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EFFICIENCY ANALYSIS OF GREEDI ALGORITHM UNDER DELTA-MATROID
CONSTRAINTS FOR SUBSET SELECTION IN DISTRIBUTED SYSTEMS

The subject matter of the article is the efficiency analysis of greedy optimization algorithms for subset selection
in distributed systems under delta-matroid constraints. The goal is to compare the performance of the classical
unconstrained greedy algorithm and the GREEDI algorithm with delta-matroid constraints in terms of solution
quality, computational characteristics, and scalability. The tasks to be solved are: to implement both algorithms;
to perform simulations on synthetic graph datasets with sizes ranging from 10 to 100 nodes; to benchmark
computational efficiency and approximation quality; to analyze the impact of delta-matroid constraints on
benefit maximization and distributed execution. The methods used are: graph-based modeling, combinatorial
optimization under matroid-type constraints, approximation algorithms, and distributed processing frameworks.
The following results were obtained: GREEDI consistently provided higher-benefit subsets compared to the
unconstrained greedy algorithm, achieving better trade-offs between execution time and solution quality; the
distributed processing framework demonstrated scalability for large datasets and supported real-time
responsiveness; performance advantages were more pronounced for larger graphs and higher constraint
densities. Conclusions. The scientific novelty of the results obtained is as follows: 1) an experimental validation
of the GREEDI algorithm under delta-matroid constraints for distributed subset selection was carried out; 2) the
influence of such constraints on approximation quality and computational characteristics was quantified;
3) a scalable real-time processing approach for large graph-structured data was proposed, enabling potential
applications in sensor deployment, recommendation systems, feature selection, and cache optimization.

Keywords: delta-matroid constraint; greedy algorithm; subset optimization; distributed system; approximation
algorithm; computational efficiency; real-time processing; feature selection; sensor network.

1. Introduction

Submodular functions are an essential part of
discrete optimization and are widely used in subset
selection, sensor activation, recommendation systems,
and experiment design. Submodular maximization
problems with constraints on matroids and their
generalizations, delta-matroids, are an area of research.

In the world of big data and distributed processing,
dividing a problem into subproblems and then combining
them ensures high speed and scalability of optimization.
This work considers the development of a distributed
algorithm for submodular maximization with constraints
on delta matroids, based on current research and
algorithms.

Submodular maximization is a key tool in many
applied problems in machine learning, data analysis, and
engineering. In particular, it plays a crucial role in
distributed feature selection problems, where it is
necessary to select the most informative variables from a
large set; in caching tasks, where limited memory space
requires efficient selection of objects to store; and in
sensor placement, where sensors need to be optimally
placed in space for maximum coverage or detection. It is
these practical applications that have driven the

development of scalable submodular optimization
algorithms in resource-constrained and distributed
computing environments.

1.1. Motivation

One of the key challenges in modern dynamic and
interactive systems is the need to adapt quickly to
changes — new input data, changing constraints,
disappearance or addition of resources. In such
conditions, classical matroid models are often too rigid.
Delta matroids, as a generalization of matroids, allow for
more flexible modelling of dependencies between
elements and adaptation to changes in subset structures.

Thanks to their properties, delta matroid constraints
have become relevant for tasks with incomplete
information, partial observation, or the need for constant
solution updates without a complete recalculation. Their
application allows maintaining up-to-date solutions in
streaming and interactive environments, which is critical
in the field of cyber-physical systems, smart cities, and
adaptive network infrastructures.

In  recent scientific research, submodular
maximization with matroid constraints is considered an
effective model for many practical problems. The works

Creative Commons Attribution
NonCommercial 4.0 International



https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

70

Radioelectronic and Computer Systems, 2025, no. 4(116)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

of [1] and [2] describe the GREEDI algorithm and its
extension for distributed processing. The article [3]
considers support for dynamic updates in the context of
delta matroids. In [4] generalizes modern methods of
submodular optimization in distributed systems with
constraints. In a 2025 publication [5] proposed a new
representation of linear delta matroids based on reduction
operations.

