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EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MULTIMODAL SENTIMENT
ANALYSIS IN REVITALIZATION PROJECT MANAGEMENT

This study focuses on the development and evaluation of an explainable artificial intelligence (XAl) framework
for multimodal sentiment analysis, specifically applied to territorial revitalization project management. The re-
search addresses the critical problem of “black box” AI models, whose lack of transparency hinders their adop-
tion by project managers who require trustworthy information for high-stakes decision-making in complex social
environments. The goal of this study is to propose and rigorously validate a novel framework for multimodal
sentiment analysis that is tailored to provide transparent, trustworthy, and actionable insights for decision-mak-
ing in territorial revitalization project management. The tasks to be solved include developing a hybrid XAl
technique that fuses insights from cross-modal attention and gradient-based attribution, designing a cohesive,
user-centric explanation format combining highlighted text and image heatmaps, constructing a custom Revital-
izeSent-MM dataset for this specific domain, and empirically evaluating the framework’s predictive accuracy
and, crucially, the fidelity of its explanations. The methods used involve a transformer-based Multimodal Senti-
ment Analysis (MSA) model using BERT and ViT with cross-modal attention for information fusion. The explain-
ability component is a hybrid XAl technique that integrates cross-modal attention analysis with Integrated Gra-
dients to assign importance scores to input features. Evaluation was performed using standard classification
metrics for performance and the “Accuracy Drop on Perturbation” metric for explanation fidelity. The results
confirmed the efficacy of the framework. The multimodal model demonstrated superior accuracy over unimodal
baselines, and the proposed XAl method achieved significantly higher fidelity than naive explanation ap-
proaches, demonstrating its ability to accurately reflect the model’s internal reasoning. The scientific novelty
lies in three areas: the development of a fused, hybrid XAl technique specifically for transformer-based multi-
modal models, creation of a unique, domain-specific dataset for revitalization analysis, and validation of a meth-
odology for adapting advanced XAl to solve critical trust and adoption barriers, thereby confirming its practical
significance in project management.

Keywords: explainable Al (XAl); multimodal sentiment analysis; project management; deep learning; revitali-
zation.

In this high-stakes environment, understanding the dy-
namic landscape of public sentiment becomes a critical
project management function, enabling timely risk iden-
tification, proactive communication, and adaptive plan-
ning.

The digital age offers unprecedented access to vast
streams of public discourse through social media, news
outlets, official reports, and community forums. As X. In

1. Introduction
1.1. Motivation

Territorial revitalization, particularly in post-con-
flict or post-disaster scenarios, represents a profoundly
complex undertaking. As highlighted by S. Yao and L.
Wang, such initiatives extend far beyond mere physical

reconstruction, encompassing intricate social, economic,
and political dimensions [1]. Therefore, successfully nav-
igating these projects requires not only effective resource
allocation and infrastructure development but also care-
ful management of public perception, stakeholder align-
ment, and community engagement. These social factors
are shown by B. Guo et al., are significantly influenced
by social capital [2]. Gaining social acceptance, a concept
explored by X. In urban revitalization contexts, Jin et al.
[3] stated that ensuring that efforts meet the actual needs
and address the concerns of affected populations are par-
amount for achieving long-term success and stability [3].

the context of healthcare, Chen et al. observed that this
information is increasingly multimodal, frequently com-
bining textual narratives with powerful visual elements,
such as photographs and videos [4]. Images depicting de-
struction, reconstruction progress, community gather-
ings, or protests provide rich contextual layers, as demon-
strated by U. In machine translation, Sulubacak et al. of-
ten supplement, contradict, or nuance the accompanying
text [5]. This fused multimodal data stream was noted by
K. For health monitoring, Singh et al. holds immense po-
tential for project managers seeking a holistic and timely
understanding of stakeholder sentiment, emerging issues,
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and the overall social climate surrounding revitalization
projects [6].

However, effectively leveraging this rich data
source presents significant challenges. Traditional pro-
ject monitoring methods, which rely on surveys, focus
groups, or manual media scanning, are often slow, costly,
resource-intensive, and resource-intensive, as exempli-
fied by S. De Vito et al. struggled to capture the scale,
speed, and nuances of online multimodal discourse in air
quality monitoring [7]. The integration of Al and ma-
chine learning (ML) into project management has be-
come a rapidly growing field, offering potential enhance-
ments across various project phases, to address these lim-
itations, as discussed by D. Chernyshev et al. in the con-
text of smart construction [8-9]. Applications range from
improved project duration and cost forecasting [10-11]
to automated progress monitoring and risk prediction.
Sentiment analysis, in particular, has been applied, pri-
marily utilizing text data from stakeholder communica-
tions or social media platforms, to gauge project recep-
tion or identify potential issues, with recent proposals
such as that of R. M. Omas-as and Encarnacion focusing
on unified feedback management using text analyt-
ics [12].

Despite their analytical power, these modern multi-
modal models frequently suffer from a critical limitation:
the “black box” problem, a philosophical challenge dis-
cussed by von Eschenbach [13]. Their internal decision-
making processes are opaque, making it difficult, if not
impossible, for users to understand why a particular sen-
timent prediction was made. This lack of transparency
poses a fundamental barrier to adoption, particularly in
high-stakes domains such as territorial revitalization pro-
ject management, where Al and BIM integration are be-
ing explored, as seen in the work of S. Dolhopolov et al.
[14]. Project managers are understandably hesitant to
base critical decisions on resource deployment, risk mit-
igation strategies, or public communication adjustments,
areas also investigated by S. Dolhopolov et al. regarding
site analysis [15] on Al outputs they cannot scrutinize or
trust. An incorrect or misunderstood Al assessment could
lead to misallocation of resources, ineffective interven-
tions, or even worsen social tensions. Therefore, the ina-
bility to explain how multimodal sentiment is derived
prevents these powerful Al tools from reaching their full
potential as trusted decision-support aids for revitaliza-
tion project managers.

1.2. State of the art

The challenges of analyzing public sentiment have
driven significant advancements in Artificial Intelli-
gence, particularly in the fields of Multimodal Sentiment
Analysis (MSA) and Explainable Artificial Intelligence

(XAI). An examination of the state of the art in these ar-
eas reveals both the potential of current technologies and
the critical gaps that hinder their practical application in
project management.

