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DEVELOPMENT OF A PARTIALLY SUPERVISED MARKOV  

DECISION-MAKING MODEL FOR A 3-LINK COLLABORATIVE  

ROBOT-MANIPULATOR  
 

The subject are mathematical models of decision-making under uncertainty in a production environment with 
human presence. The research objectives: is to form a safe and effective policy for controlling the motion of a 

three-link collaborative robot-manipulator, by developing a mathematical model of a partially observable Mar-

kov decision process (POMDP). Methods: methodology of partially observable Markov processes (POMDP), 

numerical modeling, approximation of the expected reward, comparative analysis of scenarios with different 

risk parameters. Results: the implemented model is able to form an adaptive policy for the manipulator's behav-

ior taking into account incomplete information about the person's position; the dependence of optimal actions 

on the probability distribution of the human position and the intensity of the risk penalty is demonstrated; the 

influence of the difference in rewards between the fast movement and stop modes on the choice of actions is 

shown. Conclusions: the developed POMDP model can be used as a basis for building high-level adaptive 

control of a collaborative manipulator in a shared workspace with a human. The proposed approach has the 

prospect of being implemented in flexible production systems and cyber-physical complexes, in particular, taking 
into account dynamic risk reassessment and integration with computer vision algorithms. 
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1. Introduction 

 
1.1. Motivation 

 

In the current conditions of rapid development of 

Industry 5.0, technologies focused on harmonious inter-

action between humans and intelligent technical systems 

are gaining increasing importance [1, 2]. Collaborative 

robot-manipulators, capable of working alongside hu-

mans without a physical barrier, play a key role in build-

ing flexible, safe, and adaptive production systems [3, 4]. 

In this context, the issue of formalizing the decision-mak-

ing process under conditions of uncertainty, limited in-

formation about the environment, and the need to ensure 

high adaptability of the behavior of a robotic system to 

dynamic changes in the space in which a person is located 

becomes extremely relevant [5, 6]. Traditional control 

approaches based on complete information about the 

state of the system are not effective enough in situations 

where the robot does not have direct or full access to all 

environmental variables - in particular, in cases where 

visual or sensory data are noisy, delayed, or partially un-

available [7, 8]. In such conditions, a powerful tool is the 

partially observable Markov decision process (POMDP) 

model, which allows taking into account the probabilistic 

nature of both robot actions and observations of the  

environment state [9, 10]. The use of the POMDP model 

for a 3-link collaborative robot-manipulator provides not 

only the adaptation of control strategies to current condi-

tions, but also allows predicting actions taking into ac-

count possible trajectories of human behavior, which sig-

nificantly increases the level of safety and efficiency of 

joint work [11, 12]. Such a model becomes especially rel-

evant in conditions of high complexity of production 

tasks, where it is important to ensure safe and coordinated 

interaction with a person while maintaining the flexibility 

and productivity of the robot. Therefore, the development 

of an adapted POMDP model for such systems opens up 

new prospects in the field of safe human-oriented auto-

mation and is an important step towards the formation of 

an intelligent environment of the future 
 

1.2. State of the art  
 

Qian L., et al. in [13] consider the trajectory plan-

ning and the implementation of impedance control for 

two-armed collaborative robots focused on grinding tasks 

were investigated. The proposed solution allows for the 

effective combination of force and position control under 

variable load conditions, which increases the accuracy of 

processing and the safety of interaction with objects. 
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However, from the point of view of these studies, only a 

methodological approach to trajectory control when in-

teracting with dynamic environments can be used, since 

the direct implementation focuses on hard physical con-

tact, and not on the presence of a person. 

In the article [14] by Peta K., et al. the comparative 

capabilities of one- and two-armed collaborative robots 

in high-precision assembly tasks were investigated, and 

the advantages of dual systems in the stability of manip-

ulations and reduction of task execution time were re-

vealed. This study is useful for building a structural 

model of the manipulator, but does not consider partial 

observability or interaction with a person, so it cannot be 

directly used in POMDP tasks. 

The study [15] made by Ma X., et al. describes a 

method of stable control taking into account constraints 

and uncertainties based on the Udwadia–Kalaba theory is 

proposed, which allows to implement control of a collab-

orative robot under inequality constraints. This solution 

allows to expand the application of algorithms sensitive 

to physical constraints, which can be included in the re-

ward or constraint model in POMDP. 

Pey J., et al. in [16] proposed a decentralized 

POMDP model for full coverage of the domain with sev-

eral reconfigurable robots, where partial observation is 

used to coordinate autonomous actions. This solution is 

relevant from the point of view of modeling behavior un-

der uncertainty, and its concept can be adapted to model-

ing manipulator actions in the presence of incomplete in-

formation about a person. 

The paper [17] by Lepers S., et al. presents an ap-

proach to probabilistic planning, taking into account the 

presence of an observer under conditions of partial ob-

servability, which allows to consider the reaction of the 

system to the probable behavior of external agents. This 

is extremely important for shaping the behavior of a col-

laborative robot in the presence of a human and can be 

directly used in building action models with risk predic-

tion.  

Liang J., et al. in [18] review modern multi-agent 

reinforcement learning algorithms, covering coordina-

tion, information exchange, and strategy matching meth-

ods. This research is relevant in the context of developing 

multi-agent POMDPs for human-robot interaction, alt-

hough it does not specifically cover applications in col-

laborative environments. 

Feng Z., et al. in [19] analyze current advances in 

Embodied AI for multi-agent systems, emphasizing the 

importance of learning on physical platforms with con-

sideration of the environment and limited sensory data. 

