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The subject are mathematical models of decision-making under uncertainty in a production environment with
human presence. The research objectives: is to form a safe and effective policy for controlling the motion of a
three-link collaborative robot-manipulator, by developing a mathematical model of a partially observable Mar-
kov decision process (POMDP). Methods: methodology of partially observable Markov processes (POMDP),
numerical modeling, approximation of the expected reward, comparative analysis of scenarios with different
risk parameters. Results: the implemented model is able to form an adaptive policy for the manipulator's behav-
ior taking into account incomplete information about the person's position; the dependence of optimal actions
on the probability distribution of the human position and the intensity of the risk penalty is demonstrated; the
influence of the difference in rewards between the fast movement and stop modes on the choice of actions is
shown. Conclusions: the developed POMDP model can be used as a basis for building high-level adaptive
control of a collaborative manipulator in a shared workspace with a human. The proposed approach has the
prospect of being implemented in flexible production systems and cyber-physical complexes, in particular, taking
into account dynamic risk reassessment and integration with computer vision algorithms.
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1. Introduction

1.1. Motivation

In the current conditions of rapid development of
Industry 5.0, technologies focused on harmonious inter-
action between humans and intelligent technical systems
are gaining increasing importance [1, 2]. Collaborative
robot-manipulators, capable of working alongside hu-
mans without a physical barrier, play a key role in build-
ing flexible, safe, and adaptive production systems [3, 4].
In this context, the issue of formalizing the decision-mak-
ing process under conditions of uncertainty, limited in-
formation about the environment, and the need to ensure
high adaptability of the behavior of a robotic system to
dynamic changes in the space in which a person is located
becomes extremely relevant [5, 6]. Traditional control
approaches based on complete information about the
state of the system are not effective enough in situations
where the robot does not have direct or full access to all
environmental variables - in particular, in cases where
visual or sensory data are noisy, delayed, or partially un-
available [7, 8]. In such conditions, a powerful tool is the
partially observable Markov decision process (POMDP)
model, which allows taking into account the probabilistic

nature of both robot actions and observations of the
environment state [9, 10]. The use of the POMDP model
for a 3-link collaborative robot-manipulator provides not
only the adaptation of control strategies to current condi-
tions, but also allows predicting actions taking into ac-
count possible trajectories of human behavior, which sig-
nificantly increases the level of safety and efficiency of
jointwork [11, 12]. Such a model becomes especially rel-
evant in conditions of high complexity of production
tasks, where it is important to ensure safe and coordinated
interaction with a person while maintaining the flexibility
and productivity of the robot. Therefore, the development
of an adapted POMDP model for such systems opens up
new prospects in the field of safe human-oriented auto-
mation and is an important step towards the formation of
an intelligent environment of the future

1.2. State of the art

Qian L., et al. in [13] consider the trajectory plan-
ning and the implementation of impedance control for
two-armed collaborative robots focused on grinding tasks
were investigated. The proposed solution allows for the
effective combination of force and position control under
variable load conditions, which increases the accuracy of
processing and the safety of interaction with objects.
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However, from the point of view of these studies, only a
methodological approach to trajectory control when in-
teracting with dynamic environments can be used, since
the direct implementation focuses on hard physical con-
tact, and not on the presence of a person.

In the article [14] by Peta K., et al. the comparative
capabilities of one- and two-armed collaborative robots
in high-precision assembly tasks were investigated, and
the advantages of dual systems in the stability of manip-
ulations and reduction of task execution time were re-
vealed. This study is useful for building a structural
model of the manipulator, but does not consider partial
observability or interaction with a person, so it cannot be
directly used in POMDP tasks.

The study [15] made by Ma X., et al. describes a
method of stable control taking into account constraints
and uncertainties based on the Udwadia—Kalaba theory is
proposed, which allows to implement control of a collab-
orative robot under inequality constraints. This solution
allows to expand the application of algorithms sensitive
to physical constraints, which can be included in the re-
ward or constraint model in POMDP.

Pey J., et al. in [16] proposed a decentralized
POMDP model for full coverage of the domain with sev-
eral reconfigurable robots, where partial observation is
used to coordinate autonomous actions. This solution is
relevant from the point of view of modeling behavior un-
der uncertainty, and its concept can be adapted to model-
ing manipulator actions in the presence of incomplete in-
formation about a person.

The paper [17] by Lepers S., et al. presents an ap-
proach to probabilistic planning, taking into account the
presence of an observer under conditions of partial ob-
servability, which allows to consider the reaction of the
system to the probable behavior of external agents. This
is extremely important for shaping the behavior of a col-
laborative robot in the presence of a human and can be
directly used in building action models with risk predic-
tion.

Liang J., et al. in [18] review modern multi-agent
reinforcement learning algorithms, covering coordina-
tion, information exchange, and strategy matching meth-
ods. Thisresearch is relevant in the context of developing
multi-agent POMDPs for human-robot interaction, alt-
hough it does not specifically cover applications in col-
laborative environments.

Feng Z., et al. in [19] analyze current advances in
Embodied Al for multi-agent systems, emphasizing the
importance of learning on physical platforms with con-
sideration of the environment and limited sensory data.
This approach can become a theoretical basis for extend-
ing POMDPs towards dynamic learning of the
environment, but without direct implementation for ma-
nipulator tasks.