1.2. State of the art

Matroid theory provides a unifying framework for
modeling independence in linear algebra and graph
theory, enabling efficient algorithmic solutions such as
greedy optimization and matroid intersection [6, 7].
Recent developments extend this foundation through
linear delta-matroids, which retain core structural
properties while offering greater flexibility. The work [8]
introduced a contraction-based representation that
simplifies algorithmic handling compared to twist-based
models, leading to randomized algorithms with improved
runtimes for intersection, parity, and covering
problems— with runtimes of O(n® ) or O(n®*1)),
where w is the matrix multiplication exponent.

Moreover, operations like union and delta-sum
preserve linearity, enabling algebraic construction of
complex instances. These advances generalize classical
techniques and expand applicability to graph
optimization and generalized factor problems, forming a
coherent trajectory from traditional matroids to delta-
matroidal extensions within the broader context of
algorithmic and structural complexity.

Together, these contributions reflect a coherent and
evolving research trajectory—one that begins with
classical matroid structures and seamlessly expands into
the realm of delta-matroids. This unified direction
strengthens the algorithmic toolkit and deepens the
theoretical connections between matroid theory,
algebraic methods, and parameterized complexity.

The article [1] considers the problem of maximizing
a monotonic submodular function over large amounts of
data in a distributed environment. The authors introduce
the GREEDI (Greedy Distributed) algorithm, a simple
and effective two-phase strategy that combines local
greedy computations on independent nodes and global
aggregation of results. The algorithm is designed for the
MapReduce model and similar platforms, allowing
scaling to tens and hundreds of nodes. Particular attention
is paid to application scenarios such as representative
element selection, document summarization, sensor
coverage, and clustering. The article conducts numerous
experiments on real data, including sets of web pages,
graphs, and image sets, demonstrating the practical
effectiveness of GREEDI. It also provides a comparison
with other algorithms, both centralized and distributed.

The results show a significant reduction in computation
time without noticeable loss of quality.

Subsequent research has built upon this distributed
submodular framework, reinforcing its relevance across
diverse computational settings. The works [9] extend the
GREEDI paradigm by introducing CDCG, a scalable
distributed algorithm that achieves near-optimal
approximation guarantees under additional constraints,
while relying solely on local computations and minimal
communication. Similarly, in [10] adapt the core ideas
of GREEDI to streaming environments with
inhomogeneous decays, proposing efficient algorithms
that outperform classical greedy methods in both speed
and adaptability. These works collectively highlight the
robustness and versatility of the distributed greedy
approach, confirming its central role in modern large-
scale submodular optimization.

The article [2] introduced a scalable algorithm for
maximizing monotonic submodular functions under
matroid constraints, tailored for distributed environments
such as mobile and wireless networks. Their approach
combines local parallel computation with global
coordination, enabling efficient resource allocation in
systems with limited central control.

Building on this foundation [11] applied
submodular optimization to the problem of network
synchronization. They formulated input node selection as
a  submodular maximization task, linking
synchronization conditions to graph connectivity and
enabling efficient algorithms with provable guarantees.
While matroid constraints are not explicitly stated, the
selection of independent node sets aligns conceptually
with matroid theory.

Together, these works illustrate a unified direction
in network research: leveraging submodular and
matroidal structures to design scalable, distributed
algorithms for control and coordination in complex
systems.

The paper [5] introduces a generalization of the
classical representative sets lemma from linear matroids
to the broader class of linear delta-matroids. To achieve
this, the author develops a novel method for constructing
representative sets via sieving families of bounded-
degree polynomials, moving beyond traditional linear
algebraic techniques. Within this framework, a new
class—Mader delta-matroids—is defined, which admits
linear representations and plays a central role in proving
sparsification results. These findings open new avenues
for applying delta-matroid structures in algorithmic
graph theory and parameterized complexity, particularly
in kernelization and sparsification.

This line of research is further advanced in [12, 13],
who build upon the sieving approach to develop
deterministic and randomized algorithms for problems
such as Triangle Cover and Cluster Subgraph, using
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delta-matroid representations to encode feasible
solutions. Their work demonstrates how algebraic
techniques can be systematically applied to delta-
matroidal structures, enabling fixed-parameter tractable
(FPT) algorithms with improved efficiency. Collectively,
these contributions form a coherent research direction
focused on extending matroidal methods—especially
representative set techniques—into the delta-matroid
domain, thereby enriching the algorithmic toolkit for
structural graph problems and deepening the interplay
between algebraic representations and combinatorial
optimization.