This approach can become a theoretical basis for extend-

ing POMDPs towards dynamic learning of the  

environment, but without direct implementation for ma-

nipulator tasks. 

Chaabani A., et al. in [20] present an automated 

quality control system using AI algorithms and Doosan 

robots, which demonstrates the advantages of autono-

mous real-time defect detection. Although the solution 

focuses on visual inspection, its integration with POMDP 

can be implemented through surveillance and risk assess-

ment models.  

Gargioni L., et al. in [21] proposed a hybrid ap-

proach to software development for collaborative robots 

in personalized medicine, which is focused on the end 

user. This study demonstrates the potential for flexible 

integration of behavioral models in medical environ-

ments, but does not pay attention to uncertainty or partial 

observability. 

Nishat A., et al. in [22] presented the concept of 

deep learning for autonomous navigation and manipula-

tion, where AI is used to adapt to complex environments. 

This approach can be partially incorporated into the 

POMDP model as a means of forming an observation 

function or policy approximation. 

Tejada J., et al. in [23] reviewed multi-agent and 

soft robotic systems, emphasizing the problems of coor-

dination and adaptability in complex environments. This 

study is relevant as a basis for modeling agent behavior 

in POMDP models, although it does not provide a con-

crete implementation.  

In their article Ma W., et al. [24] proposed a reactive 

task planning method that takes into account human be-

havior when performing sequential manipulations, with a 

focus on industrial automation tasks. This solution allows 

you to directly include the predicted human behavior in 

the state model or reward function within the POMDP 

framework. 

Thus, a general analysis of modern publications 

confirms the high relevance of the study devoted to build-

ing a model of a partially observed Markov decision-

making process for controlling a three-link collaborative 

robot-manipulator in the presence of a person. Major sci-

entific publications confirm the effectiveness of POMDP 

models in tasks with incomplete information, risk man-

agement, behavior prediction and agent interaction. 

However, they either do not fully cover the simultaneous 

presence of physical constraints, human presence and 

partial observability factors, or leave room for improve-

ment in the direction of adaptive high-level control. 

Therefore, the development of a specialized POMDP 

model is necessary and justified for building safe, adap-

tive, and intelligent collaborative robotics systems. 
 

1.3. Objectives and tasks 
 

The purpose of this research is to develop a tool for 

quantitatively assessing the impact of uncertainty and 

risks on the performance, safety, and adaptability of col-

laborative manipulator control and to further improve 
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these characteristics through parametric tuning of the 

model. 

To achieve the goal, the following tasks must be 

solved: 

– develop a mathematical model for formalizing the 

decision-making process under uncertainty, which makes 

it possible to ensure safe and effective interaction be-

tween a person and a robot; 

– based on the proposed mathematical model, using 

a high-level language, develop a program for simulation 

modeling; 

– conduct simulation modeling of its work and for-

mulate recommendations for further implementation in 

real control systems of intelligent robotic manipulators in 

a shared environment with a person. 

The following requirements are expressed for the 

developed model: formalize the decision-making process 

under uncertainty based on POMDP, while the model 

must take into account the structure of the state space, the 

set of possible actions of the manipulator, the rules for 

updating probabilities and the reward function. 

The study consists of three interrelated sections, 

each of which solves a specific scientific and technical 

problem. The first section defines the relevance of the 

problem of safe interaction of a collaborative robot-ma-

nipulator with a person under conditions of uncertainty 

and partial observability, which requires the creation of 

an adaptive decision-making model. The second section 

focuses on the construction of a mathematical model 

POMDP, which allows formalizing the behavior of the 

robot as an optimization process taking into account the 

dynamics of states, limited observations, and the objec-

tive reward function. The third section demonstrates the 

implementation of this model in a software environment 

and evaluates its performance through experimental 

modeling. All sections are logically connected: the prob-

lem formulated in the introduction finds its formal reflec-

tion in the mathematical model, and the latter, in turn, 

serves as the basis for practical implementation, which 

allows confirming the effectiveness of the chosen ap-

proach. 

 

2. Development of a POMDP model  

for a 3-link collaborative robot-manipulator  
 

This section presents the development of a mathe-

matical model of a partially observable Markov decision 

process for a three-link collaborative robot manipulator, 

which enables the formalization of the control process 

under conditions of uncertainty and incomplete infor-

mation about the environment state and human presence. 

The proposed model provides an integrated formal 

framework that combines robot dynamics, sensory sys-

tem observations, and safety criteria to enable the synthe-

sis of an adaptive and safe control policy. The controlled 

object is shown in Figure 1. 

The control system of the collaborative manipulator 

robot (Fig. 1) consists of the following modules: a Rasp-

berry Pi 4 Model B (8 GB); an OV5647 camera for Rasp-

berry Pi; a Robot HAT driver board; an HC-SR04 ultra-

sonic distance sensor; an Adeept 3CH line tracking mod-

ule; four JGA25-370 DC12V 130 RPM DC motors; four 

MG996R servo motors; three AD002 servo motors; and 

an MPU-6050 inertial measurement unit. 

  
а) b) 

Fig. 1. Collaborative robotic manipulator: 

a) – lateral view; b) – frontal view. 

 

The Partially Observable Markov Decision Process 

(POMDP) model is a mathematical formalism that de-

scribes the process of making optimal decisions under 

conditions of incomplete information about the state of 

the system. It extends the classical Markov Decision Pro-

cess (MDP) model by adding a component of observa-

tions that only partially reflect the real state of the envi-

ronment [25]. In the POMDP model, the agent does not 

have direct access to the actual state of the system, but 

instead relies on probabilistic observations that are gen-

erated depending on the current state and the action 

taken. To make decisions, the agent uses a belief function 

- a probability distribution over possible states of the sys-

tem, which is constantly updated after each observation. 