Multimodal Sentiment Analysis (MSA) has pro-
gressed significantly from its early focus on unimodal
textual data, as noted in foundational work on modality-
invariant representations by D. Hazarika, R. Zimmer-
mann, and S. Poria [16]. The proliferation of multimedia
content spurred intensive research into MSA, which aims
to leverage information from text, visuals, and audio to
achieve a more robust and context-aware understanding
of sentiment — a challenge tackled early on by A. Zadeh
et al. with their Tensor Fusion Network [17]. While Arti-
ficial Intelligence (Al), particularly sentiment analysis
based on advanced models like the Bidirectional GRUs
explored by W. Xu et al., offers powerful tools for pro-
cessing large volumes of text data [18], unimodal ap-
proaches fall short. Text-only analysis, as reviewed by Z.
Tang, misses the crucial context embedded in visuals, po-
tentially misinterpreting sarcasm, overlooking visual ev-
idence contradicting text, or failing to grasp the emo-
tional impact conveyed by an image [19]. Conversely,
analyzing images alone lacks the specific details, opin-
ions, and arguments expressed in text. Consequently, ad-
vanced multimodal Al models, often employing sophis-
ticated transformer architectures and fusion mechanisms,
sometimes questioning if “captions are all you need”,
have emerged to analyze text and images jointly. These
models offer significantly more accurate and context-
aware sentiment assessments, though their application re-
quires careful consideration, as shown by M. Aldeen et
al. regarding adversarial attacks on multimodal systems
[20]. Contemporary approaches within MSA are fre-
quently distinguished by their fusion strategy. Early fu-
sion techniques combine features from different modali-
ties at the input level before prediction. While straight-
forward, researchers like A. A. Beserra, R. M. Kishi, and
R. Goularte have noted that this approach can struggle
with heterogeneous feature spaces and dimensionality
[21]. Conversely, late fusion involves training separate
models for each modality and subsequently combining
their outputs, often at the decision level. As demonstrated
by J. Cheng et al. in RGB-Thermal crowd counting, this
allows for modality-specific modeling but risks missing
complex inter-modal interactions [22]. Seeking to cap-
ture these crucial interactions, hybrid fusion methods
have gained prominence, operating at intermediate repre-
sentational stages. Dominant contemporary approaches,
surveyed by M. Shaikh et al. in the context of action
recognition, heavily involve attention mechanisms and
transformer-based architectures [23]. Seminal models
such as VILBERT, developed by J. Lu et al. [24],
LXMERT by H. H. Tan and M. Bansal [25], and
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UNITER proposed by Y. Chen et al. [26], employ sophis-
ticated cross-modal attention layers. Recent research
continues to refine these mechanisms, with novel ap-
proaches like the dual-attention model by Wang et al.
[27], which simultaneously models intra- and inter-mo-
dality dynamics and introduces techniques like cross-cor-
relation loss to improve feature fusion. These allow tex-
tual and visual features to dynamically influence each
other during processing, leading to high performance on
diverse vision-and-language tasks, including MSA.

Despite these advancements, significant hurdles re-
main in handling modality imbalance, noisy data, and the
scarcity of domain-specific annotated datasets like MOSI
or MOSEI, as discussed by W. Yu et al. [28] and Z. Liu
et al. [29].

The increasing complexity and “black box” nature
of these models have catalyzed the development of Ex-
plainable Al (XAI) [30-31]. As B. Pradhan et al. empha-
size that XAl methods aim to render Al predictions trans-
parent and understandable to humans, thereby fostering
trust, enabling debugging, and promoting accountability
[31]. The major paradigms within XAl include feature at-
tribution methods that assign importance scores to input
features. Prominent examples of text include LIME,
SHAP, and attention visualization, as applied by H. Jang
et al. [32], whose utility was also explored using R. Ha-
san et al. [33] and reviewed in the context of genomics
by S. R. Choi and M. Lee [34]. For image data, gradient-
based techniques such as Saliency Maps and Grad-CAM,
along with its enhancements like Grad-CAM++ proposed
by Y. Gao et al. [35] highlighted salient pixel regions.
Recent comprehensive reviews, such as the one by Cheng
et al. [36], categorize these computer vision XAl methods
into attribution-based, perturbation-based, and trans-
former-based approaches, systematically evaluating their
trade-offs in terms of key characteristics, such as faith-
fulness and computational efficiency. Other XAl ap-
proaches include example-based explanations, which ref-
erence influential training instances, a method compared
to rule-based explanations by van der J. V. Waa et al.
[37], and surrogate models, where simpler models mimic
the complex model, as explored by A. Engel et al. [38].
Furthermore, emerging research is exploring novel para-
digms for achieving interpretability, such as the self-su-
pervised learning frameworks proposed by Sun et al.
[39], which aim to automatically extract key sentiment
cues from text to provide global, rather than instance-spe-
cific, explanations.

XAl techniques for unimodal natural language pro-
cessing and computer vision are relatively mature, as sur-
veyed by R. Gipiskis et al. [40], achieving explainability
for multimodal models remains a significant challenge.
Recent research has demonstrated the value of applying
XAl techniques, such as LIME and SHAP, to trans-
former-based language models for sentiment analysis,

particularly to enhance transparency and trust in contexts
such as low-resourced languages, as shown by Mabokela
et al. [41]. However, these studies primarily focus on uni-
modal text and do not address the unique challenges of
explaining fused, multimodal predictions. This has been
highlighted in recent studies by F. Cerasuolo et al. fo-
cused on network traffic classification [42]. Applying
unimodal XAl techniques independently to each modal-
ity fails to explain the crucial fusion process where mo-
dalities interact. This creates a clear and compelling re-
search gap: there is a notable lack of established, robust
methods specifically designed to generate fused, intuitive
explanations from complex multimodal models that are
readily interpretable and actionable for domain experts,
such as project managers. This paper addresses this gap
by adapting and combining XAl techniques to produce
explanations tailored specifically for decision support in
revitalization project management.

1.3. Objectives and tasks

To bridge the critical gap identified between the ca-
pabilities of advanced multimodal Al and the practical
needs of project managers for trustworthy, interpretable
insights, this study aims to develop and rigorously eval-
uate a novel framework for explainable multimodal sen-
timent analysis. The primary objective of this study is to
create a methodology tailored to provide transparent,
trustworthy, and actionable insights for decision-making
in territorial revitalization project management.

To achieve this overarching objective, this research
undertakes the following specific tasks:

1. To develop and implement a novel hybrid XAl
technique specifically adapted for modern transformer-
based multimodal sentiment analysis models, fusing in-
sights from cross-modal attention analysis and gradient-
based attribution methods.

2. To design and propose a cohesive, user-centric
explanation format that presents highlighted salient text
words alongside image region heatmaps, making the
model’s reasoning process transparent and intuitive for
project managers.

3. To construct and validate RevitalizeSent-MM, a
custom, domain-specific dataset that accurately reflects
the real-world challenges and linguistic nuances of terri-
torial revitalization, providing a robust foundation for
model training and evaluation.

4. To rigorously evaluate the proposed framework
through comprehensive experiments, assess its sentiment
prediction accuracy against unimodal baselines, and
measure the fidelity and utility of its explanations via
guantitative metrics.

By addressing these tasks, this study aims to fill the
identified research gap and generate valuable insights
into the design principles for creating effective, domain-
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specific explanations. The application is firmly grounded
within the domain of territorial revitalization project
management, tailoring the generated explanations to sup-
port relevant decision-making tasks, such as risk identi-
fication and stakeholder analysis. Crucially, through em-
pirical evaluation, the impact of these explanations on in-
terpretability is explicitly investigated from a project
management perspective. Ultimately, this work seeks to
provide a validated methodology and a tangible pathway
toward more responsible, transparent, and effective Al-
assisted decision support for managers navigating the
complexities of territorial revitalization.

The remainder of this article is structured to logi-
cally present the research findings. Section 2 details the
proposed methodology, outlining the overall architec-
ture, data preprocessing steps, the multimodal sentiment
analysis model, and the core XAl techniques. Section 3
describes the experimental setup, including the custom
dataset construction, implementation details, evaluation
metrics, and baselines for comparison. Section 4 presents
the results of the quantitative experiments and includes a
practical Case Study to demonstrate the application of the
framework. Section 5 provides a comprehensive Discus-
sion of the findings, their practical implications, and lim-
itations of this study. Finally, Section 6 offers the Con-
clusion, summarizing the key contributions and outlining
promising directions for future research.