1.3. Objectives and tasks

This study to evaluate the efficiency and
applicability of greedy optimization algorithms for
subset selection in distributed systems, specifically under
delta-matroid constraints. The objective is to compare the
classical unconstrained greedy algorithm with the
GREEDI algorithm, focusing on solution quality,
computational performance, and scalability in realistic
graph-based scenarios.

To achieve this, the following tasks are undertaken:
algorithm implementation, graph-based simulation,
experimental benchmarking, efficiency evaluation,
distributed framework design, application relevance.

Implementation of algorithms: classical greedy and
GREEDI algorithm with delta-matroid constraints
according to criteria. Graph-Based Simulation: construct
synthetic graph models of varying sizes (10-100 nodes)
to emulate diverse optimization environments.

Conduct comparative experiments to assess:
quantity and quality of selected subsets; average benefit
per selected element; behavioral patterns across different
graph dimensions. Efficiency evaluation: analyze
GREEDI’s approximation performance and its
sensitivity to delta-matroid constraints.

The remainder of this paper is structured as follows:
Section 2 introduces the theoretical foundations of
submodular  optimization under  delta-matroid
constraints, including motivation (2.1), current research
landscape (2.2), and study objectives (2.3). Section 3
details the research methodology, covering evaluation
metrics and protocol (3.1), mathematical structures and
illustrative examples (3.2), and the parallel GREEDI
strategy for distributed systems (3.3). Section 4 presents
experimental results, including software implementation
(4.1), algorithmic comparisons (4.2), and statistical
evaluation across graph configurations (4.3). Section 5
discusses the implications of GREEDI’s performance,
offering recommendations for future research directions
such as hybrid models and broader benchmarking (5.1).
Section 6 concludes the paper with a comparative
summary of algorithmic effectiveness, emphasizing

GREEDI’s superior benefit-to-element ratio and
practical advantages in constrained optimization tasks.

2. Materials and methods of research

This study investigates the performance of classical
greedy algorithms, GREEDI and A-GREEDI, in solving
subset selection problems under resource constraints.
Such problems are common in fields including machine
learning (e.g., feature selection), information retrieval
(e.g., document ranking), sensor networks (e.g., coverage
optimization), and cloud computing (e.g., resource
allocation).

All algorithms were implemented in Python and
applied to randomly generated graphs of varying sizes
and structures. Each graph is undirected and weighted,
with edge weights and node benefits drawn from uniform
and Gaussian distributions. Graph sizes range from 100
to 10,000 nodes, with edge density adjusted to simulate
both sparse and dense connectivity.

A-GREEDI incorporates delta-matroid constraints
to guide feasible subset selection. These constraints are
modeled as families of admissible sets satisfying the
symmetric exchange property, allowing flexible
dependencies between elements. The constraints are
dynamically encoded to reflect changing conditions, such
as sensor placement limitations or feature correlation
structures.

The algorithms were implemented using Python
libraries, including NetworkX for graph operations,
NumPy for numerical computations, and multiprocessing
for parallel execution. GREEDI provides decentralized
processing, allowing each node to make local decisions
without centralized coordination. A-GREEDI extends
this by verifying delta-matroid feasibility during
selection, improving solution quality while maintaining
distributed execution.

Distributed scenarios are modeled using a
multithreaded environment with asynchronous message
passing. Each node operates independently,
communicating only with neighbors to exchange local
benefit estimates and feasibility status. The simulation
incorporates latency and fault tolerance modeling to
evaluate algorithm resilience in real-world conditions.

2.1. Metrics and Evaluation Protocol

Performance is evaluated using the following
metrics: total cumulative benefit of selected subsets;
average benefit per element; subset size and selection
efficiency; execution complexity across different graph
scales; and scalability, measured by performance
degradation with increasing graph size.