This allows the agent to take actions that maximize the 

expected number of rewards in the long run, despite un-

certainty. The POMDP model includes a set of states, a 

set of actions, a set of observations, transition and obser-

vation functions, and a reward function. Each action 

leads to a probabilistic transition between states, and each 

state generates a certain observation with a certain prob-

ability. The application of POMDP is extremely effective 

in robotics, autonomous systems, medicine, and pattern 

recognition, where complete information about the sys-

tem is unavailable or noisy. Thanks to this model, it is 

possible to formalize the behavior of intelligent agents in 

conditions of complex dynamics and limited visibility. It 

allows the robot to act reasonably and predictably, even 

if the environment cannot be fully observed. The devel-

opment of a model specifically for a 3-link manipulator 

is justified, since such a configuration provides an opti-

mal balance between kinematic flexibility and computa-

tional complexity. It allows reaching a working area of 
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up to 1.5 m² with a link length of 0.4–0.5 m, which cor-

responds to typical conditions of interaction with a per-

son in a collaborative environment. Three degrees of 

freedom are sufficient to implement adaptive control un-

der conditions of partial observability, while maintaining 

a controllable number of states in the POMDP model. 

This structural configuration is representative of practical 

industrial collaborative robotic systems, exemplified by 

the Universal Robots UR3 with three degrees of freedom, 

and thus constitutes a suitable experimental platform for 

assessing the effectiveness of the partially supervised 

control approach. 

Thus, the 3-link manipulator is not only theoreti-

cally feasible, but also practically a relay object for mod-

eling. 

Thus, within the framework of these studies, we 

will adapt the POMDP model for a 3-link collaborative 

robot-manipulator in an environment with the presence 

of a person based on the need to control the robot in the 

case when complete information about the environment 

is unavailable due to limitations in computer vision or 

sensors. The POMDP model allows us to formalize the 

situation of uncertainty and take reasonable control ac-

tions taking into account partial observations and models 

of system dynamics. 

Let us formalize the POMDP model in the form of 

the following tuple of parameters, in accordance with the 

purpose of the study: 

 

POMDP = (S, A, T, R, Ω, γ), (1) 

 

where S – set of states, 

A – set of actions; 

T(s′|s, a) – transition function; 

R(s, a) – reward function; 

Ω – set of observations; 

O(o|s′, a) – observation function; 

γ ∈ [0,1] – discount rate. 

Let us describe the purpose of all parameters of the 

POMDP formalization model (1). The set of states in the 

POMDP model is necessary to formalize all possible con-

figurations of a 3-link collaborative robot-manipulator in 

the working environment. It allows us to describe not 

only the position and orientation of each link, but also the 

interaction with a person, the presence of obstacles or a 

change in the load. Each state in the set represents a 

unique combination of the internal technical state of the 

robot and external conditions, which is critically im-

portant for taking safe and adaptive control actions. The 

proposed model is based on the assumptions of a discrete 

state space, Markov transitions, stationarity of the transi-

tion and observation functions, and limited accuracy of 

sensor measurements, which enables its use as a tool for 

assessing risks, safety, and control efficiency, as well as 

for synthesizing adaptive control strategies for collabora-

tive robots. 

 

S = {q1, q2, q3, ph, L}, (2) 

 

where qi – position of the i-th manipulator link, 

 i = 1, . . ,3; 

ph –  position of a person in the work area; 

L – current load on the manipulator. 

This function defines the state space by accounting 

for the positions of the manipulator links, the human lo-

cation, and the payload, thereby enabling the model to 

formally represent all possible system configurations. 

The set of actions (A) defines all possible control 

actions that a 3-link collaborative robot-manipulator can 

perform in response to the current or predicted state of 

the environment. It allows the system to make decisions 

about movements, speed, stopping, or trajectory adapta-

tion in the presence of a person. Thanks to the set of ac-

tions, the model can respond adaptively to changing con-

ditions, ensuring safe interaction and achieving set goals 

under conditions of partial observability. 

 

A = {movejoini
(Δqi), stop, slow_down, avoid}, (3) 

 

where movejoini
(Δqi) – change of position of the i-th 

link; 

stop – full stop; 

slow_down – deceleration; 

avoid – changing trajectory to avoid collision. 

This model specifies a set of admissible manipula-

tor actions, thereby formalizing the robot’s adaptive re-

sponses to variations in environmental conditions. 

Transition function (T(s′|s, a)) determines the prob-

ability of transition from one state to another as a result 

of performing a certain action, which is a key element for 

predicting the behavior of a 3-link collaborative robot-

manipulator under conditions of uncertainty. The func-

tion allows the model to take into account the influence 

of environmental dynamics and interaction with a person, 

forming an adaptive behavior strategy. Based on this 

function, the control system is able to assess the possible 

consequences of each action and choose the safest and 

most effective scenario of events. 

 

T(s′|s, a) = P(q′ = qi + Δqi, ph
′ = f(ph), L′ = L ± ΔL) 

 

where qi – the current value of the generalized coordinate 

(e.g., angle or position) of the i-th link of the 3-link ma-

nipulator; 

Δqi – change in this coordinate due to the action of 

a, which may be the result of movement or adaptive ad-

justment according to the chosen strategy; 

qi
′ = qi + Δqi – new position of the corresponding 

link of the manipulator after the action; 
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ph – the current position of the person in the robot's 

working area, determined through sensors or computer 

vision; 

f(ph) – a function that models the change or predic-

tion of a person's next position based on a behavioral or 

predictive model; 

ph
′ = f(ph) – new (possibly partially observed) po-

sition of the person at the next moment; 

L – the current load on the executive body of the 

manipulator, which may change due to manipulations or 

interaction with objects; 

ΔL – change in load due to performing action a 

(e.g., lifting or releasing an object); 

L′ = L ± ΔL – new load value after action, affecting 

force control and safety planning. 