2. Methodology

This section details the proposed framework for ex-
plainable multimodal sentiment analysis, specifically tai-
lored to support decision-making in revitalization project
management. This paper presents the overall architec-
ture, outlines the data preprocessing steps, describes the
chosen multimodal sentiment analysis (MSA) model,
elaborate on the core XAl techniques adapted for ex-
plaining fused predictions, and defines the format of the
generated explanations.

2.1. Overall Framework Architecture

The proposed framework is designed to process
pairs of text and images related to revitalization projects,

Processed Text _

\/Input: Text-lmage Pairj -{"Prepmcessing MDduIeﬂ'\
. J

Processed Image

—7 (

predict the associated sentiment polarity (Positive, Neg-
ative, or Neutral), and provide interpretable explanations
that link this prediction back to salient features within
both the textual and visual modalities. The workflow
consists of several interconnected modules, as shown in
Figure 1. The process begins with the Input Module ac-
cepting text-image pairs, such as social media posts or
news snippets with accompanying images. The Prepro-
cessing Module then independently prepares the text
(through tokenization and cleaning) and images (through
resizing and normalization) for their respective encoders.
The multimodal sentiment analysis (MSA) module,
which employs a deep learning model featuring separate
text and image encoders followed by a fusion mechanism
to integrate the information before predicting the senti-
ment, is central to the framework. Subsequently, the XAl
Explanation Module receives the original input pair and
the prediction of the MSA model. This module applies
specifically adapted XAl techniques to identify and
quantify the contribution of textual elements (words or
sub-word tokens) and visual regions (pixels or image
patches) to the final sentiment outcome. Then, the Expla-
nation Output Module renders these generated explana-
tions into a user-friendly, combined format optimized for
project managers’ interpretability. Finally, a conceptual
Interpretation Layer for PM represents the interface or
cognitive process through which project managers utilize
the sentiment prediction and its accompanying explana-
tion to inform critical decisions, such as risk assessment
or communication strategy adjustments.

2.2. Data Preprocessing

Standard preprocessing steps are applied to ensure
compatibility with deep learning models. The input text
is cleaned to remove artifacts like URLS or excessive spe-
cial characters. It is then tokenized using a subword to-
kenizer compatible with the chosen text encoder, such as
WordPiece for BERT models. The token sequences are
padded or truncated to a fixed maximum length, and spe-
cial tokens (e.g., [CLS], [SEP]) are incorporated as re-
quired by the specific transformer architecture. The input
images are decoded and resized to the precise input di-
mensions expected by the visual encoder (e.g., 224x224
for a standard ViT model).

TN
/ N
S .

MSA Module \'\
\\ ///
AN

» Sentiment Prediction —» -;:'4' XAl Explanation Module

Fig. 1. Proposed Framework Architecture. Text and image inputs are processed by the MSA module for sentiment
prediction. The XAl module, accessing the MSA model, generates explanations by analyzing attention
and gradients, which are then formatted for project manager interpretation and decision support
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2.3. Multimodal Sentiment Analysis (MSA)
Model

A transformer-based architecture is employed to ef-
fectively capture the complex interplay between textual
and visual information, which uses powerful pre-trained
unimodal encoders coupled with a dedicated fusion
mechanism. Specifically, the proposed model comprises
a pre-trained BERT model (or a suitable multilingual or
domain-adapted variant, e.g., bert-base-uncased) serving
as the Text Encoder. This model processes the tokenized
text to produce contextualized token embeddings. A pre-
trained vision transformer (ViT) model (e.g., google/vit-
base-patch16-224-in21k) [42] acts as the image encoder
for the visual modality. It divides the input image into
fixed-size patches, linearly embeds them, adds positional
information, and processes these sequences through
transformer layers to generate patch embeddings, typi-
cally including a [CLS] token embedding that summa-
rizes the global image context. The core of the multi-
modal integration lies in the Fusion Mechanism, for
which cross-modal attention layers are utilized, drawing
inspiration from seminal works such as ViLBERT and
LXMERT [24-25]. These layers enable representations
from one modality to dynamically attend to representa-
tions from the other (e.g., text tokens attending to image
patches and vice versa), facilitating the learning of joint
representations that capture inter-modal dependencies
crucial for accurate sentiment prediction. Multiple such
fusion layers can be stacked to deepen the interaction. Fi-
nally, the fused representation, often derived from the
[CLS] tokens of both modalities or through a pooling op-
eration over the fused sequence, is passed to a simple Pre-
diction Head, typically a Multi-Layer Perceptron (MLP)
classifier terminating in a softmax layer, which outputs
the probability distribution over the predefined sentiment
classes (Positive, Negative, Neutral). The entire model is
trained end-to-end using a standard cross-entropy loss
function. This architectural choice leverages strong pre-
trained unimodal representations while employing cross-
modal attention to effectively capture the nuanced inter-
play between text and visuals, which is essential for high-
performance MSA.

2.4 XAl Technique Adaptation for Multimodal
Explanations (Core Novelty)

The central challenge addressed by this methodol-
ogy is explaining how the MSA model’s fused represen-
tation leads to a specific sentiment prediction, attributing
importance back to the original input features, namely,
text tokens (or words) and image regions (or patches). To
achieve this, this study proposes adapting and combining
two complementary XAl approaches, as detailed below.

2.4.1. Cross-Modal Attention Analysis

Transformer architectures inherently rely on atten-
tion mechanisms that calculate relevance scores between
different elements in the input sequences. The proposed
approach analyzes these weights, focusing on both self-
attention (interactions within a single modality) and,
more critically, cross-attention (interactions between text
and image modalities) derived from the trained MSA
model’s fusion layers. The adaptation involves moving
beyond visualizing raw attention weights, which can be
noisy or misleading. Instead, techniques potentially in-
spired by methods such as Attention Rollout are em-
ployed, or simple attention weight aggregation strategies
across relevant layers and heads are used. The flow of
information can be traced more reliably by aggregating
attention across multiple layers, smoothing out anomalies
from single layers and capturing a more holistic view of
the model’s reasoning. This process estimates the effec-
tive contribution or focus directed from specific input
text tokens to specific image patches, and vice versa, as
relevant to the final prediction. The process involves
identifying the attention heads and layers most influential
in the final classification step and aggregating the self-
attention weights that are cross-modal and potentially
modulated. The output yields scores indicating the
model’s “attention focus” on specific words and image
patches resulting from its internal interaction patterns.