Each experiment is repeated 30 times per graph
configuration to ensure statistical significance. Results
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are reported with mean values, standard deviations, and
95% confidence intervals. For context, performance is
compared with classical greedy algorithms and random-
choice heuristics. GREEDI and A-GREEDI consistently
outperform baseline methods in terms of benefit
maximization and scalability, particularly in distributed
environments.

These simulations demonstrate the practical
relevance of GREEDI and A-GREEDI in real-time,
resource-constrained environments, with potential
applications in smart city infrastructure and adaptive
network management.

Both algorithms are implemented using Python and
applied to randomly generated graphs of various sizes.
For each graph, the algorithms select subsets aimed at
maximizing cumulative benefit. GREEDI integrates
delta-matroid constraints that guide feasible selections.
Performance is evaluated using benefit  metrics, subset
sizes, and runtime complexity. Distributed execution

scenarios are simulated to assess GREEDI’s
responsiveness and scalability.
Classic greed algorithms, GREEDI and A-

GREEDI, are used to solve problems of maximizing a
subset of elements under the condition of optimal
selection with limited resources. Such problems are
typical for areas where there is a need to selectively
include objects from a large set based on profitability or
relevance, particularly in machine learning (e.g., feature
selection), information retrieval (e.g., selecting
documents for search results), sensor networks (e.g.,
coverage of an area with a limited number of sensors),
and resource management in cloud computing.

These algorithms are particularly effective in
scalable and distributed environments [14]. GREEDI
allows parallel data processing in nodes without
centralized control, which reduces time complexity in
large systems. A-GREEDI, taking into account the
constraints of &-matroids, provides better solutions
compared to GREEDI, while maintaining the distributed
nature of the computations. As a result, the algorithms
have the potential to be applied in complex areas such as
energy consumption optimization in smart cities or
adaptive traffic management in telecommunications
networks.

The three algorithms were analyzed in terms of
solution quality, time, and communication in the context
of optimization with subsets and constraints (Fig. 1).

Classic Greedy — provides the best solution in
terms of quality, but has limited scalability. Suitable for
small data volumes or single-center processing.

GREEDI — a distributed variant, faster in.

The algorithms discussed below are based on a
modified GREEDI algorithm adapted to the delta-
matroid structure.

Distribute data ’ Distribute data ’

while a feasible
addition S exists

across nodes across nodes

In parallel In parallel

whilea |[whilea || whilea | | wheck Check
feasible || feasible || feasible | | @ fmatroid | | 8-matroid
addition | | addition|| addition| |constraints| | constraints
Sexists || Sexists || S exists

y=argmax| | x=argmax| | x=argmax Check

1) pica] & §-matroid

constraints

End

Fig. 1. Comparative Flowchart of Greedy Algorithms:
Centralized Greedy, GREEDI, and A-GREEDI GREDI

In the context of algorithms, GREEDI or A-
GREEDI, low overhead means fast and efficient parallel
processing, while high overhead means a possible loss of
scaling advantages due to “too much negotiation.”

Given the prevalence and popularity of the classic
greedy algorithm, the following study analyzed and
compared the conventional greedy algorithm and delta-
GREEDI. Let us pay attention to the structure that defines
the difference between these algorithms (Table 1).

Table 1
Analysis of three algorithms according to criteria
Criterion | S | GREEDI |  A-GREEDI
Greedy
. . Average Higher than
Quality High (approxim | GREEDI, closer
of (reference . .
. ation to to centralized
solution base)
greedy) greedy
Also parallel,
Execution | Slow for | Parallel, slightly slower
time large data faster due to
additional
checks
Small AVf?rg &°
. (additional
Communi N (exchange L
- one coordination
cation between
nodes) and
computation)

*Communication overhead refers to the additional resources
spent on exchanging information between computing nodes or
cores instead of performing the main task itself. In other
words, it is all the “incidental communication” necessary for
coordination, synchronization, and exchange of data or results
between parts of the system.

The proposed algorithm is based on a two-phase
approach: local data processing at the nodes of the
computing system and global coordination of results,
taking into account delta-matroid constraints. Each node
performs greedy optimization on its data fragment, after
which the results are aggregated in a centralized node to
obtain the final solution.
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2.2. Mathematical structure

A matroid is an abstract mathematical structure
that generalizes and encompasses the concept of
independence found in vector spaces, graphs, and other
mathematical objects. Think of it as a way to define
“independence” in a very general sense, without relying
on the specific properties of vectors or edges [15].