Reward function R(s, a) is needed to quantify the 

utility of the performed action a in the current state s, re-

flecting the desirability or undesirability of such behav-

ior. It is used as a basis for learning or optimizing a con-

trol strategy aimed at achieving goals such as minimizing 

energy consumption, avoiding collisions with a person, 

accurate positioning, or safe manipulation. Thanks to a 

properly formulated reward function, the robot is able to 

adaptively choose the most effective actions in condi-

tions of partial uncertainty of the environment. 

 

R(s, a) = α ⋅ safe_distance(ph, qi) + β ⋅ efficiency(qi, L) 

 

where α – weighting factor that determines the im-

portance of the safe distance between the manipulator 

(qi) and the human position (ph) in total reward; 

safe_distance(ph, qi) – a function that estimates 

the safe distance between a person and the corresponding 

link or end effector of the robot, maximizing safety; 

β – weighting factor that determines the importance 

of task performance efficiency under load conditions; 

efficienct(qi, L) – a function that describes the effi-

ciency of the robot link's qi movements, taking into ac-

count the load L on the executive body, i.e., the produc-

tivity and stability of manipulation are taken into ac-

count. In general, this function allows you to balance be-

tween the safety of interaction with a person and the ef-

ficiency of the workflow. 

Within the proposed model, safety is formalized 

through penalty components of the reward function and 

a risk metric of critical proximity between the human and 

the robot, which makes it possible to quantitatively assess 

the level of hazard and to adaptively modify the control 

policy in order to minimize it. 

Set of observations (Ω) is critically important, since 

the robot does not have full access to the actual state of 

the environment due to the limitations of the sensor sys-

tem. Thanks to multiple observations, the robot receives 

indirect, probabilistic signals about the location of the 

person, the configuration of its own links, or the level of 

load, which allows it to refine the current state of the sys-

tem. This allows it to respond adaptively to changes in 

the environment even in the case of incomplete or noisy 

information, while maintaining safety and control effi-

ciency. 

 

Ω = {zp, zL}, (4) 

 

where zp- monitoring the position of a person (for exam-

ple, through a computer vision system or other sensors), 

which allows the worker to assess how close or danger-

ous the person is from the work area; monitoring the po-

sition of a person (for example, through a computer vi-

sion system or other sensors), which allows the worker to 

assess how close or dangerous the person is from the 

work area; 

zL –  monitoring the load on the manipulator actuator 

coming from force or moment sensors, and allows you to 

assess the current efficiency and risk of overload. 

Parameters zp and zL are key in adapting robot be-

havior to the real environment under conditions of partial 

observability. 

Relation 4 defines the observation model, which 

allows for the incorporation of incomplete and noisy 

information about the person’s position and the 

manipulator payload. 

Observation function (O(o|s′, a)) is necessary for 

formalization the probability of obtaining a certain obser-

vation given that the system is in a certain hidden state 

after performing an action. In the context of a 3-link col-

laborative robot-manipulator, this function allows us to 

take into account sensor errors and uncertainty in the per-

ception of the human position and load, providing adap-

tive updating of the robot's internal representation of the 

environment. 

 

O(o|s′ , a) = P(zp|ph
′ ) ⋅ P(zL|L′), (5) 

 

where zp – sensory observation of a person's position; 

P(zp|ph
′ ) – probability of obtaining this observation 

given the person's true (hidden) position ph́ after the ac-

tion is performed a; 

zL – monitoring the load on the manipulator; 

P(zL|L′) – probability of obtaining a given load in-

dicator with actual load Ĺ in new state ś. 

Observation function (O(o|s′, a)) describes the 

overall probability of obtaining a certain combination of 

observations when transitioning to a new state after per-

forming an action. 

Equation 5 defines the observation function, which 

specifies the probability of obtaining particular sensor 

readings given hidden states and provides a basis for 

refining the current belief about the environment. 
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Optimal action (a∗) in the POMDP model deter-

mines the choice of the most appropriate action under 

conditions of uncertainty to achieve long-term goals. It is 

chosen based on the maximization of the expected num-

ber of rewards, which allows balancing between human 

safety in the robot zone and the efficiency of task perfor-

mance. Thanks to this, the robot manipulator can adap-

tively respond to changes in the environment, even if 

some information is unavailable or observed with noise. 

The choice of the optimal action is based on an updated 

Bayesian representation of the current state, which forms 

a behavioral strategy focused on stable and safe interac-

tion with a person. This provides intelligent control and 

allows you to increase the level of autonomy and reliabil-

ity in difficult conditions. 

 

a∗ = arg max
a

∑ b(s) [R(s, a) + γ ∑ T(s′|s, a) ⋅ V(s′)

s′

]

s

 

where a∗ – the optimal action to take in the current state 

to maximize the expected reward; 

a – available action from the set of possible actions; 

b(s) – the current estimate (probability distribution) 

that the system is in state s, i.e., the confidence in state; 

R(s, a) – reward function, which determines how ben-

eficial an action is a in state s; 

γ – discount rate (0 ≤ γ ≤ 1), which takes into ac-

count the impact of future rewards; 

T(s′|s, a) – probability of transition from current state 

s to a new state s′ when performing action a; 

V(s′) – the value of the future expected reward for the 

state s′, which determines the long-term usefulness of 

this state. 