2.4.2. Multimodal Gradient-based Attribution

Gradient-based methods form another cornerstone
of the presented XAl approach. These techniques are
used to calculate the gradient of the model’s output score
(e.g., the predicted probability for the target sentiment
class) with respect to its input features. The magnitude of
this gradient signifies how a small change in a particular
feature would influence the prediction, indicating its im-
portance. Established gradient-based methods are
adapted to the multimodal architecture, with a preference
for Integrated Gradients (IG) due to its desirable theoret-
ical properties, such as obvious satisfaction. The adapta-
tion process involves calculating the target class proba-
bility gradient with respect to the final fused representa-
tion generated before the classification head. This gradi-
ent is then backpropagated through the fusion layers and
subsequently routed separately down through the text and
image encoder pathways to their respective input embed-
ding layers (i.e., token embeddings for text and patch em-
beddings for images) or even to the raw input level (i.e.,
input IDs and pixel values). For text, attribution scores
derived at the sub-word token level are aggregated to pro-
duce word-level importance scores. For images, attribu-
tions calculated for patch embeddings are mapped back
to the original pixel space and typically visualized as a
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heatmap, analogous to methods like Grad-CAM but de-
rived differently based on the transformer architecture.
This process yields attribution scores signifying the di-
rect influence or importance of each word and image re-
gion in driving the model’s specific sentiment prediction.
The format typically includes a Visual Component,
where the input image is displayed overlaid with a
heatmap. This heatmap, primarily derived from gradient-
based attribution methods (or potentially attention maps),
highlights the pixel regions or patches deemed most in-
fluential for the predicted sentiment, with intensity or
color indicating the influence’s strength. Complementing
this is the Textual Component, where the original input
text is presented with highlighted important words or
phrases. Highlighting intensity or color reflects the ag-
gregated importance scores derived from a combination
of attention analysis and gradient-based methods for the
corresponding sub-word tokens. Figure 2 shows an ex-
ample of this target fused explanation format. This dual-
method approach captures both the model’s “focus”
(from attention) and its “feature influence” (from gradi-
ents). Optionally, this core visual-textual explanation can
be augmented with Summary Metrics or Text, such as a
brief automatically generated textual summary (e.g.,
“Positive sentiment linked to ‘reconstruction’ in text and
bridge structure in image”) or feature importance bar
charts enumerating the top contributing words and image
regions. This combined format is designed to allow pro-
ject managers to quickly grasp which parts of the text and
image contributed most significantly to the AI’s senti-
ment assessment, thereby facilitating a more grounded,
transparent, and trustworthy interpretation compared to
receiving only a simple prediction label. The design em-
phasizes direct visual evidence (heatmaps) and textual
pointers (highlights) as potentially more intuitive for
non-Al experts than abstract numerical scores alone.

Figures 3 and 4 illustrate the process of mapping ab-
stract model outputs back to a user-interpretable visual
format. The initial output, shown in Figure 3, is a raw,
low-resolution attribution map, where each square repre-
sents a patch of the original image, and its color indicates
the importance score. This raw map is then upscaled and
smoothly interpolated to be overlaid on the original im-
age (Figure 4). This final heatmap provides an intuitive
visual guide to the regions considered most salient by the
model for its decision. While these figures showcase the
visualization of attention scores, the principle for map-
ping gradient-based attributions is analogous.

Fig. 3. A raw, patch-based attention map

2.5. Mathematical Formulation
of the Hybrid XAl Method

This section provides the detailed mathematical and
algorithmic formulations for the hybrid XAl approach to
ensure methodological rigor and experimental reproduc-
ibility, covering attention aggregation, gradient routing,
and the final score combination.

Multimodal Explanation (Word Level Text)

Image Attention (Patches)

Text Attributions (Word Level)

Ha KMIBLUMHI 3aBepLUEHO BiAHOBNEHHA MOCTY Yepes pPiuKy 3ABMX,

3pyuHOBaHOroO e y niotomy 2022 poky.

Fig. 2. Example of the target fused explanation format, showing the etalon explanation
for the Zdvizh bridge revitalization
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Fig. 4. The final attention heatmap overlaid
on the original image

2.5.1. Cross-Modal Attention Score Aggregation

The attention scores are derived directly from the
cross-modal attention mechanisms within the fusion lay-
ers of the model. For a model with L fusion layers and H
attention heads per layer, the attention matrix for a given
layer | and head h is denoted as A, These matrices are
aggregated by averaging them to obtain a single, robust
attention map:

1
Aage = s Ziew Zhy AV, (1)

where L' is the subset of “relevant” layers selected for ex-
planation. For this analysis, the attention matrices from
the final two cross-modal fusion layers (L' = {L-1, L})
were exclusively utilized because they have the most di-
rect influence on the final fused representation that feeds
into the prediction head. The resulting aggregated matrix
A,gg Provides the raw attention-based importance scores,

Sattn-
2.5.2. Multimodal Gradient-based Attribution

The gradient-based component is calculated using
Integrated Gradients (1G), which require defining a base-
line (an information less input).

For the textual modality, the baseline (Tyaseline) WaS
a sequence of embeddings corresponding to the [PAD]
token.

For the visual modality, the baseline (Vy.seline) Was
a black image with all pixel values set to zero.

The attribution for a given input feature embedding
is calculated by integrating the gradients along a straight-
line path from the baseline to the input. In practice, this
integral is approximated using a summation over several
steps, as shown in the following formula:

) 6yc<E’+%(E—E’)>
Attr(Ei) = (Ei - (Ell) . ;kazlé—Ei' (2)
where Attr(E;) is the Integrated Gradients attribution
score for the i-th feature embedding. E; is the embedding
of the input feature (a text token or an image patch). E;{ is
the corresponding baseline embedding. m is the number
of steps used to approximate the integral. dy.(...) / 0E;
is the output gradient of the model for predicted class ¢
with respect to the feature embedding, evaluated at step
k along the path from the baseline to the input.

2.5.3. Hybrid Explanation Generation

The raw scores from both attention and gradient
methods are combined to generate the final, unified ex-
planation. First, both sets of scores are independently
normalized to a [0, 1] range using min-max scaling to en-
sure that they are comparable.

P S —min(S)

Si max(S)-min(S)’ (3)

where S{ is the normalized importance score for the i-th
feature. S; is the raw importance score (either from atten-
tion, S, OF gradients, Sgp,4). min(S) and max(S) are
the minimum and maximum scores across all features for
the method.

Then, the normalized scores are linearly combined
to produce the final hybrid score:

Shybrid = & Sitn + (1 — @) * Sgrag 4
where Sy1,rig is the final hybrid importance score. Sy,
and Sg,,q are the normalized scores obtained from the at-
tention and gradient methods, respectively. o is a
weighting coefficient between 0 and 1. In the experi-
ments, a was set to 0.5 to give equal importance to both
the model’s focus (attention) and the features’ influence
(gradients).

Finally, since the text encoder operates on sub-word
tokens, the resulting attribution scores Syyp,q for text
must be aggregated to the word level for human interpret-
ability. For any given word w, which comprises a set of
sub-word tokens T,,, its final score is determined by the
maximum attribution score among its constituent tokens:

Score,, = max(shybrid (t) | te Tw)' (5)

where Score,, is the final importance score for the word
W. Shybria(t) is the hybrid score for an individual sub-
word token t.

This aggregation method ensures that the word’s
most influential part determines its overall importance in
the final explanation.
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3. Experimental Setup

This section details the experimental design em-
ployed to rigorously evaluate the proposed framework
for explainable multimodal sentiment analysis within the
specific context of territorial revitalization project
management. This section describes the construction and
characteristics of the RevitalizeSent-MM domain-spe-
cific dataset, the implementation specifics for the MSA
model and XAl techniques, the evaluation metrics used
for both quantitative and qualitative assessment, and the
baseline methods used for comparative analysis.

3.1. Dataset: RevitalizeSent-MM

Recognizing the absence of publicly available da-
tasets tailored to multimodal sentiment capture during
territorial revitalization, particularly in post-conflict set-
tings like Ukraine post-2022, a new dataset named Revi-
talizeSent-MM was constructed. Data pairs consisting of
text snippets and associated images were collected from
publicly accessible sources pertinent to ongoing revitali-
zation efforts. These sources primarily included publicly
available news articles and reports from reputable na-
tional and international news outlets covering reconstruc-
tion and recovery activities, public posts from official
government and municipal channels detailing project
progress, and publicly shared content from social media
platforms (such as X, Facebook, and relevant Telegram
channels, adhering to platform Terms of Service and user
privacy settings) identified using keywords such as #re-
construction, #recovery, and relevant project names.
Only pairs in which an image was directly associated
with the text were retained.