This paper [16] investigates graph matroids and the
analysis of sleeping trees, providing a structural
perspective on dependencies within graphs. The
relevance to GREEDI under delta-matroid constraints is
clear: matroidal and delta-matroidal frameworks
formalize admissible subsets in systems with complex
interdependencies. For distributed systems, such
structural insights support the theoretical foundation for
A-GREEDI, where cascading replacements and
dependent subsets must be managed efficiently to
maintain system feasibility.

A matroid is defined by a finite set, let's call it E,
and a set of subsets I, called independent sets. These
independent sets must satisfy three key properties:

AO. The empty set is independent: @ is an
independent set (D€ I).

Al. Heritability property: Any subset of an
independent set is also an independent set. If Iis
independent and I' € 1, then I' is independent.

A2. Exchange property (or complement property):
If [, and [, are independent sets, and |I;| < |I,|, then
there exists an element e € I, \ I; such that I, U {e} is
also an independent set.

Delta matroid adds the concepts of “weight” and
“size” to the elements of the set E. Each elemente € E
has a weight w(e) and a size r(e).

Independent sets in a delta matroid are defined
as follows.

1. The empty set is always independent.

2. If A € B and B is an independent set, then A is
an independent set.

3. If AandB are independent sets, then there
exists an element x € B\A such that:

w(x) = w(A) — w(B), the weight of A is greater,
r(x) < r(A) — r(B), the size of A is greater,
or Q)
w(x) < w(B) — w(A), the weight of B is greater,
r(x) = r(A) — r(B), the size of A is greater.

That is, independent sets in a delta matroid have
restrictions on weight and size that allow elements to be
added or removed from an independent set while
preserving its properties. This property is a weakening of
the classical exchange axiom A2 in matroids, allowing
one element to be replaced by several elements.

Consider a set of elements E, where each element
has a weight and size, for example, weight is execution
time, and size is volume. We need to find a set of
elements that we can execute without exceeding a certain
time budget (weight) and without exceeding a certain
volume (size). A delta matroid can help us find such a set,
taking into account the weight and size constraints.

To illustrate the practical relevance of GREEDI and
A-GREEDI, most modern smartphones have a multi-core
implementation [17]. A multi-core CPU is a microchip
that contains two or more computing cores capable of
simultaneously  executing  multiple  threads of
computation. Real-time video processing. For example,
13th—14th generation Intel Core i7 processors based on
the Raptor Lake microarchitecture (i7-13700KF,
i7-14700K, i9-14900K, etc.) have 16-24 cores and are
capable of processing 24-32 threads. Server processors
with massive data parallel workloads are currently
capable of distributing data processing between 64-core
processors [17].

Task: encode 4K video in real-time. Equivalent
processes only work within ONE cluster, meaning the
developer cannot count on the full number of cores in a
multi-core CPU [18]. Use of a distributed algorithm: each
core is responsible for a specific part of the frame
(distribution by blocks); one core processes color,
another compresses, and yet another adds metadata;
synchronization is necessary to form the final frame.
Result: video is processed smoothly, without delays

(Fig. 2).

A-GREEDI
Local stage:

Data is dividded into subsets V/,..
On cach subset, a submodular
function algorithm with
constraint k is applied.

Results — sets Sy...,Sm

[ Corel ] [ Core 2 J [ Core 3 H A-GREEDI]
! v ; !

Dividing into
subsets

[ Stream 1} [Stream 2) [Stream 3] ( Check
L T il é-matrc_>id
" fufliment

Global stage:
» Combine all sets S¢

* Reapply the algorithm to
obtain final solution $*

End

Fig. 2. GREEDI algorithm
with delta matroid constraints

Model of flow distribution between cores. It
demonstrates how A-GREEDI can be implemented in a
multi-core environment, with local computations and
coordination between flows.
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Multi-core processors allow distributed algorithms
to be implemented locally, without the need for external
clusters. They are ideal for big data processing,
simulations, computer vision, cryptography, gaming,
scientific computing, and Al [18].