To determine the amount of reward and choose the 

optimal action, the amount of reward is formed as a com-

bination of immediate reward R(s, a) and expected future 

reward γ ∑ T(s′|s, a) ⋅ V(s′)s′ , weighted by the probabil-

ity that the system is in each of the states s (according to 

b(s)). Thus, the agent evaluates which action provides 

the highest expected efficiency, taking into account the 

uncertainty. 

This equation is employed to compute the optimal 

action under uncertainty, thereby enabling the 

determination of a control strategy that maximizes the 

expected reward while explicitly accounting for risk. 

As an example, imagine that a 3-link collaborative 

robot has three actions: move fast, move slow, stop. The 

state is defined as the combination of the joint position 

and the proximity of a person. If the confidence b(s) in-

dicates that a person is nearby, reward function R(s, a) 

will be higher for actions that reduce risk - for example, 

moving slowly or stopping. In this case, the optimal ac-

tion a∗ there will be an action that guarantees safe task 

performance, even if it slightly reduces performance. 

Thus, choosing the optimal action in POMDP allows ro-

botic systems to adapt their behavior under partial uncer-

tainty about the environment. 

 

3. Modeling and analysis  

of the results obtained 
 

The choice of the Python programming language 

and the PyCharm development environment for imple-

menting a decision-making program based on the 

POMDP model for a 3-link collaborative robot-manipu-

lator is justified due to a number of advantages. Python 

is a high-level language with a simple syntactic structure, 

which allows you to quickly implement complex mathe-

matical models and algorithms, in particular in the field 

of artificial intelligence and robotics. Due to the presence 

of powerful libraries such as NumPy, SciPy, matplotlib, 

TensorFlow and PyTorch, Python provides efficient exe-

cution of numerical calculations, visualization and inte-

gration with machine learning modules. The PyCharm 

environment, in turn, is a convenient tool for the devel-

oper that supports automatic syntax checking, integration 

with version control systems, code debugging, and also 

allows you to effectively organize large projects.  

PyCharm provides high performance when working with 

modules that include robot behavior simulation, policy 

construction and interactive visualization of results 

[26, 27]. This combination makes it possible to quickly 

implement, test, and scale a decision-making system for 

a collaborative manipulator in a complex, partially ob-

servable environment [28]. 

Let's run the simulation with the following input pa-

rameters: the state space consists of combinations of 

three components: the position of the manipulator links 

(q), position of a person in the work area (p) and load 

level (L). Each parameter is discretized: q and p can take 

three values, which corresponds to a conditionally parti-

tioned configuration space, and L has two possible states 

- for example, a light (1 kg) or a heavy load (3 kg). Thus, 

the total number of possible states is 18; γ = 0.9 – is a 

discount factor that determines the weight of future re-

wards compared to current ones, i.e. how much the robot 

is focused on long-term benefits; α =1 та β =1 - are the 

weight coefficients for calculating the reward function, 

where α is responsible for the importance of a safe dis-

tance from a person, and β - for the efficiency of perform-

ing an action taking into account the load; a set of actions 

(A) includes three possible actions: "stop", "slow" and 

"fast", which reflect the manipulator movement modes. 

The simulation results are shown in the figures 2-7. 

The graph shows the optimal actions of the system 

depending on the position of the link (X-axis) and the po-

sition of the person (Y-axis). Each action is displayed 

with a marker. circle — action "stop" (action 0), square 
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— action "slow" (action 1), triangle — action "fast" (ac-

tion 2) (Fig.2). 0, 1, 2 are the indices of the discrete posi-

tions of the manipulator link, that is: 

– 0 – left limit position; 

– 1 – middle position; 

– 2 – right limit position. 

 

 
Fig. 2. Optimal actions graph 

 

In other words, these are the discretized states in the 

reinforcement learning model. Qualitative analysis 

shows that when the position of the manipulator and the 

person coincide (e.g., qi= 1 and ph = 1 or close values), 

the algorithm prefers action 0 (stop), which demonstrates 

the consideration of the safety criterion in the decision-

making system. This is logical, since the risk of collision 

increases with a small distance between the robot and the 

person. In cases where the person is at a considerable dis-

tance from the link, the algorithm allows for fast actions 

(action value 2), which corresponds to the efficient use of 

time and productivity. From a numerical point of view, 

most decisions, i.e. 6 out of 9 possible combinations, fall 

on fast action, two on stop, and only one on slow move-

ment, which indicates a high priority of efficiency in en-

suring the basic level of safety. This pattern of system 

behavior confirms the adequacy of the selected reward 

model, which takes into account both the distance to the 

person and the efficiency at a certain load. In the experi-

mental context, this means that the model is able to form 

an adaptive control policy depending on the context, bal-

ancing between productivity and safety. 

Fig. 3 shows the expected reward for each state 

when performing the optimal action. The size of the 

markers corresponds to the relative value of the reward, 

and the numerical labels give the exact value. 

The reward is calculated as a combination of safety 

(distance) and efficiency, taking into account the level of 

load. Qualitative analysis shows that the maximum re-

ward is achieved in situations where there is a trade-off 

between efficiency and safety, in particular when the ma-

nipulator and the person are at a relatively safe distance 

from each other. At the same time, the lowest reward val-

ues are observed when there is a potential threat of  

collision or when the efficiency of movement is limited 

to avoid danger. This indicates that the reward model cor-

rectly takes into account the interdependence between 

proximity to the person and the ability to perform effec-

tive actions. From a numerical point of view, the varia-

bility of reward values covers the full range from 0 to 4, 

which confirms the adequate sensitivity of the model to 

changes in the situation. The highest rewards are ob-

tained in the absence of human interference, which cre-

ates conditions for fast actions with high productivity. 