Chaabani A., et al. in [20] present an automated
quality control system using Al algorithms and Doosan
robots, which demonstrates the advantages of autono-
mous real-time defect detection. Although the solution
focuses on visual inspection, its integration with POMDP
can be implemented through surveillance and risk assess-
ment models.

Gargioni L., et al. in [21] proposed a hybrid ap-
proach to software development for collaborative robots
in personalized medicine, which is focused on the end
user. This study demonstrates the potential for flexible
integration of behavioral models in medical environ-
ments, but does not pay attention to uncertainty or partial
observability.

Nishat A., et al. in [22] presented the concept of
deep learning for autonomous navigation and manipula-
tion, where Al is used to adapt to complex environments.
This approach can be partially incorporated into the
POMDP model as a means of forming an observation
function or policy approximation.

Tejada J., et al. in [23] reviewed multi-agent and
soft robotic systems, emphasizing the problems of coor-
dination and adaptability in complex environments. This
study is relevant as a basis for modeling agent behavior
in POMDP maodels, although it does not provide a con-
crete implementation.

In their article Ma W., et al. [24] proposed a reactive
task planning method that takes into account human be-
havior when performing sequential manipulations, with a
focus on industrial automation tasks. This solution allows
you to directly include the predicted human behavior in
the state model or reward function within the POMDP
framework.

Thus, a general analysis of modern publications
confirms the high relevance of the study devoted to build-
ing a model of a partially observed Markov decision-
making process for controlling a three-link collaborative
robot-manipulator in the presence of a person. Major sci-
entific publications confirm the effectiveness of POMDP
models in tasks with incomplete information, risk man-
agement, behavior prediction and agent interaction.
However, they either do not fully cover the simultaneous
presence of physical constraints, human presence and
partial observability factors, or leave room for improve-
ment in the direction of adaptive high-level control.
Therefore, the development of a specialized POMDP
model is necessary and justified for building safe, adap-
tive, and intelligent collaborative robotics systems.

1.3. Objectives and tasks

The purpose of this research is to develop a tool for
guantitatively assessing the impact of uncertainty and
risks on the performance, safety, and adaptability of col-
laborative manipulator control and to further improve
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these characteristics through parametric tuning of the
model.

To achieve the goal, the following tasks must be
solved:

— develop a mathematical model for formalizing the
decision-making process under uncertainty, which makes
it possible to ensure safe and effective interaction be-
tween a person and a robot;

— based on the proposed mathematical model, using
a high-level language, develop a program for simulation
modeling;

— conduct simulation modeling of its work and for-
mulate recommendations for further implementation in
real control systems of intelligent robotic manipulators in
a shared environment with a person.

The following requirements are expressed for the
developed model: formalize the decision-making process
under uncertainty based on POMDP, while the model
must take into account the structure of the state space, the
set of possible actions of the manipulator, the rules for
updating probabilities and the reward function.

The study consists of three interrelated sections,
each of which solves a specific scientific and technical
problem. The first section defines the relevance of the
problem of safe interaction of a collaborative robot-ma-
nipulator with a person under conditions of uncertainty
and partial observability, which requires the creation of
an adaptive decision-making model. The second section
focuses on the construction of a mathematical model
POMDP, which allows formalizing the behavior of the
robot as an optimization process taking into account the
dynamics of states, limited observations, and the objec-
tive reward function. The third section demonstrates the
implementation of this model in a software environment
and evaluates its performance through experimental
modeling. All sections are logically connected: the prob-
lem formulated in the introduction finds its formal reflec-
tion in the mathematical model, and the latter, in turn,
serves as the basis for practical implementation, which
allows confirming the effectiveness of the chosen ap-
proach.

2. Development of a POMDP model
for a 3-link collaborative robot-manipulator

This section presents the development of a mathe-
matical model of a partially observable Markov decision
process for a three-link collaborative robot manipulator,
which enables the formalization of the control process
under conditions of uncertainty and incomplete infor-
mation about the environment state and human presence.
The proposed model provides an integrated formal
framework that combines robot dynamics, sensory sys-
tem observations, and safety criteria to enable the synthe-
sis of an adaptive and safe control policy. The controlled

object is shown in Figure 1.

The control system of the collaborative manipulator
robot (Fig. 1) consists of the following modules: a Rasp-
berry Pi 4 Model B (8 GB); an OV5647 camera for Rasp-
berry Pi; a Robot HAT driver board; an HC-SR04 ultra-
sonic distance sensor; an Adeept 3CH line tracking mod-
ule; four JGA25-370 DC12V 130 RPM DC motors; four
MG996R servo motors; three AD002 servo motors; and
an MPU-6050 inertial measurement unit.

a)
Fig. 1. Collaborative robotic manipulator:
a) — lateral view; b) — frontal view.