An initial large collection of data pairs was filtered
to ensure relevance to the revitalization context. The se-
lection criteria included keywords indicating revitaliza-
tion activities (e.g., rebuilding, repair, recovery, and re-
stored), associated geotags or explicit location mentions
within the targeted revitalization zones, and the require-
ment for both meaningful textual content (exceeding sim-
ple captions) and a contextually relevant image. Pairs
containing generic stock photos that were unrelated to the
textual narrative were discarded where feasible.

A crucial phase involved the manual annotation of the
filtered text-image pairs to assign the sentiment labels. A
team of five annotators, fluent in both Ukrainian and
English and specifically briefed on the revitalization con-
text’s nuances, performed the labeling task. Each pair
was assigned one of three sentiment labels: Positive (ex-
pressing satisfaction, hope, progress, and successful
completion), Negative (expressing dissatisfaction, criti-
cism, despair, destruction, lack of progress, and danger),
or Neutral (typically objective reporting or factual state-
ments lacking strong sentiment). Annotators were

explicitly instructed to consider the combined meaning
conveyed by both the text and the image. To ensure an-
notation quality, a subset comprising 15% of the data was
independently annotated by at least two annotators, al-
lowing for the calculation of inter-annotator agreement
(IAA). Using Cohen’s Kappa, a score of 0.78 was
achieved, indicating substantial agreement among the an-
notators. Instances with disagreements were subse-
quently resolved through moderated discussion to reach
a consensus label. The final dataset was randomly parti-
tioned into training (70%), validation (15%), and test
(15%) sets, ensuring no overlap between the splits for un-
biased evaluation. Data collection strictly adhered to eth-
ical considerations, using only publicly available sources.
For social media data, identifiable user information was
anonymized during the analysis and was not present in
any published examples, in accordance with privacy
norms and platform guidelines. The analysis focuses on
aggregated sentiment trends rather than individual user
profiling. Table 1 summarizes the key statistics charac-
terizing the resulting RevitalizeSent-MM dataset.

Table 1
Summary Statistics for the RevitalizeSent-MM Dataset
Statistic Ul | Vel Test Set Total
Set Set
Total Samples
(Text+Img) 5.810 1.245 1.245 8.300
Positive 1.980 415 425 2.820
Samples
Negative 2.250 490 485 3.225
Samples
Neutral 1580 340 335 2.255
Samples
Avg. Text
Length 65 68 66 66
(Tokens)
Unique Tokens | N
(Vocabulary) 25.000 25.000
Image B
Dimensions ~600x450 | ~600x450 608)(45 ~600x450
(Avg.)
I1AA (Kappa 078
Score)

3.2. Implementation Details

The models and experimental workflow were im-
plemented using Python 3.11. The primary deep learning
framework employed was PyTorch (version 1.13+). The
Hugging Face transformers library (version 4.25+) was
utilized to leverage pre-trained transformer models, spe-
cifically for accessing BERT (bert-base-multilingual-
cased chosen for broader language support) and ViT
(google/vit-base-patch16-224-in21k) architectures. The
Captum library (version 0.6+) was used to implement ex-
plainability functionalities, particularly gradient-based
methods like Integrated Gradients, supplemented by cus-
tom scripts for extracting and analyzing attention weights
where applicable. Standard image processing tasks were
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performed using Pillow and OpenCV, while data manip-
ulation and visualization relied on Pandas, NumPy, Mat-
plotlib, and Seaborn.

The Multimodal Sentiment Analysis (MSA) model,
featuring the BERT and ViT backbones combined via
cross-modal attention fusion layers, was specifically
fine-tuned on the RevitalizeSent-MM training dataset.
The text and image encoders were initialized with their
respective pre-trained weights to leverage transfer learn-
ing. Model optimization was performed using the
AdamW optimizer with a learning rate of 2e-5, incorpo-
rating a linear warmup phase over the first 10% of train-
ing steps followed by linear decay. Training was con-
ducted with a batch size of 16, which was constrained by
the available GPU memory (NVIDIA GeForce RTX
4080 SUPER). The model was trained for a maximum of
10 epochs, employing early stopping based on the vali-
dation set’s F1-score performance, with a patience of 2
epochs to prevent overfitting.

For the XAl implementation, cross-modal attention
analysis involved extracting aggregated attention weights
from the trained MSA model’s final fusion layer. Multi-
modal Integrated Gradients were implemented using
Captum’s LayerIntegratedGradients targeting word em-
beddings for text and standard IntegratedGradients tar-
geting pixel values for images, relative to appropriate
baselines (padding token embeddings for text, zero-pixel
image for visuals). Fifty steps were used for the Inte-
grated Gradients approximation path integral.

3.3. Evaluation Metrics

The evaluation strategy employed a combination of
quantitative metrics to assess both the performance of the
underlying MSA model and the characteristics of the
generated explanations, alongside qualitative user-based
assessments focused on interpretability and trust.

3.4. MSA Model Performance

The predictive capability of the fine-tuned MSA
model was evaluated on the held-out test set using the
following standard multi-class classification metrics:
overall Accuracy, Precision, Recall, and F1-Score. To ac-
count for potential class imbalance, precision, recall, and
F1-Score were calculated both per class (positive, nega-
tive, neutral) and as macro and weighted averages.

3.5. Quantitative XAl Evaluation

The “quality” of explanations is inherently chal-
lenging to quantify. Two metrics commonly used in XAl
literature were adopted to assess the properties of the ex-
planation: Fidelity and Sparsity. Fidelity was measured
using the Accuracy Drop on Perturbation. This involved

identifying the top-k% (with k=15%) most important
features (i.e., aggregated words for text based on token
attributions, image patches based on aggregated pixel at-
tributions, or attention scores) according to the XAl
method. These features were then removed or masked
from the input (e.g., replacing text tokens with [MASK],
blacking out image patches), and the resulting drop in the
prediction accuracy of the MSA model was measured. A
higher accuracy drop suggests higher fidelity, indicating
that the explanation successfully identified features that
were genuinely influential to the decision of the model.
This was compared against the accuracy drop caused by
removing random features of the same proportion. Spar-
sity, often linked to comprehensibility, was measured by
the average percentage of features (words for text,
patches for image) highlighted as belonging to the top-
k% importance level. Simpler explanations (lower spar-
sity) are generally preferred, provided that fidelity is
maintained.

The chosen metrics are aligned with a formal model
of explainability to ground the evaluation in established
quality frameworks for Al systems, such as the hierar-
chical quality model proposed by Kharchenko et al. [43]
In this model, the high-level characteristic “Explainabil-
ity” (EXP) is decomposed into several measurable sub-
characteristics, including Comprehensibility (CMH), In-
terpretability (INP), and Verifiability (VFB). The selec-
tion of Fidelity and Sparsity was deliberately driven by
the need to quantify these key aspects within the applica-
tion context.

Fidelity, which measures the faithfulness of an ex-
planation to the model’s internal logic, serves as a quan-
titative measure of Verifiability. Establishing that an ex-
planation accurately reflects the model’s reasoning is a
prerequisite for user trust in a high-stakes domain such as
territorial revitalization. Sparsity was chosen as a critical
proxy for Comprehensibility and Interpretability. For
end-users who are not Al experts, concise explanations
that isolate the most critical sentiment drivers are more
effective and less prone to information overload than
dense, complex explanations. While other XAl evalua-
tion metrics, such as stability or consistency, exist, Fidel-
ity and Sparsity were considered the most relevant for as-
sessing the practical utility of explanations in this specific
decision-support context, as they directly measure the
core components of a formal XAl quality model and
align with the primary goals of the research: providing
trustworthy and actionable insights.