Thus, the results demonstrate that the model is suitable 

for application in real-world collaborative robot control 

tasks, where it is important to dynamically balance risk 

and performance. The graph shows the difference be-

tween the rewards for moving fast (fast, action 2) and 

stopping (stop, action 0) in each state.  

 
Fig. 3. Expected reward graph 

 

This allows us to assess how profitable or risky the 

choice of "fast" action is compared to "stop". (Fig. 4) 

 

 
Fig. 4. Reward difference graph fast – stop 

 

All points on the graph have the same value, which 

indicates practically constant values of the reward, re-

gardless of the specific configuration of positions. This 

indicates that the transition from stopping to fast move-

ment provides a stable increase in the expected reward, 

which means that the model has an advantage of dynamic 

actions in the absence of critical threats. However, the 

absence of noticeable variability in the reward delta may 

indicate either a simplification of the reward model, or 
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that the safety and efficiency parameters are balanced in 

such a way that the difference between “fast” and “stop” 

practically does not depend on the person’s location. This 

may be a consequence of the specified weighting coeffi-

cients in the reward function, where efficiency and safety 

have equal importance. From an experimental point of 

view, this means that the system prefers quick actions 

when the risk is not critical, but does not show significant 

sensitivity to changes in spatial conditions. Thus, to 

achieve a more differentiated behavior of the system, it is 

worth reviewing the reward structure or increasing the 

weighting of the security parameter, which will allow 

more flexible adaptation of the policy to dangerous  

configurations. The results obtained indicate the stability 

of the model, but may require additional tuning to in-

crease sensitivity to environmental dynamics. 

 

 
Fig. 5. Value function graph V(s)  

 

The graph visualizes the value of the value function 

V(s), calculated by the method of iterations for each 

state. The size of the markers is proportional to the value 

of V(s), the numerical labels show the exact values. 

The function V(s) shows the long-term benefit of 

following the optimal policy from each state. (Fig. 5) 

V(s) characterizes the efficiency of the system being in a 

certain state s, which is defined as the combination of the 

position of the manipulator link qi and human position 

ph in the workspace. Heatmap analysis shows an uneven 

distribution of values depending on the combination of 

coordinates, which indicates the heterogeneity of the de-

cision-making policy depending on the environment con-

figuration. The highest values V(s), which reach more 

than 30 units are observed in the lower right corner, 

where the human position is minimal and the link posi-

tion is maximally remote, indicating the highest safety 

and efficiency in this configuration. In contrast, at points 

where the human position moves closer to the robot, the 

value function decreases significantly to values close to 

18, reflecting the increased risk or uncertainty in choos-

ing an action in such states. The average values of the 

function ( )V s  in the central regions indicate condition-

ally balanced scenarios, but with a lower level of  

expected reward, probably due to a trade-off between 

movement efficiency and the need to avoid potential con-

flict with a person present. This distribution confirms that 

the developed POMDP model successfully identifies 

risky areas and prefers safe configurations. The results 

obtained allow us to conclude that it is appropriate to fur-

ther adapt the reward function taking into account a more 

detailed risk assessment and the introduction of addi-

tional sensory data to improve the accuracy of state as-

sessment under conditions of partial observability. 

The presented graph (Fig. 6) analyzes the difference 

in rewards for two robot action strategies - "fast" and 

"slow" - depending on the coordinates of the position of 

the manipulator link and the presence of a person in the 

workspace. The main part of the workspace is colored in 

light gray, which indicates a slight or negative difference 

between the strategies, i.e., slow action provides a similar 

or even higher expected reward, which emphasizes the 

expediency of careful actions in most situations. In con-

trast, the narrow diagonal strip in the lower part of the 

graph, colored in dark shades of gray, indicates a slight 

advantage of the fast strategy in some initial configura-

tions, where there is presumably no risk of collision with 

a person or his position is far from a potentially danger-

ous zone. However, the amplitude of the difference in 

values does not exceed very small values, which means 

that the speed of action execution does not have a signif-

icant impact on the overall efficiency of the system under 

conditions of partial observability. The results obtained 

confirm that in conditions of potential interaction with a 

person, the cautious behavior of the system has an ad-

vantage or is at least equivalent, in terms of reward. This 

indicates the effectiveness of introducing a safety param-

eter into the reward model and the feasibility of imple-

menting strategies that adapt to the level of risk. 

 

 
Fig. 6. Graph of the difference in rewards between 

"fast" and "slow" depending on the coordinates  

of the position of the manipulator link  

and the person in the workspace 

 

Based on the obtained modeling results and the 

analysis of the obtained graphs, it can be concluded that 
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the developed mathematical model of the partially ob-

served Markov decision process (POMDP) for a 3-link 

collaborative robot-manipulator in an environment with 

the presence of a person is adequate. The graphs of opti-

mal actions demonstrate that the choice of robot actions 

is contextually justified and adapts to the position of the 

person, ensuring the avoidance of dangerous configura-

tions. The heatmap of values confirms the value of the 

utility function for different states, where higher values 

are observed in safe positions, which indicates the effec-

tiveness of the decision-making policy. The analysis of 

the expected reward and the difference between the 

“fast”, “slow” and “stop” strategies shows that the model 

is able to choose the safest and most appropriate behavior 

depending on the degree of uncertainty in the human po-

sition. The insignificant differences in rewards between 

the strategies in individual zones emphasize the stability 

of the model to observation noise. The combined analysis 

confirms that the POMDP model provides consistent and 

safe robot control in a complex, partially observed envi-

ronment. This proves its suitability for use in human col-

laboration systems and creates a basis for further devel-

opment, in particular the implementation of human be-

havior prediction models or reinforcement learning. The 

modeling also addresses the quantitative assessment of 

risks associated with potentially hazardous proximity 

between the robot and the human. To this end, the 

probabilities of critical configurations are analyzed based 

on the reward function and the observation distribution, 

enabling the derivation of numerical risk metrics and the 

evaluation of the influence of penalty parameters on the 

decision-making process. The results are presented in 

Figure 7. 