The Partially Observable Markov Decision Process
(POMDP) model is a mathematical formalism that de-
scribes the process of making optimal decisions under
conditions of incomplete information about the state of
the system. It extends the classical Markov Decision Pro-
cess (MDP) model by adding a component of observa-
tions that only partially reflect the real state of the envi-
ronment [25]. In the POMDP model, the agent does not
have direct access to the actual state of the system, but
instead relies on probabilistic observations that are gen-
erated depending on the current state and the action
taken. To make decisions, the agent uses a belief function
- a probability distribution over possible states of the sys-
tem, which is constantly updated after each observation.
This allows the agent to take actions that maximize the
expected humber of rewards in the long run, despite un-
certainty. The POMDP model includes a set of states, a
set of actions, a set of observations, transition and obser-
vation functions, and a reward function. Each action
leads to a probabilistic transition between states, and each
state generates a certain observation with a certain prob-
ability. The application of POMDP is extremely effective
in robotics, autonomous systems, medicine, and pattern
recognition, where complete information about the sys-
tem is unavailable or noisy. Thanks to this model, it is
possible to formalize the behavior of intelligent agents in
conditions of complex dynamics and limited visibility. It
allows the robot to act reasonably and predictably, even
if the environment cannot be fully observed. The devel-
opment of a model specifically for a 3-link manipulator
is justified, since such a configuration provides an opti-
mal balance between kinematic flexibility and computa-
tional complexity. It allows reaching a working area of
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up to 1.5 m? with a link length of 0.4-0.5 m, which cor-
responds to typical conditions of interaction with a per-
son in a collaborative environment. Three degrees of
freedom are sufficient to implement adaptive control un-
der conditions of partial observability, while maintaining
a controllable number of states in the POMDP model.
This structural configuration is representative of practical
industrial collaborative robotic systems, exemplified by
the Universal Robots UR3 with three degrees of freedom,
and thus constitutes a suitable experimental platform for
assessing the effectiveness of the partially supervised
control approach.

Thus, the 3-link manipulator is not only theoreti-
cally feasible, but also practically a relay object for mod-
eling.

Thus, within the framework of these studies, we
will adapt the POMDP model for a 3-link collaborative
robot-manipulator in an environment with the presence
of a person based on the need to control the robot in the
case when complete information about the environment
is unavailable due to limitations in computer vision or
sensors. The POMDP model allows us to formalize the
situation of uncertainty and take reasonable control ac-
tions taking into account partial observations and models
of system dynamics.

Let us formalize the POMDP model in the form of
the following tuple of parameters, in accordance with the
purpose of the study:

POMDP = (5,A,T,R,Q,7), 1)

where S — set of states,
A — set of actions;
T(s'|s,a) — transition function;
R(s, a) — reward function;
Q — set of observations;
0(o|s’,a) — observation function;
v € [0,1] — discount rate.

Let us describe the purpose of all parameters of the
POMDP formalization model (1). The set of states in the
POMDP model is necessary to formalize all possible con-
figurations of a 3-link collaborative robot-manipulator in
the working environment. It allows us to describe not
only the position and orientation of each link, but also the
interaction with a person, the presence of obstacles or a
change in the load. Each state in the set represents a
unique combination of the internal technical state of the
robot and external conditions, which is critically im-
portant for taking safe and adaptive control actions. The
proposed model is based on the assumptions of a discrete
state space, Markov transitions, stationarity of the transi-
tion and observation functions, and limited accuracy of
sensor measurements, which enables its use as a tool for
assessing risks, safety, and control efficiency, as well as

for synthesizing adaptive control strategies for collabora-
tive robots.

S= {ql' q2,93, Pn» L}, (2)

where q; — position of the i-th manipulator link,
i=1,..,3

py, — position of a person in the work area;

L — current load on the manipulator.

This function defines the state space by accounting
for the positions of the manipulator links, the human lo-
cation, and the payload, thereby enabling the model to
formally represent all possible system configurations.

The set of actions (A) defines all possible control
actions that a 3-link collaborative robot-manipulator can
perform in response to the current or predicted state of
the environment. It allows the system to make decisions
about movements, speed, stopping, or trajectory adapta-
tion in the presence of a person. Thanks to the set of ac-
tions, the model can respond adaptively to changing con-
ditions, ensuring safe interaction and achieving set goals
under conditions of partial observability.

A = {movej,i,, (Aq;), stop, slow_down, avoid},  (3)

where move;,i,, (Aq;) — change of position of the i-th
link;

stop — full stop;

slow_down — deceleration;

avoid — changing trajectory to avoid collision.

This model specifies a set of admissible manipula-
tor actions, thereby formalizing the robot’s adaptive re-
sponses to variations in environmental conditions.

Transition function (T(s'|s, a)) determines the prob-
ability of transition from one state to another as a result
of performing a certain action, which is a key element for
predicting the behavior of a 3-link collaborative robot-
manipulator under conditions of uncertainty. The func-
tion allows the model to take into account the influence
of environmental dynamics and interaction with a person,
forming an adaptive behavior strategy. Based on this
function, the control system is able to assess the possible
consequences of each action and choose the safest and
most effective scenario of events.

T(s'|s,a) = P(q' = q; + Aqy, py, = f(pn), L = L + AL)

where q; —the current value of the generalized coordinate
(e.g., angle or position) of the i-th link of the 3-link ma-
nipulator;

Aq; — change in this coordinate due to the action of
a, which may be the result of movement or adaptive ad-
justment according to the chosen strategy;

q; = q; + Aq; — new position of the corresponding
link of the manipulator after the action;
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pr, — the current position of the person in the robot's
working area, determined through sensors or computer
vision;

f(pn) — a function that models the change or predic-
tion of a person's next position based on a behavioral or
predictive model;

py, = f(pn) — new (possibly partially observed) po-
sition of the person at the next moment;

L — the current load on the executive body of the
manipulator, which may change due to manipulations or
interaction with objects;

AL — change in load due to performing action a
(e.g., lifting or releasing an object);

L = L 4+ AL —new load value after action, affecting
force control and safety planning.