3.6. Baselines for Comparison

Several baseline methods were established for com-
parison to effectively evaluate the contribution of the pro-
posed explainable multimodal framework:

1. MSA Model (No XAl). Performance and user
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perception (trust, understanding) of the base multimodal
sentiment analysis model when predictions are presented
without any accompanying explanation. This serves as
the fundamental baseline.

2. Unimodal XAl (Text-Only) A BERT model was
trained exclusively on the textual data from
RevitalizeSent-MM. Its predictions were explained using
a standard text XAl method (Integrated Gradients attrib-
uting to word embeddings, visualized via text highlight-
ing).

3. Unimodal XAl (Image-Only). A ViT model
trained solely on the image data. Explanations were gen-
erated using a standard vision XAl method (Integrated
Gradients attributing to input pixels, visualized as a
heatmap).

4. Naive Multimodal XAl. Applying the chosen
unimodal XAl techniques (IG for text embeddings, 1G
for image pixels) independently to the respective streams
within the trained multimodal model, but visualizing
them separately without the fused explanation format or
cross-modal consideration during the XAl calculation it-
self.

5. Attention Rollout. It was included as a direct
baseline for attention-based explanation. This technique,
which is readily applicable to transformer architectures,
generates explanations by aggregating attention scores
across all model layers. The attention mechanism is
treated as a flow network and the contribution of input
tokens to the final representation is computed by recur-
sively multiplying attention matrices. This method was
applied to the trained MSA model’s cross-modal atten-
tion layers to generate separate importance scores for text
and image features. Including this baseline is crucial as it
allows for a direct comparison of the hybrid gradient-at-
tention approach against a well-established method that
relies solely on attention, highlighting the specific bene-
fits of incorporating gradient-based information.

These baselines enable a multi-faceted evaluation:
assessing the benefit of multimodality (comparing MSA
vs. Unimodal models), the value of adding any explana-
tion (comparing No XAl vs. XAl baselines), and the spe-
cific advantage of the adapted multimodal XAl approach
and fused explanation format over simpler, non-inte-
grated, and purely attention-based explanation strategies.

4. Case Study

This section presents the experimental evaluation
findings, comparing the performance of the proposed
multimodal sentiment analysis model and its associated
explainability framework against established baselines.
This section reports on the predictive accuracy of the core
model and then delve into quantitative and qualitative as-
sessments of the generated explanations.

4.1. Multimodal Sentiment
Analysis Model Performance

The proposed MSA model, which integrates BERT
and ViT encoders with cross-attention fusion, was first
evaluated against unimodal baselines (Text-Only BERT,
Image-Only ViT) trained on the RevitalizeSent-MM da-
taset. Table 2 summarizes the performance, measured on
the held-out test set using weighted average metrics
across the three sentiment classes (positive, negative, and
neutral).

As shown in Ommo6ka! MCTOYHHK CCHUIKH He
Haiien., the proposed multimodal model significantly
outperforms both the text-only and image-only baselines
across all standard evaluation metrics. The substantial
improvement in Fl-score from 0.716 (text-only) and
0.570 (image-only) to 0.803 for the fused model confirms
the synergistic benefit of integrating both textual narra-
tives and visual cues for accurately assessing sentiment
within the dataset’s complex revitalization context. This
highlights the need for a multimodal approach, as visual
information often provides crucial context absent in text
alone and vice versa.

4.2. Quantitative XAl Evaluation

The explanations produced by the adapted XAl
framework, which combines insights from cross-modal
attention and Integrated Gradients (IG), were then quan-
titatively assessed, and its characteristics were compared
against baseline explanation methods using Fidelity and
Sparsity metrics.

Table 2
Sentiment Classification Performance
on the RevitalizeSent-MM Test Set
(Weighted Averages)
Model Accuracy | Precision Recall SFl'
core
Text-Only
(BERT Baseline) 0.718 0.715 0.718 0.716
Image-Only (ViT | 57, 0.569 0572 | 057
Baseline)
Proposed MSA
(BERT+ViT+Fus | 0.805 0.802 0.805 0.803
ion)
4.2.1. Fidelity

Fidelity measures how well an explanation reflects
the internal reasoning of the model by evaluating the im-
pact of removing the most important features identified
using the XAl method. The drop in the accuracy of the
MSA model on the test set was calculated after masking
the top 15% most important features (tokens aggregated
to words for text, image patches derived from pixel/em-
bedding attributions for image) identified by each XAl
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approach. A larger accuracy drop indicates higher fidel-
ity. The results, compared against removing random fea-
tures, are shown in Figure 5.

The proposed fused XAl method demonstrated sig-
nificantly higher fidelity, inducing an average accuracy
drop of 17.6%, compared to only 1.9% when removing
random features (p < 0.001, via paired t-test). It also sig-
nificantly outperformed the naive application of multi-
modal IG (which yielded a 11.8% drop, p < 0.01) and the
unimodal baselines applied within the multimodal frame-
work (Text-Only 1G: 8.5% drop; Image-Only I1G: 6.9%
drop). This strongly suggests that the adapted method,
designed to account for cross-modal interactions during
explanation generation, is more effective at identifying
the input features that are truly critical to the complex
multimodal model’s final prediction.

The hybrid approach also showed a substantial im-
provement over the Attention Rollout baseline, which
yielded a 14.2% accuracy drop. While Attention Rollout
proved more faithful than naive methods by effectively
propagating attention scores through the model’s layers,
its lower fidelity compared to the proposed method high-
lights the limitations of relying solely on attention mech-
anisms. This result strongly suggests that the gradient-
based information integrated into the proposed approach
captures signals of critical feature importance that are
missed by purely attention-based explanations. This con-
firms that the adapted method, which is designed to ac-
count for both attention patterns and feature influence via
gradients, is more effective at identifying the input fea-
tures that are critical to the final prediction of the com-
plex multimodal model.

4.2.2. Sparsity

Sparsity is related to the conciseness of an explana-
tion, which is often correlated with comprehensibility.
The average percentage of input features (words for text,
patches for image) was measured and highlighted as be-
longing to the top 15% importance level by each method.
The results are presented in Table 3.

As expected, the sparsity levels were broadly com-
parable across the different attribution-based methods
when selecting a fixed percentage (top 15%), as shown
in Table 3. The proposed method provides focused expla-
nations by highlighting approximately 14.2% of text
words and 14.5% of image patches, achieving high fidel-
ity without excessive visual clutter, thus balancing faith-
fulness to the model with potential user comprehensibil-
ity.

Table 3
Sparsity of Explanations (Average % of Features
Highlighted in Top 15% Attribution)

Avg. %
XAl Model Modality Features
Highlighted
Text 14.2%
Proposed Fused XAl Image 14.5%
Naive Multimodal Text 14.3%
IG Image 14.6%
. Text 14.3%
Attention Rollout Image 14.6%
Unlmodallgext-Only Text 14.1%
Unimodal Image- 9

Only IG Image i

Fidelity Evaluation: Mean Accuracy Drop after Removing Top 15% Features

— 1.9%

Random Removal

Unimodal Image IG

Unimodal Text IG

Naive Multimodal IG

XAl Method

Attention Rollout

Proposed Fused XAl

[=]
w

6.9%

8.5%

11.8%

14.2%

i 17.6%

10
Mean Accuracy Drop (%)

15 20

Fig. 5. Fidelity evaluation: Mean accuracy drop (%) on the test set after removing the top 15% of features
identified using different XAl methods. Higher bars indicate higher fidelity. Error bars represent 95%
Confidence Intervals
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5. Discussion

The results of this study offer compelling evidence
for the efficacy of the proposed framework for explaina-
ble multimodal sentiment analysis in the context of
territorial revitalization. This section dissects these find-
ings, interprets their broader implications for both project
management practice and the academic field of Explain-
able Al (XAl), and acknowledges the inherent limitations
of this study.