 
Fig.7. Dependence of the risk of dangerous proximity 

on the safety weight 

 

The posterior belief computed after a single observation 

(observed position = 1) yields a probability of a critical 

configuration—corresponding to the coincidence of a ro-

bot link with the human—equal to 0.1364 for each eval-

uated link position. This baseline probability directly de-

termines the value of the risk metric. For small safety 

weights (α ≤ 1.0), the control policy continues to favor 

fast actions in many cases, resulting in a nonzero risk 

metric approximately equal to the critical probability  

(≈ 0.1364). In contrast, for larger values of α (α ≥ 2.0), 

the increased penalty diminishes the attractiveness of fast 

motion, causing the optimal action to switch to slow or 

stop, thereby driving the risk metric toward zero. Conse-

quently, increasing the safety penalty α leads to a mono-

tonic reduction in operational risk within this simplified 

setting, demonstrating that tuning the penalty coefficient 

provides an effective mechanism for balancing produc-

tivity and human safety. 
 

4. Discussion  
 

The results of experimental modeling demonstrate 

the model’s ability to generate a safe action policy that 

adapts to the spatial position of the human. Specifically, 

out of nine possible configurations of the manipulator 

and human positions, the system selects fast movement 

in six cases, a stop in two cases, and slow movement in 

only one. This indicates an overall advantage in effi-

ciency; however, the model also responds appropriately 

when a human approaches the robot, switching to a safer 

mode. 

Analysis of the expected reward shows that maxi-

mum values are observed in configurations where the 

manipulator and the human are at a safe distance, ena-

bling the selection of productive movement strategies. In 

such cases, expected reward values reach up to 4.0, 

whereas in zones of potential conflict, they decrease to 0. 

This demonstrates the model’s high sensitivity to 

changes in spatial context. 

The graph of reward differences between the "fast" 

and "stop" strategies reveals an almost constant ad-

vantage for dynamic actions, with an increase in reward 

in the range of 0.9–1.1. Such consistency indicates the 

model's stability, but also suggests limited variability in 

response to different configurations. This may result 

from the equal weighting of safety (α = 1) and efficiency 

(β = 1) coefficients, which may need adjustment to im-

prove policy differentiation in high-risk zones. 

Analysis of the value function confirms that the 

highest values (exceeding 28) occur in states of maxi-

mum safety—when the human is distant and the manip-

ulator is in extreme positions. In contrast, in configura-

tions with a nearby human presence, values decrease to 

around 18, reflecting increased risk and corresponding 

policy changes. 

The plot of reward differences between the "fast" 

and "slow" strategies shows that, in most configurations, 

slow actions yield similar or even higher expected re-

wards, particularly under uncertainty. This suggests that 

the model adopts a cautious approach under partial  

observability, aligning with the objective of minimizing 

risk. 

In summary, the proposed model meets the stated 
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objectives: it adapts to spatial conditions, accounts for 

risk factors, effectively differentiates behavior based on 

uncertainty levels, and enables the prediction of safe ac-

tions. At the same time, given the model’s stable but 

somewhat limited reward variability between actions, fu-

ture improvements could focus on modifying the reward 

function – specifically, by adjusting the weight coeffi-

cients—or integrating deep learning algorithms to ap-

proximate strategies across an extended state space. The 

proposed model shows strong potential for practical im-

plementation in human-robot interaction systems, partic-

ularly in the context of flexible manufacturing and cyber-

physical systems, where safe and adaptive behavior un-

der incomplete information is paramount. 
 

5. Conclusions  
 

As a result of the research, a mathematical model of 

a partially observed Markov decision process (POMDP) 

was developed for controlling a 3-link collaborative ro-

bot-manipulator operating in an environment with the 

presence of a person. The proposed model allows for ef-

fective consideration of uncertainty regarding the state of 

the environment, in particular the position of the person, 

by using a probabilistic approach to planning robot ac-

tions. The implementation of the concept of partial ob-

servation ensured adaptive behavior of the manipulator, 

which minimizes the risks of interaction with a person 

and increases the safety and efficiency of joint work. A 

comparative analysis with traditional decision-making 

methods confirmed the advantages of using POMDP in 

situations with a high level of uncertainty and the need to 

take into account the dynamic environment. The model 

also takes into account the hierarchical decision-making 

structure, which allows for flexible combination of high-

level planning with low-level control of the movements 

of the manipulator links. 