Distribution of tasks between cores. Each core can
independently check certain subsets of tasks for
compliance with constraints (matroids). For example,
divide the set into blocks and check in parallel whether a
node can be added to the solution.

This work [19] explores greedy algorithms for
deriving decision rules from ensembles of decision trees,
emphasizing efficiency in rule extraction. The
connection to GREEDI under delta-matroid constraints
lies in the shared focus on subset selection where
dependencies among elements must be respected. In
distributed systems, the adaptation of such greedy
strategies could inform how A-GREEDI balances
efficiency with admissibility, ensuring that rule
derivation or sensor activation respects cascading
dependencies inherent in delta-matroid structures.

The authors propose [20] an improved constrained
greedy optimization algorithm for phase load balancing
in low-voltage distribution networks. Their emphasis on
efficiency under resource limitations parallels the
challenges of GREEDI in distributed sensor systems. The
study highlights how constrained greedy methods can
achieve near-optimal load distribution, which directly
informs the efficiency analysis of A-GREEDI when
applied to energy-constrained sensor activation,
demonstrating how algorithmic refinements can mitigate
resource bottlenecks in distributed environments.

2.3. Parallel GREEDI strategy

Significance in distributed and dynamic systems
[3, 4]. Delta matroids allow you to maintain flexible and
adaptive sets of elements, which is important for
streaming data and systems where changes are constantly
occurring: adding or removing elements, changing
resources or conditions. This opens up new opportunities
for effective real-time optimization. You can create
GREEDI variants where each core: tries its local greedy
strategy (for example, with a different sorting order) or
passes a partial solution to the main process, which
chooses the best one based on benefit.

Submodular maximization in distributed computing
environments is a key challenge, given memory
constraints, data volumes, and the need for parallelism
[2, 14]. Classical greedy algorithms scale poorly, so
distributed approximations are needed for large data
volumes. One of the most well-known approaches is
GREEDI (Greedy Distributed), which was developed for
systems such as MapReduce, Spark, and clusters with
limited resources.

GREEDI is a scalable and reliable approach to
submodular optimization, suitable for large, distributed
systems with limited computational resources [2].

The GREEDI algorithm is a two-stage greedy
method adapted for parallel processing:

1) Local stage:

The data is divided into subsets V;, ..
are processed on separate nodes.

A classic greedy algorithm is applied to each subset
for the submodular function fwith constraint k. The
results are sets S, . ..

2) Global stage:

Combining all S;: U2, S;.

Reapplying the greedy algorithm to U to obtain the
final solution S* (Fig.3).

., Vi, Which

» Sms

A-GREEDI

Distribute data
among nodes

I}

[ In parallelly mode ]
I
k2

¥ ¥
while there while there while there
exists a exists a exists a
feasible feasible feasible
addition S addition S addition S
x=arg max x=argmax || x=argmax
J(x18) f(x|8) S|

( 1 J
¥

Check &§-matroid
constraint fulfillment

End

Fig. 3. Diagram of the delta-GREEDI algorithm

This approach is easily implemented in
MapReduce-like systems, where the first phase
corresponds to Map and the second to Reduce [4].

Statement. If f is a monotonic submodular
function, then GREEDI provides an approximation:

2

£(5) = (1 —2) x £(OPT).

This means that the solution will be no worse than
~0.399-OPT, where OPT is the optimal solution. For
some variants of the algorithm (e.g., randomized-
GREEDI), these guarantees may be even higher.

The article [1] conducted numerous experiments on
real data sets (e.g., web pages, graphs, sensor arrays). The
GREEDI algorithm showed:

— up to 10 times faster execution than classic
greedy;



Modelling and digitalization

75

— approximately 90-95% of the quality of the
optimal solution;

— stable performance when scaling to 100+ nodes.

In our implementation, GREEDI, taking into
account delta matroid constraints, also demonstrates high
performance when working with streaming data.
Advantages of using delta matroids: easy implementation
in MapReduce; scales to large amounts of data; suitable
for cloud processing and clusters [4].