Reward function R(s,a) is needed to quantify the
utility of the performed action a in the current state s, re-
flecting the desirability or undesirability of such behav-
ior. It is used as a basis for learning or optimizing a con-
trol strategy aimed at achieving goals such as minimizing
energy consumption, avoiding collisions with a person,
accurate positioning, or safe manipulation. Thanks to a
properly formulated reward function, the robot is able to
adaptively choose the most effective actions in condi-
tions of partial uncertainty of the environment.

R(s,a) = a - safe_distance(py, q;) + P - efficiency(q;, L)

where o — weighting factor that determines the im-
portance of the safe distance between the manipulator
(q;) and the human position (py,) in total reward;

safe_distance(py, q;) — a function that estimates
the safe distance between a person and the corresponding
link or end effector of the robot, maximizing safety;

B —weighting factor that determines the importance
of task performance efficiency under load conditions;

efficienct(q;, L) —a function that describes the effi-
ciency of the robot link's q; movements, taking into ac-
count the load L on the executive body, i.e., the produc-
tivity and stability of manipulation are taken into ac-
count. In general, this function allows you to balance be-
tween the safety of interaction with a person and the ef-
ficiency of the workflow.

Within the proposed model, safety is formalized
through penalty components of the reward function and
a risk metric of critical proximity between the human and
the robot, which makes it possible to quantitatively assess
the level of hazard and to adaptively modify the control
policy in order to minimize it.

Set of observations (Q) is critically important, since
the robot does not have full access to the actual state of
the environment due to the limitations of the sensor sys-
tem. Thanks to multiple observations, the robot receives
indirect, probabilistic signals about the location of the
person, the configuration of its own links, or the level of

load, which allows it to refine the current state of the sys-
tem. This allows it to respond adaptively to changes in
the environment even in the case of incomplete or noisy
information, while maintaining safety and control effi-
ciency.

Q= {Zpt 7.}, (4)
where z,- monitoring the position of a person (for exam-
ple, through a computer vision system or other sensors),
which allows the worker to assess how close or danger-
ous the person is from the work area; monitoring the po-
sition of a person (for example, through a computer vi-
sion system or other sensors), which allows the worker to
assess how close or dangerous the person is from the
work area;

z;, — monitoring the load on the manipulator actuator
coming from force or moment sensors, and allows you to
assess the current efficiency and risk of overload.

Parameters z,, and z;, are key in adapting robot be-
havior to the real environment under conditions of partial
observability.

Relation 4 defines the observation model, which
allows for the incorporation of incomplete and noisy
information about the person’s position and the
manipulator payload.

Observation function (O(o|s’, a)) is necessary for
formalization the probability of obtaining a certain obser-
vation given that the system is in a certain hidden state
after performing an action. In the context of a 3-link col-
laborative robot-manipulator, this function allows us to
take into account sensor errors and uncertainty in the per-
ception of the human position and load, providing adap-
tive updating of the robot's internal representation of the
environment.

0(o[s’,a) = P(Zp|p'h) P(z|L), (5)

where z,, — sensory observation of a person's position;

P(z, |py,) — probability of obtaining this observation
given the person's true (hidden) position p), after the ac-
tion is performed a;

z;, — monitoring the load on the manipulator;

P(z;|L) — probability of obtaining a given load in-
dicator with actual load L in new state $.

Observation function (O(ol|s,a)) describes the
overall probability of obtaining a certain combination of
observations when transitioning to a new state after per-
forming an action.

Equation 5 defines the observation function, which
specifies the probability of obtaining particular sensor
readings given hidden states and provides a basis for
refining the current belief about the environment.
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Optimal action (a*) in the POMDP model deter-
mines the choice of the most appropriate action under
conditions of uncertainty to achieve long-term goals. Itis
chosen based on the maximization of the expected num-
ber of rewards, which allows balancing between human
safety in the robot zone and the efficiency of task perfor-
mance. Thanks to this, the robot manipulator can adap-
tively respond to changes in the environment, even if
some information is unavailable or observed with noise.
The choice of the optimal action is based on an updated
Bayesian representation of the current state, which forms
a behavioral strategy focused on stable and safe interac-
tion with a person. This provides intelligent control and
allows you to increase the level of autonomy and reliabil-
ity in difficult conditions.

a* =arg maxz b(s)
a
S

where a* — the optimal action to take in the current state
to maximize the expected reward;

a —available action from the set of possible actions;

b(s) — the current estimate (probability distribution)
that the system is in state s, i.e., the confidence in state;

R(s, a) —reward function, which determines how ben-
eficial an action is a in state s;

v — discount rate (0 <y < 1), which takes into ac-
count the impact of future rewards;

T(s'|s, a) — probability of transition from current state
s to a new state s' when performing action a;

V(s") —the value of the future expected reward for the
state s’, which determines the long-term usefulness of
this state.

To determine the amount of reward and choose the
optimal action, the amount of reward is formed as a com-
bination of immediate reward R(s, a) and expected future
reward y Yo T(s'|s,a) - V(s), weighted by the probabil-
ity that the system is in each of the states s (according to
b(s)). Thus, the agent evaluates which action provides
the highest expected efficiency, taking into account the
uncertainty.

This equation is employed to compute the optimal
action under uncertainty, thereby enabling the
determination of a control strategy that maximizes the
expected reward while explicitly accounting for risk.