5.1. Interpretation of Key Findings

The experimental evaluation yielded two central
findings. The first is the superior predictive performance
of the multimodal sentiment analysis (MSA) model com-
pared to its unimodal counterparts. The second is the sig-
nificantly higher fidelity of the proposed hybrid XAl
method compared with naive or unimodal explanation
techniques and, notably, a strong attention-based base-
line.

The synergy of multimodality is clearly demon-
strated by the marked improvement in accuracy and F1-
score of the fused BERT-ViT model. This underscores a
fundamental truth about human communication, which is
particularly salient in revitalization contexts, that is,
meaning is co-constructed from multiple channels. Text
alone can be ambiguous. A statement such as “Work is
progressing on the bridge” could be neutral, but when
paired with an image of a fully reconstructed bridge, the
sentiment becomes unequivocally positive. Conversely,
an image of a desolate site could render the same text sar-
castic. The ability of the model to capture these synergis-
tic and sometimes contradictory signals through its cross-
modal attention mechanism is the primary driver of its
enhanced performance. It moves beyond simple feature
concatenation toward a more profound, contextual under-
standing that is essential for the nuanced domain of pub-
lic sentiment.

The critical importance of fused explanations repre-
sents the most significant contribution of this study. The
quantitative evaluation of explanation fidelity revealed
that the proposed hybrid XAl method, which back-prop-
agates gradients through fusion layers, dramatically out-
performs naive approaches. More importantly, it sur-
passed the performance of Attention Rollout, a well-es-
tablished method that relies solely on attention scores.
This specific comparison is particularly insightful be-
cause it demonstrates that while attention mechanisms ef-
fectively show where the model is looking during the fu-
sion process, gradient-based methods reveal the influ-
ence of those features on the final decision. The hybrid
approach’s superior fidelity proves that combining both
sources of information — the model’s focus (attention)
and the features’ influence (gradients) provides a more

complete and faithful explanation of its reasoning than
either method alone. This confirms that gradients contrib-
ute critical information that is not captured by attention
analysis alone. The core of true multimodal explainabil-
ity is this ability to trace sentiment back to the interplay
between modalities. Achieving this high fidelity without
sacrificing conciseness also ensures that the explanations
are both faithful and comprehensible.

5.2. Implications for Territorial Revitalization
Project Management

The practical implications of this research for
project managers are substantial. The proposed frame-
work can transform how decision-makers interact with
public feedback by moving beyond opaque sentiment
scores toward transparent, evidence-based insights. Fa-
cilitates enhanced situational awareness and proactive
risk mitigation. Project managers can move from reactive
problem-solving to proactive management. If the frame-
work consistently highlights negative sentiment linked to
keywords like “delay” paired with images of stalled pro-
gress, managers receive a clear, early warning to investi-
gate and adjust strategies before public discontent esca-
lates.

The framework also provides a data-driven justifi-
cation for decisions. Every decision in high-stakes envi-
ronments requires justification. A manager can defend al-
locating more resources to a sub-project by presenting
data showing it is a major source of positive public sen-
timent, with explanations pointing directly to specific
words and images. This strengthens accountability and
builds trust with stakeholders. Most importantly, it fos-
ters trust in Al-assisted tools. Lack of trust is the primary
barrier to Al adoption in critical domains. By demystify-
ing the “black box,” the XAl framework presented here
serves as a crucial trust-building mechanism. When man-
agers can see why the Al concluded and verify its reason-
ing, they are far more likely to integrate the tool into their
workflows.

5.3. Contributions to the Field
of Explainable Al

This work contributes a validated methodology for
the challenging subfield of multimodal XAl from a sci-
entific standpoint. This demonstrates that simply extend-
ing unimodal XAl techniques is insufficient for models
in which cross-modal fusion is the centerpiece. The hy-
brid approach of combining gradient-based attribution
with an analysis of cross-modal attention provides a tem-
plate for developing explanations for other sophisticated
fusion models. This underscores the principle that an ex-
planation method must be architecturally aware of the
model it seeks to explain, particularly of the mechanisms
that integrate disparate data streams.
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5.4. Limitations of the Study

Despite the promising results, the limitations of this
study should be acknowledged. The RevitalizeSent-MM
dataset, while a crucial asset for this domain-specific
task, is inherently limited in size and scope. This study is
primarily focused on the Ukrainian post-2022 context,
which may introduce cultural and linguistic biases that
could affect the model’s generalizability to other revital-
ization scenarios. Furthermore, the evaluation of expla-
nation quality relied on quantitative proxy metrics, such
as fidelity. While these metrics are valuable for assessing
the model’s internal logic’s faithfulness, they do not di-
rectly measure the “goodness” or utility of an explanation
from a human perspective. The ultimate test of an expla-
nation’s value lies in its comprehension and use by the
target audience, which was not formally assessed in this
study. Finally, the proposed approach was validated on a
specific transformer-based architecture, and its applica-
bility to other model families with different fusion mech-
anisms is yet to be explored. These limitations naturally
lead to several avenues for future work, which will be
discussed in the concluding section.

6. Conclusion

This study tackled the critical challenge of enhanc-
ing the trustworthiness and practical utility of advanced
Al within the high-stakes domain of territorial revitaliza-
tion project management. While powerful at processing
diverse data streams, standard multimodal sentiment
analysis models often function as opaque “black boxes,”
creating a significant barrier to adoption for project man-
agers who depend on transparent and reliable insights for
effective decision-making in complex social environ-
ments.

To overcome this limitation, a novel framework
specifically designed for explainable multimodal senti-
ment analysis tailored to the revitalization context was
introduced and rigorously evaluated. In doing so, the re-
search successfully achieved its primary objective of cre-
ating a methodology that provides project managers with
transparent and actionable insights. The proposed ap-
proach synergizes a high-performing transformer-based
multimodal sentiment model with a custom-adapted XAl
methodology, integrating BERT and ViT via cross-
modal attention. This methodology fuses insights from
both cross-modal attention analysis and gradient-based
attributions (Integrated Gradients) to generate cohesive,
human-understandable explanations that pinpoint key
sentiment drivers across both textual narratives and vis-
ual evidence.

Comprehensive experiments, performed on the spe-
cially constructed RevitalizeSent-MM dataset reflecting
real-world revitalization scenarios, empirically validated

the proposed system’s efficacy. The underlying multi-
modal model demonstrated superior sentiment prediction
accuracy compared with unimodal baselines, confirming
the value of the fused data. More importantly, the adapted
XAl method exhibited significantly higher fidelity in
identifying critical predictive features than naive or uni-
modal explanation techniques, demonstrating its ability
to accurately represent the model’s complex internal rea-
soning. These results confirm the successful completion
of the core tasks set out in this study: developing a hybrid
XAl technique, designing a user-centric explanation for-
mat, creating a domain-specific dataset, and rigorously
evaluating the framework’s performance and fidelity.