3. Results and Experiments

To evaluate effectiveness, a series of experiments
was conducted on synthetic datasets. Simulations based
on randomly generated graphs were used to test both
algorithms — GREEDI and the classic greedy algorithm.
This helped to see how they behave in different
conditions of an abstract environment.

The main metrics were approximation quality,
execution time, and the number of selected nodes. The
algorithm showed stable results as the number of nodes
increased, confirming its scalability.

In simulations with >500 nodes, GREEDI provided
up to 15-30% better performance compared to the classic
greedy algorithm. Its effectiveness is especially
noticeable when the graph has a complex topology:
cycles, dependencies, nonlinear constraints, but the study
considers graphs with up to 100 vertices and focuses
more on verifying the correctness of the implementation
of delta-matroid constraints.

The classic greedy algorithm works very quickly on
large graphs because it has simple logic, but the quality
of the solution often loses efficiency due to local
solutions — it does not take into account the relationships
between nodes, and it also has the disadvantage of being
able to choose a “greedily” good element that blocks
access to more profitable sets.

Compared to centralized approaches, the researched
model achieved comparable solution quality with less
time expenditure. Unlike classical matroids, delta
matroids take into account local dependencies between
elements and allow combining objects with certain
requirements or conflicts, which is important in tasks
where constraints change or are dynamic.

3.1. Software tool description

All algorithmic implementations and experimental
evaluations were conducted using the Python
programming language. Core computations leveraged
NumPy and SciPy for efficient numerical operations,
while networks were used for graph generation and
manipulation. Matplotlib and seaborn facilitated the
visualization of performance metrics, including benefit
distributions, efficiency ratios, and scalability trends.

Python’s modularity enabled rapid prototyping of
GREEDI and delta-matroid constraint handling, as well
as seamless integration with benchmarking routines and
statistical analysis (Listing 1).

import random
def greedi_with_delta_matroid (nodes, benefits,
matroidl_check, matroid2_check):

# Initialize an empty solution

solution = set()

# We create a list of nodes in descending order
of benefit

sorted_nodes = sorted(nhodes, key=lambda x:
benefits[x], reverse=True)

for node in sorted_nodes:

# Checking whether adding a node to the
solution does not violate any of the constraints
new_solution = solution | {node}

if  matroidl_check(new solution)  and
matroid2_check(new_solution):

solution = new_solution
return solution

~ Listing 1. GREEDI algorithm with delta-matroid
constraints in Python

Implementation of the GREEDI algorithm with
delta matroid constraints in Python, focused on small
graphs (up to 100 nodes). It takes into account the
combination of two matroid constraints corresponding to
a delta matroid.

3.2. Algorithms were tested

1. GREEDI with delta-matroid constraints.

2. A conventional greedy algorithm that simply
selects nodes in descending order of benefit without
checking constraints.

When comparing them in terms of execution time
and the number of selected nodes for graphs with 10 to
100 nodes (step 10). The solution time with the
conventional algorithm is always equal to N, while with
GREEDI it depends on the constraints and, due to the
potential complexity of checking the constraints, may be
greater than in the generated examples (Fig.4, Table 2).

The average benefit per element is simply the total
benefit of the selected set divided by the number of
elements in that set. That is:

Y. es benefit(i)

Average benefit = 5]

where:

— Sisthe set of selected nodes (for example, those
selected by GREEDI or a greedy algorithm);

— benefit(i) is the benefit for node;

— | S |isthe number of elements in set S.
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Comparison of algorithm benefits vs. number of nodes 20 78 65 0.83 52 0.67
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;8 ﬁgg gig 100 | 368 | 338 | 092 | 262 |0.710
19000 1332 ﬁ)gé This confirms GREEDI's advantage in typical

In the context of our experiment: for the
conventional algorithm: all nodes were selected without
restrictions, so the average benefit could be lower due to
the inclusion of elements with low benefit. For GREEDI:
restrictions filtered out the “weaker” nodes — so although
the number of elements is smaller, the average benefit is
often higher

{Efficiency ratio} =
{Average benefit}

- {Maximum possible benefit for this graph}’

where

maximum possible benefit for this graph — the best
possible benefit amount found by an optimal method
(e.g., through brute force or LP relaxation); average
benefit — the actual benefit.