As an example, imagine that a 3-link collaborative
robot has three actions: move fast, move slow, stop. The
state is defined as the combination of the joint position
and the proximity of a person. If the confidence b(s) in-
dicates that a person is nearby, reward function R(s, a)
will be higher for actions that reduce risk - for example,
moving slowly or stopping. In this case, the optimal ac-
tion a* there will be an action that guarantees safe task
performance, even if it slightly reduces performance.

R(s,a) + yz T(s'|s,a) - V(s)

Thus, choosing the optimal action in POMDP allows ro-
botic systems to adapt their behavior under partial uncer-
tainty about the environment.

3. Modeling and analysis
of the results obtained

The choice of the Python programming language
and the PyCharm development environment for imple-
menting a decision-making program based on the
POMDP model for a 3-link collaborative robot-manipu-
lator is justified due to a number of advantages. Python
is a high-level language with a simple syntactic structure,
which allows you to quickly implement complex mathe-
matical models and algorithms, in particular in the field
of artificial intelligence and robotics. Due to the presence
of powerful libraries such as NumPy, SciPy, matplotlib,
TensorFlow and PyTorch, Python provides efficient exe-
cution of numerical calculations, visualization and inte-
gration with machine learning modules. The PyCharm
environment, in turn, is a convenient tool for the devel-
oper that supports automatic syntax checking, integration
with version control systems, code debugging, and also
allows you to effectively organize large projects.
PyCharm provides high performance when working with
modules that include robot behavior simulation, policy
construction and interactive visualization of results
[26, 27]. This combination makes it possible to quickly
implement, test, and scale a decision-making system for
a collaborative manipulator in a complex, partially ob-
servable environment [28].

Let's run the simulation with the following input pa-
rameters: the state space consists of combinations of
three components: the position of the manipulator links
(q), position of a person in the work area (p) and load
level (L). Each parameter is discretized: g and p can take
three values, which corresponds to a conditionally parti-
tioned configuration space, and L has two possible states
- for example, a light (1 kg) or a heavy load (3 kg). Thus,
the total number of possible states is 18; y = 0.9 —is a
discount factor that determines the weight of future re-
wards compared to current ones, i.e. how much the robot
is focused on long-term benefits; o =1 ta B =1 - are the
weight coefficients for calculating the reward function,
where a is responsible for the importance of a safe dis-
tance from a person, and p - for the efficiency of perform-
ing an action taking into account the load; a set of actions
(A) includes three possible actions: "stop", "slow" and
"fast", which reflect the manipulator movement modes.

The simulation results are shown in the figures 2-7.

The graph shows the optimal actions of the system
depending on the position of the link (X-axis) and the po-
sition of the person (Y-axis). Each action is displayed
with a marker. circle — action "stop™ (action 0), square
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— action "slow" (action 1), triangle — action "fast" (ac-
tion 2) (Fig.2). 0, 1, 2 are the indices of the discrete posi-
tions of the manipulator link, that is:

— 0 — left limit position;

— 1 —middle position;

— 2 —right limit position.

Optimal actions

_{:IZ'O-D O Action
o O Action0
|5 1.5} [0 Actionl
1;’; A Action 2
o lo0rd A (]
o
©
£ 0.5
:E

0.0t A k A j JAY

0.0 0.5 1.0 1.5 2.0
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Fig. 2. Optimal actions graph

In other words, these are the discretized states in the
reinforcement learning model. Qualitative analysis
shows that when the position of the manipulator and the
person coincide (e.g., ;= 1 and p,, = 1 or close values),
the algorithm prefers action 0 (stop), which demonstrates
the consideration of the safety criterion in the decision-
making system. This is logical, since the risk of collision
increases with a small distance between the robot and the
person. In cases where the person is at a considerable dis-
tance from the link, the algorithm allows for fast actions
(action value 2), which corresponds to the efficient use of
time and productivity. From a numerical point of view,
most decisions, i.e. 6 out of 9 possible combinations, fall
on fast action, two on stop, and only one on slow move-
ment, which indicates a high priority of efficiency in en-
suring the basic level of safety. This pattern of system
behavior confirms the adequacy of the selected reward
model, which takes into account both the distance to the
person and the efficiency at a certain load. In the experi-
mental context, this means that the model is able to form
an adaptive control policy depending on the context, bal-
ancing between productivity and safety.

Fig. 3 shows the expected reward for each state
when performing the optimal action. The size of the
markers corresponds to the relative value of the reward,
and the numerical labels give the exact value.

The reward is calculated as a combination of safety
(distance) and efficiency, taking into account the level of
load. Qualitative analysis shows that the maximum re-
ward is achieved in situations where there is a trade-off
between efficiency and safety, in particular when the ma-
nipulator and the person are at a relatively safe distance
from each other. At the same time, the lowest reward val-
ues are observed when there is a potential threat of

collision or when the efficiency of movement is limited
to avoid danger. This indicates that the reward model cor-
rectly takes into account the interdependence bhetween
proximity to the person and the ability to perform effec-
tive actions. From a numerical point of view, the varia-
bility of reward values covers the full range from 0 to 4,
which confirms the adequate sensitivity of the model to
changes in the situation. The highest rewards are ob-
tained in the absence of human interference, which cre-
ates conditions for fast actions with high productivity.
Thus, the results demonstrate that the model is suitable
for application in real-world collaborative robot control
tasks, where it is important to dynamically balance risk
and performance. The graph shows the difference be-
tween the rewards for moving fast (fast, action 2) and
stopping (stop, action Q) in each state.
Expected reward
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Fig. 3. Expected reward graph