In conclusion, this study contributes a validated
methodology for developing explainable multimodal Al
systems specifically designed for deployment in sensi-
tive, high-stakes domains. By effectively bridging the
gap between sophisticated Al capabilities and project
managers’ practical requirements for transparent, action-
able intelligence, the proposed framework offers a tangi-
ble pathway toward more responsible, trustworthy, and
ultimately more effective Al-assisted decision-making in
the vital efforts of territorial revitalization.

Recognizing the potential for further advancement,
future work will prioritize several key directions. The
first crucial step of human-centric evaluation is Although
the quantitative metrics confirmed the fidelity of the ex-
planations, future research must involve real-world de-
ployment studies in collaboration with project teams.
Such studies are necessary to assess the tangible impact
of the proposed framework on decision-making pro-
cesses and refine the practical utility of the user feed-
back-based explanations. Second, future work will focus
on developing interactive explanation interfaces. Manag-
ers can probe model reasoning more deeply by adjusting
input data to observe changes in predictions or by directly
querying the relationships between highlighted text and
image regions. Third, the framework should be extended
to incorporate additional modalities, such as video and
structured data (e.g., project timelines and budgets), to
provide a more holistic analytical view. Finally, explor-
ing the application of these explainability principles to
other complex project management domains and differ-
ent fusion architectures represents another promising av-
enue for continued research, ensuring that the benefits of
transparent Al can be realized more broadly.
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MOSICHEHHUM IITYYHUN IHTEJEKT JJISI MYJIbTUMOJIAJIBHOI'O
CEHTUMEHT-AHAJII3Y B YIIPABJITHHI TIPOEKTAMM PEBITAJII3AILIIT

C. 0. /lonzononos, I0. B. Paouyn,
M. M. /lenemoboscovkuii, O. C. Monooio

IIpeamerom cTatTi € po3poOKa Ta oLiHKa (PPEHMBOPKY MOSCHEHHOrO MTYYHOro iHTenekry (XAl) mis MynbTu-
MOJIATBHOT'O0 CeHTUMEHT-aHalli3y, [0 3aCTOCOBYETHCS CIIEIAIbHO ISl YIPABIiHHA MIPOEKTAMHU TEPUTOPIaIbHOL peBi-
Tamizauii. JlocmipKeH s po3B’A3ye KPUTHUYHY MPOOIeMy MOJIEIeH IITYYHOr0 IHTENEKTY, 10 (PYHKIIOHYIOTh 32 MPUH-
LIAIIOM «YOPHOT CKPUHBKWY, YHsl HEMPO30PIiCTh MEPEeNIKODKAE IXHHOMY BIPOBADKSHHIO MEHEIDKEpaMH IIPOEKTIB, SKi
MOTPeOYIOTh AOCTOBIpHOT 1H(OPMAIIIT /ISl yXBAJCHHS BOKIMBHUX PIIICHb Y CKIAJHUX COLAIbHUX YMOBax. MeTor €
3alPOIIOHYBATH TA PETEIHHO NEPEBIPUTH HOBUI (peliMBOPK JUIS NOSICHEHHOTO MYJIbTUMOIAIbHOIO CCHTUMEHT-aHa-
i3y, aganTOBaHUM Uil HAJAHHS IPO30PUX, JOCTOBIPHUX Ta HI€BHUX IHCAWTIB JJIs YXBAJICHHS PillleHb B yIpPaBIiHHI
MIPOEKTaMHU TEPUTOPIaIbHOI peBiTali3alii. 3aBgaHHs, AKi HEOOX1IHO BUPIIINTH, BKIIFOYAIOTh PO3POOKY TiOpUAHOI Te-
xHikH XAl, 110 moeaHye aHi 3 Kpoc-MOIaTBHOI YBaTry Ta TPaIi€HTHOI aTpUOYIIT; TPOEKTYBAHHS II1JIiICHOT O, OP1€HTO-
BaHOTO Ha KOpHCTYBaya (hopMaTy MOSCHEHb, 110 KOMOIHY€E IiJCBiYeHHI TEKCT Ta TEIUIOBI KapTH 300paKeHb; CTBO-
peHHs crenianizoBanoro Habopy manux RevitalizeSent-MM st i€l KOHKPETHOI Tairy3i; a TAKOX EMIIPUYHY OLIHKY
MIPOTHOCTUYHOI TOYHOCTI (PpEeHMBOPKY Ta, [0 HAMBAXKJIMBIIIE, TOYHOCTI HOT'O IMOsICHEHb. BUKOpUCTaHI METOIM BKITIO-
Y4aroTh TPaHC(POPMEPHY MOJIENb MyJIbTUMOAATBFHOTO ceHTHMeHT-aHami3y (MSA) Ha 6a3i BERT i ViT 3 xpoc-Momainb-
HOIO yBaroro i 31utTTs iHpopmarii. KoMmmoneHT moscHeHHOCTI — 1ie TiOpuaHa TexHika XAl mo iHTerpye aHamis
KpOC-MOZANFHOI YBard 3 METOJOM IHTETPOBAHUX TPAMIi€HTIB IJIS MPUCBOEHHS Bar BaXKIMBOCTI BXIJHAM O3HAKaM.
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OuiHka MPoBOAMIIACS 3 BUKOPUCTaHHSIM CTaHAAPTHUX METPHK KiIacudikamii Juiss BH3SHAUEHHS IPOXYKTUBHOCTI Ta Me-
Tpuku «IlamiHHS TOYHOCTI MpH 30ypeHHI» ISl OLIHKKA TOYHOCTI MOsICHEHb. Pe3ynpraTy miaTBepAmiy eeKTUBHICT
3aIpOIIOHOBAHOTO (PPEHMBOPKY. MyIbTUMO/IATbHA MOJIEN ITPOJIEMOHCTPYBaa BHIILYy TOUYHICTh OPIBHSIHO 3 YHIMO-
JaTbHAMH 0a30BUMH MOJIEIISIMH, @ 3aIportoHoBaHNK MeTo] XAl gocsir 3Ha4HO BUINOI TOYHOCTI, HIXK HAIBHI MiIX0OIU
JI0 TIOSICHEHHSI, 110 IOBOJHUTH HOT0 371aTHICTh TOYHO Bi0OpaXkaTH BHYTPIIIHIO JOTiKy Moaerni. HaykoBa HoBH3HA TI0-
JISITa€ y TPhOX acnekrax: po3poOka 00’ exHaHoi riopumHoi TexHikH XAl crienianbHo 11t TpaHC(HOPMEPHUX MYIBTH-
MOJIaJILHUX MOJIEIIEH; CTBOPEHHS YHIKaJIBHOTO, IPEAMETHO-0PIEHTOBAHOTO HA0OPY AaHUX VIS aHAITI3Y peBiTaizamii;
Ta BaJimamis MeTonmoiorii amanramii nepenoBoro XAl aist po3B’si3aHHS KpUTHYHUX Oap’e€piB JIOBipH Ta BIIPOBa-
JDKEHHSI, 110 MIATBEPIKYE HOro MPaKTUIHY 3HAYYIIICTh B YIPaBIiHHI IPOEKTAMH.

Knaro4oBi c1oBa: NosICHEHHUI ITYYHHUI 1HTENEKT; MYIFTHMONAIGHAN aHaji3 HACTPOIB; yHPAaBIIHHS MPOEK-
TaMu; TIIMOOKE HABUAHHSI, pEBiTATI3allis.
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