Based on the calculations and modeling, the feasi-

bility of using POMDP in the tasks of trajectory predic-

tion, collision avoidance, planning optimal actions and 

taking into account the human presence factor was con-

firmed. In addition, observation, action, and reward mod-

els were taken into account, adapted to the characteristics 

of a collaborative robotic environment. The study also 

identified key parameters of the model that affect the ac-

curacy of decision-making, in particular the accuracy of 

sensor data, the structure of the state space and the num-

ber of possible actions. It is advisable to direct further re-

search to the implementation of the proposed model on a 

physical manipulator using computer vision and sensor 

systems to accurately detect the human position in real 

time. It is also promising to improve the model using 

deep learning methods to approximate the value func-

tions and action policies in large state spaces. A separate 

direction for further research is the integration of 

POMDP with Sensor Fusion and Rule-Based Systems 

methods to increase the reliability of decision-making in 

hybrid cyber-physical production systems. 
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РОЗРОБКА МОДЕЛІ ЧАСТКОВО СПОСТЕРЕЖУВАНОГО МАРКОВСЬКОГО ПРОЦЕСУ 

ПРИЙНЯТТЯ РІШЕНЬ ДЛЯ 3-Х ЛАНКОВОГО КОЛАБОРАТИВНОГО  

РОБОТА-МАНІПУЛЯТОРА В СЕРЕДОВИЩІ З ПРИСУТНІСТЮ ЛЮДИНИ  

В. В. Євсєєв, Д. В. Гурін, С. М. Куліш, Ю. А. Волошин 

Предметом дослідження в статті є математична модель частково спостережуваного марковського про-

цесу прийняття рішень в умовах невизначеності у виробничому середовищі з присутністю людини. Метою 

роботи є розробка математичної моделі частково спостережуваного марковського процесу прийняття рішень 

(POMDP) для формування безпечної та ефективної політики керування рухом триланкового колаборативного 

робота-маніпулятора. Завдання дослідження: побудувати простір станів, який охоплює положення ланок ро-

бота та ймовірне положення людини; визначити множину допустимих дій (зупинка, повільний та швидкий 

рух); сконструювати функцію спостереження з урахуванням похибки виявлення людини; реалізувати функ-

цію винагороди, яка балансує між безпекою та продуктивністю. Методи: методологія частково спостережу-

ваних марковських процесів (POMDP), чисельне моделювання, апроксимація очікуваної винагороди, порів-

няльний аналіз сценаріїв із різними параметрами ризику. Результати: реалізована модель здатна формувати 

адаптивну політику поведінки маніпулятора з урахуванням неповної інформації про положення людини; про-
демонстровано залежність оптимальних дій від розподілу ймовірностей положення людини та інтенсивності 

штрафу за ризик; показано вплив різниці винагород між режимами швидкого руху та зупинки на вибір дій. 

Висновки: розроблена POMDP-модель може бути використана як основа для побудови високорівневого ада-

птивного контролю колаборативного маніпулятора у спільному з людиною робочому просторі. Запропонова-

ний підхід має перспективу впровадження у гнучкі виробничі системи та кіберфізичні комплекси, зокрема, з 

урахуванням динамічного переоцінювання ризиків і інтеграції з алгоритмами комп’ютерного зору. 

Ключові слова: Індустрія 5.0; POMDP; колаборативний робот; робот-маніпулятор; прийняття рішень; 

часткове спостереження; безпека людини; політика на основі ризиків; функція винагороди; гнучке виробни-

цтво; роботизована взаємодія; адаптивне керування; спільна робота. 
 

Євсєєв Владислав В’ячеславович – д-р техн. наук, проф., проф. каф. комп’ютерно-інтегрованих  

технологій, автоматизації та робототехніки (КІТАР), Харківський національний університет радіоелектро-

ніки, Харків, Україна. 

Гурін Дмитро Валерійович – старш. викл. каф. комп’ютерно-інтегрованих технологій автоматизації та 

робототехніки (КІТАР) Харківський національний університет радіоелектроніки, Харків, Україна. 

Куліш Сергій Миколайович – канд. техн. наук, проф. каф. радіоелектронної та біомедичні комп’юте-

ризовані засоби та технології, Національний аерокосмічний університет «Харківський авіаційний інститут», 

Харків, Україна. 

Волошин Юлія Андріївна – канд. техн. наук, доц. каф. радіоелектронні та біомедичні комп'ютеризовані 
засоби та технології, Національний аерокосмічний університет «Харківський авіаційний інститут», Харків, 

Україна. 
 

Vladyslav Yevsieiev – Doctor of Technical Science, Professor, Professor Department of Computer-Integrated 

Technologies, Automation and Robotics, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, 

e-mail: vladyslav.yevsieiev@nure.ua, ORCID: 0000-0002-2590-7085, Scopus Author ID: 57190568855. 

Dmytro Gurin – Senior Lecturer, Department of Computer-Integrated Technologies of Automation and Robot-
ics (СITAR), Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, 

e-mail: dmytro.gurin@nure.ua, ORCID: 0000-0002-2272-5227, Scopus Author ID: 57209640958. 

Sergii Kulish – PhD, Professor, Department of Radioelectronic and Biomedical Computerized Facilities and 

Technologies, National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine, 

e-mail s.kulish@khai.edu, ORCID: 0000-0002-5506-2714, Scopus Author ID: 6602098980. 

Yuliia Voloshyn – PhD, Associate Professor, Department of Radioelectronic and Biomedical Computerized 

Facilities and Technologies, National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine. 

e-mail: y.voloshyn@khai.edu, ORCID: 0000-0003-4138-6731, Scopus Author ID: 57219056789. 

https://doi.org/10.14445/22315381/IJETT-V70I1P215
https://doi.org/10.14445/22315381/IJETT-V70I1P215
mailto:vladyslav.yevsieiev@nure.ua
mailto:dmytro.gurin@nure.ua
mailto:s.kulish@khai.edu
mailto:y.voloshyn@khai.edu