This allows us to assess how profitable or risky the
choice of "fast" action is compared to "stop". (Fig. 4)
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Fig. 4. Reward difference graph fast — stop

All points on the graph have the same value, which
indicates practically constant values of the reward, re-
gardless of the specific configuration of positions. This
indicates that the transition from stopping to fast move-
ment provides a stable increase in the expected reward,
which means that the model has an advantage of dynamic
actions in the absence of critical threats. However, the
absence of noticeable variability in the reward delta may
indicate either a simplification of the reward model, or
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that the safety and efficiency parameters are balanced in
such a way that the difference between “fast” and “stop”
practically does not depend on the person’s location. This
may be a consequence of the specified weighting coeffi-
cients in the reward function, where efficiency and safety
have equal importance. From an experimental point of
view, this means that the system prefers quick actions
when the risk is not critical, but does not show significant
sensitivity to changes in spatial conditions. Thus, to
achieve a more differentiated behavior of the system, it is
worth reviewing the reward structure or increasing the
weighting of the security parameter, which will allow
more flexible adaptation of the policy to dangerous
configurations. The results obtained indicate the stability
of the model, but may require additional tuning to in-
crease sensitivity to environmental dynamics.
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Fig. 5. Value function graph V(s)

The graph visualizes the value of the value function
V(s), calculated by the method of iterations for each
state. The size of the markers is proportional to the value
of V(s), the numerical labels show the exact values.

The function V(s) shows the long-term benefit of
following the optimal policy from each state. (Fig. 5)
V(s) characterizes the efficiency of the system being in a
certain state s, which is defined as the combination of the
position of the manipulator link q; and human position
py in the workspace. Heatmap analysis shows an uneven
distribution of values depending on the combination of
coordinates, which indicates the heterogeneity of the de-
cision-making policy depending on the environment con-
figuration. The highest values V(s), which reach more
than 30 units are observed in the lower right corner,
where the human position is minimal and the link posi-
tion is maximally remote, indicating the highest safety
and efficiency in this configuration. In contrast, at points
where the human position moves closer to the robot, the
value function decreases significantly to values close to
18, reflecting the increased risk or uncertainty in choos-
ing an action in such states. The average values of the
function V(s) in the central regions indicate condition-

ally balanced scenarios, but with a lower level of

expected reward, probably due to a trade-off between
movement efficiency and the need to avoid potential con-
flict with a person present. This distribution confirms that
the developed POMDP model successfully identifies
risky areas and prefers safe configurations. The results
obtained allow us to conclude that it is appropriate to fur-
ther adapt the reward function taking into account a more
detailed risk assessment and the introduction of addi-
tional sensory data to improve the accuracy of state as-
sessment under conditions of partial observability.

The presented graph (Fig. 6) analyzes the difference
in rewards for two robot action strategies - "fast" and
"slow" - depending on the coordinates of the position of
the manipulator link and the presence of a person in the
workspace. The main part of the workspace is colored in
light gray, which indicates a slight or negative difference
between the strategies, i.e., slow action provides a similar
or even higher expected reward, which emphasizes the
expediency of careful actions in most situations. In con-
trast, the narrow diagonal strip in the lower part of the
graph, colored in dark shades of gray, indicates a slight
advantage of the fast strategy in some initial configura-
tions, where there is presumably no risk of collision with
a person or his position is far from a potentially danger-
ous zone. However, the amplitude of the difference in
values does not exceed very small values, which means
that the speed of action execution does not have a signif-
icant impact on the overall efficiency of the system under
conditions of partial observability. The results obtained
confirm that in conditions of potential interaction with a
person, the cautious behavior of the system has an ad-
vantage or is at least equivalent, in terms of reward. This
indicates the effectiveness of introducing a safety param-
eter into the reward model and the feasibility of imple-
menting strategies that adapt to the level of risk.

The difference in rewards between 'fast' and 'slow’

1.0
0.8
=]
g
206
[=]
g -~
a .- b
g 04 5o .
= - -
= *o "
021 4 o5 %*
L
0.0

0.0 02 0.4 0.6 08 1.0
Link position

Fig. 6. Graph of the difference in rewards between
"fast" and "slow" depending on the coordinates
of the position of the manipulator link
and the person in the workspace

Based on the obtained modeling results and the
analysis of the obtained graphs, it can be concluded that
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the developed mathematical model of the partially ob-
served Markov decision process (POMDP) for a 3-link
collaborative robot-manipulator in an environment with
the presence of a person is adequate. The graphs of opti-
mal actions demonstrate that the choice of robot actions
is contextually justified and adapts to the position of the
person, ensuring the avoidance of dangerous configura-
tions. The heatmap of values confirms the value of the
utility function for different states, where higher values
are observed in safe positions, which indicates the effec-
tiveness of the decision-making policy. The analysis of
the expected reward and the difference between the
“fast”, “slow” and “stop” strategies shows that the model
is able to choose the safest and most appropriate behavior
depending on the degree of uncertainty in the human po-
sition. The insignificant differences in rewards between
the strategies in individual zones emphasize the stability
of the model to observation noise. The combined analysis
confirms that the POMDP model provides consistent and
safe robot control in a complex, partially observed envi-
ronment. This proves its suitability for use in human col-
laboration systems and creates a basis for further devel-
opment, in particular the implementation of human be-
havior prediction models or reinforcement learning. The
modeling also addresses the quantitative assessment of
risks associated with potentially hazardous proximity
between the robot and the human. To this end, the
probabilities of critical configurations are analyzed based
on the reward function and the observation distribution,
enabling the derivation of numerical risk metrics and the
evaluation of the influence of penalty parameters on the

