЛІННІ ПРОЄКТАМИ РЕВІТАЛІЗАЦІЇ 

С. Ю. Долгополов, Ю. В. Рябчун,  

М. М. Делембовський, О. С. Молодід 

Предметом статті є розробка та оцінка фреймворку поясненного штучного інтелекту (XAI) для мульти-

модального сентимент-аналізу, що застосовується спеціально для управління проєктами територіальної реві-

талізації. Дослідження розв’язує критичну проблему моделей штучного інтелекту, що функціонують за прин-

ципом «чорної скриньки», чия непрозорість перешкоджає їхньому впровадженню менеджерами проєктів, які 

потребують достовірної інформації для ухвалення важливих рішень у складних соціальних умовах. Метою є 

запропонувати та ретельно перевірити новий фреймворк для поясненного мультимодального сентимент-ана-

лізу, адаптований для надання прозорих, достовірних та дієвих інсайтів для ухвалення рішень в управлінні 

проєктами територіальної ревіталізації. Завдання, які необхідно вирішити, включають розробку гібридної те-

хніки XAI, що поєднує дані з крос-модальної уваги та градієнтної атрибуції; проєктування цілісного, орієнто-

ваного на користувача формату пояснень, що комбінує підсвічений текст та теплові карти зображень; ство-

рення спеціалізованого набору даних RevitalizeSent-MM для цієї конкретної галузі; а також емпіричну оцінку 

прогностичної точності фреймворку та, що найважливіше, точності його пояснень. Використані методи вклю-

чають трансформерну модель мультимодального сентимент-аналізу (MSA) на базі BERT і ViT з крос-модаль-

ною увагою для злиття інформації. Компонент поясненності  – це гібридна техніка XAI, що інтегрує аналіз 

крос-модальної уваги з методом інтегрованих градієнтів для присвоєння ваг важливості вхідним ознакам. 

https://doi.org/10.1016/j.eswa.2023.120839
https://doi.org/10.3390/info16010007
https://doi.org/10.3390/biology12071033
https://doi.org/10.3390/electronics12234846
https://doi.org/10.1016/j.artint.2020.103404
https://doi.org/10.48550/arXiv.2305.14585
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Оцінка проводилася з використанням стандартних метрик класифікації для визначення продуктивності та ме-

трики «Падіння точності при збуренні» для оцінки точності пояснень. Результати підтвердили ефективність 

запропонованого фреймворку. Мультимодальна модель продемонструвала вищу точність порівняно з унімо-

дальними базовими моделями, а запропонований метод XAI досяг значно вищої точності, ніж наївні підходи 

до пояснення, що доводить його здатність точно відображати внутрішню логіку моделі. Наукова новизна по-

лягає у трьох аспектах: розробка об’єднаної гібридної техніки XAI спеціально для трансформерних мульти-

модальних моделей; створення унікального, предметно-орієнтованого набору даних для аналізу ревіталізації; 

та валідація методології адаптації передового XAI для розв’язання критичних бар’єрів довіри та впрова-

дження, що підтверджує його практичну значущість в управлінні проєктами. 

Ключові слова: поясненний штучний інтелект; мультимодальний аналіз настроїв; управління проєк-

тами; глибоке навчання; ревіталізація. 
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