decision-making process. The results are presented in
Figure 7.
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The posterior belief computed after a single observation
(observed position = 1) yields a probability of a critical
configuration—corresponding to the coincidence of a ro-
bot link with the human—equal to 0.1364 for each eval-
uated link position. This baseline probability directly de-
termines the value of the risk metric. For small safety
weights (o < 1.0), the control policy continues to favor
fast actions in many cases, resulting in a nonzero risk

metric approximately equal to the critical probability
(= 0.1364). In contrast, for larger values of a (a > 2.0),
the increased penalty diminishes the attractiveness of fast
motion, causing the optimal action to switch to slow or
stop, thereby driving the risk metric toward zero. Conse-
quently, increasing the safety penalty a leads to a mono-
tonic reduction in operational risk within this simplified
setting, demonstrating that tuning the penalty coefficient
provides an effective mechanism for balancing produc-
tivity and human safety.

4. Discussion

The results of experimental modeling demonstrate
the model’s ability to generate a safe action policy that
adapts to the spatial position of the human. Specifically,
out of nine possible configurations of the manipulator
and human positions, the system selects fast movement
in six cases, a stop in two cases, and slow movement in
only one. This indicates an overall advantage in effi-
ciency; however, the model also responds appropriately
when a human approaches the robot, switching to a safer
mode.

Analysis of the expected reward shows that maxi-
mum values are observed in configurations where the
manipulator and the human are at a safe distance, ena-
bling the selection of productive movement strategies. In
such cases, expected reward values reach up to 4.0,
whereas in zones of potential conflict, they decrease to 0.
This demonstrates the model’s high sensitivity to
changes in spatial context.

The graph of reward differences between the "fast"
and "stop" strategies reveals an almost constant ad-
vantage for dynamic actions, with an increase in reward
in the range of 0.9-1.1. Such consistency indicates the
model's stability, but also suggests limited variability in
response to different configurations. This may result
from the equal weighting of safety (a = 1) and efficiency
(B = 1) coefficients, which may need adjustment to im-
prove policy differentiation in high-risk zones.

Analysis of the value function confirms that the
highest values (exceeding 28) occur in states of maxi-
mum safety—when the human is distant and the manip-
ulator is in extreme positions. In contrast, in configura-
tions with a nearby human presence, values decrease to
around 18, reflecting increased risk and corresponding
policy changes.

The plot of reward differences between the "fast"
and "slow" strategies shows that, in most configurations,
slow actions yield similar or even higher expected re-
wards, particularly under uncertainty. This suggests that
the model adopts a cautious approach under partial
observability, aligning with the objective of minimizing
risk.

In summary, the proposed model meets the stated
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objectives: it adapts to spatial conditions, accounts for
risk factors, effectively differentiates behavior based on
uncertainty levels, and enables the prediction of safe ac-
tions. At the same time, given the model’s stable but
somewhat limited reward variability between actions, fu-
ture improvements could focus on modifying the reward
function — specifically, by adjusting the weight coeffi-
cients—or integrating deep learning algorithms to ap-
proximate strategies across an extended state space. The
proposed model shows strong potential for practical im-
plementation in human-robot interaction systems, partic-
ularly in the context of flexible manufacturing and cyber-
physical systems, where safe and adaptive behavior un-
der incomplete information is paramount.

5. Conclusions

As aresult of the research, a mathematical model of
a partially observed Markov decision process (POMDP)
was developed for controlling a 3-link collaborative ro-
bot-manipulator operating in an environment with the
presence of a person. The proposed model allows for ef-
fective consideration of uncertainty regarding the state of
the environment, in particular the position of the person,
by using a probabilistic approach to planning robot ac-
tions. The implementation of the concept of partial ob-
servation ensured adaptive behavior of the manipulator,
which minimizes the risks of interaction with a person
and increases the safety and efficiency of joint work. A
comparative analysis with traditional decision-making
methods confirmed the advantages of using POMDP in
situations with a high level of uncertainty and the need to
take into account the dynamic environment. The model
also takes into account the hierarchical decision-making
structure, which allows for flexible combination of high-
level planning with low-level control of the movements
of the manipulator links.

Based on the calculations and modeling, the feasi-
bility of using POMDP in the tasks of trajectory predic-
tion, collision avoidance, planning optimal actions and
taking into account the human presence factor was con-
firmed. In addition, observation, action, and reward mod-
els were taken into account, adapted to the characteristics
of a collaborative robotic environment. The study also
identified key parameters of the model that affect the ac-
curacy of decision-making, in particular the accuracy of
sensor data, the structure of the state space and the num-
ber of possible actions. It is advisable to direct further re-
search to the implementation of the proposed model on a
physical manipulator using computer vision and sensor
systems to accurately detect the human position in real
time. It is also promising to improve the model using
deep learning methods to approximate the value func-
tions and action policies in large state spaces. A separate
direction for further research is the integration of

POMDP with Sensor Fusion and Rule-Based Systems
methods to increase the reliability of decision-making in
hybrid cyber-physical production systems.
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PO3POBKA MOJEJII YACTKOBO CIIOCTEPEX KYBAHOI'O MAPKOBCBKOI'O ITPOLIECY
NPUMHATTS PIINEHD JJI4 3-X JAHKOBOI'O KOJIABOPATUBHOI'O
POBOTA-MAHIITYJIATOPA B CEPEJOBUII 3 TPUCYTHICTIO JIIOAUHU

B. B. €scees, /1. B. I'ypin, C. M. Kyniw, 10. A. Bonowiun

IIpeameTom noCIiPKEHHS B CTaTTI € MaTeMaTHYHa MOJIEIh YAaCTKOBO CIIOCTEPEKYBAHOTO MapKOBCHKOTO TPO-
[eCy MPUHAHSTTS PillleHh B YMOBaX HEBH3HAUCHOCTI Y BUPOOHUYOMY CEPEIOBHIII 3 MPUCYTHICTIO JIOMUHHE. MeTor
Po00TH € po3poOKka MaTeMaTHYHOI MOJIENI YaCTKOBO CITOCTEPEKYBAHOTO MapKOBCHKOT'O MPOIECY NPUHHSATTS PillIeHb
(POMDP) nnist popmyBanHst 6e31ieuHOT Ta e(pEeKTUBHOI MOTITHKU KEPYBaHHS PyXOM TPHIAHKOBOTO KOJIab0OpaTHBHOTO
poboTa-MaHImyIsITOpa. 3aBXaAHHS TOCIIKCHHS: MOOYIyBaTH IPOCTIP CTAHIB, IKUI OXOILIIOE MOJOKESHHS JIJAHOK PO-
0oTa Ta MMOBIpHE MOJOXKEHHS JIIOAUHN; BU3HAYUTH MHOKUHY JOIYCTUMUX [Jii (3yNMHKA, TOBITBHUN Ta IIBUIKUN
PYyX); CKOHCTPYIOBaTU (DYHKIIIIO CIIOCTEPEKEHHS 3 YpaxyBaHHSIM NMOXUOKM BUSBIICHHS JIFOJUHH; peanizyBaTtu (yHK-
1[I0 BUHATOPOJIY, sIKa OanaHCcye MK Oe3MeKOr0 Ta MPOAYKTUBHICTIO. MeTOa!: METO/0NIOTISI YaCTKOBO CIIOCTEPEXKY-
BaHUX MapKoBCchkHX TporeciB (POMDP), uncensHe MOJenOBaHHs, alPOKCHMAITisl O4iKYBaHOI BUHATOPOAM, MOPIB-
HSUTbHUH aHali3 CIeHapiiB i3 pI3HUMU MapameTpaMu pu3uKy. PesyabTaTu: peanizoBaHa Mojeib 3/1aTHa (OPMyBaTH
a/IaTUBHY TMONITUKY MTOBEIHKA MaHIyJIsATOpa 3 YpaxyBaHHSM HEMOBHOI iH(opMallii Mpo MoioKeHHs JHIUHHU; TTPO-
JIEMOHCTPOBAHO 3AJISKHICTh ONTUMAIIBHUX i BiJ pO3MOALTY HMOBIPHOCTEH MONOKEHHS JIFOJIMHU Ta IHTEHCUBHOCTI
mrpady 3a pU3UK; MOKA3aHO BIUIMB PI3HMII BUHATOPO] MK PSKUMaMH HIBUAKOIO PYXY Ta 3yNUHKU Ha BHOIp Iiil.
BucnoBku: pozpodiiena POMDP-Monens Moxke Oyt BUKOpUCTaHA SIK OCHOBA IS TOOYIOBH BUCOKOPIBHEBOT'O aj1a-
NITUBHOT'O KOHTPOJIIO KOJIAOOPATHBHOI'O MAHIIMYJISITOPA Y CIIJILHOMY 3 JIFOAWHOK pOO0YOMY MPOCTOPI. 3aIpOIOHOBA-
HUH MIIX1 Ma€e epCHeKTUBY BIPOBAKEHHS Y THYYKI BUDOOHUUI CHCTEMU Ta Kibep(i3uyHi KOMIUIEKCH, 30KpeMa, 3
ypaxyBaHHSIM JIMHAMIYHOTO MEPEOI[IHIOBAHHS PU3HMKIB 1 IHTETpallii 3 AITOPUTMaMH KOMIT FOTEPHOTO 30DYy.

Koarwuosi cioBa: [nycrpis 5.0; POMDP; konabopaTiBHUIT poOOT; poOOT-MaHIMYNIATOpP; NPUHHSTTS PillieHb;
YaCTKOBE CIIOCTEPEIKEHHSI; Oe3IeKa JIIOAWHH; MMOJITHKA Ha OCHOBI PU3HKIB; (DYHKIIisSi BUHATOPO/H; THYYKE BUPOOHH-
LTBO; poOOTH30BaHa B3aEMOJIis; aalITUBHE KEPYBaHHsI; CIIlJIbHA poboTa.

€BceeB Biagucinas B’siueciiaBoBuY — 1-p TeXH. Hayk, mpod., mpod. kad. KOMIT IOTEpHO-IHTEIPOBAHUX
TexHouori#, aproMaTu3aiii Ta podororexHiku (KITAP), XapkiBcbkuil HalllOHaNbHUI YHIBEPCHTET pajioeNeKTpo-
Hiky, XapkiB, YKpaiHa.

I'ypin Imutpo BasnepiiioBuy — crapiin. BUKII. Kad. KOMIT IOTEPHO-IHTErPOBAaHUX TEXHOJOT1H aBTOMATHU3Allil Ta
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