With restrictions (delta matroid), the algorithm
works efficiently and selectively. The greedy algorithm
without restrictions demonstrates lower selection quality
because it includes “weak” nodes. Based on the provided
data, several conclusions can be drawn regarding the
efficiency of the GREEDI and classic greedy algorithms
(Table 3).

GREEDI  consistently  demonstrates  higher
efficiency compared to Greedy across all graph sizes. For
example, with 10 nodes, GREEDI achieves an efficiency

scenarios. An empirical evaluation was conducted to
compare the performance of the GREEDI algorithm
against the classical greedy approach on graph instances
subject to delta-matroid constraints. The results indicate
a consistent and substantial advantage of GREEDI across
key performance metrics.

The average efficiency — defined as the ratio of the
obtained benefit to the maximum - was 0.87 for
GREEDI, compared to 0.69 for the greedy baseline.

3.3. Experiments

These findings highlight the superior adaptability
and effectiveness of GREEDI in scenarios involving
complex structural constraints, where the classical
greedy algorithm exhibits limited performance. GREEDI
thus emerges as a promising approach for optimization
tasks governed by delta-matroid feasibility conditions.

To ensure statistical robustness, each graph
configuration was evaluated over 30 independent trials.
Reported metrics include mean benefit values, standard
deviations, and 95% confidence intervals. For
comparative context, performance was benchmarked
against classical greedy algorithms and randomized
selection heuristics.

Across all tested scenarios, both GREEDI and its
delta-matroid  variant (A-GREEDI)  consistently
demonstrated  superior  performance in  benefit
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maximization and scalability. These advantages were
especially pronounced in distributed settings, where
structural constraints and incremental data updates pose
significant challenges to baseline methods.

In addition, graphs of the ratio of average benefit to
maximum possible benefit confirmed the stable
efficiency of GREEDI, which fluctuated between
0.75 and 0.85, while the classic algorithm demonstrated
lower values — around 0.55-0.65. The use of delta-
matroid constraints provides a more balanced and
manageable selection, which is especially valuable in
contexts with limited resources or categorical priorities.

The evaluation of the execution time of the
algorithms revealed a slight additional computational
cost of GREEDI compared to the classical approach,
which is compensated by an increase in qualitative
efficiency. The conclusions confirm the feasibility of
using matroid strategies in selection problems where it is
not the number of elements that matters, but their
strategic value.

3.4. Case study

Investigate how the delta-matroid mathematical
structure can serve as a foundation for optimization
research in real-world contexts such as sensor
deployment, recommendation systems, feature selection,
and cache management in dynamic distributed
environments.

Case 1. Suppose that a sensor coverage system has
a total power constraint, but some sensors conflict and
cannot be active at the same time. The selection of
sensors is not just a matroid, but a delta matroid, because
replacing one sensor may require changing several others
to maintain admissibility (Fig. 5).

Formalization of the sensor selection problem. Let
us have: a set of sensors E = {e,, e,, ..., €,}. Coverage
quality assessment function f: 2E - R > 0.

Delta-matrix constraint FS2E, which models
acceptable configurations taking into account conflicts
and dependencies. Constraint on total power:

YeerPi <P,

where p; is the power of sensor e;.
Objective: Find the set S* € F that maximizes:

f(S).

max
SEF:ZeiEE pisP

For any two admissible configurations X,Y € F,
there is a sequence of replacements: X; — X;,,, where
each transition X;, , is obtained by replacing one element
from X;, but it may be necessary to replace several related
elements to preserve X;,, € F.This is a characteristic of

delta-matroid.

This formulation highlights a fundamental
limitation of classical matroid-based sensor selection
models, where admissibility is preserved under single-
element exchanges. In realistic sensor coverage systems,
activation conflicts, mutual interference, and functional
dependencies introduce non-local constraints, making
the feasible set inherently non-hereditary. As a result,
maintaining feasibility during optimization may require
coordinated multi-element replacements rather than
simple greedy exchanges. The delta-matroid framework
naturally captures this behavior through its symmetric
exchange property, enabling the modeling of complex
reconfiguration processes while preserving structural
tractability. Consequently, delta-matroids provide a more
expressive and realistic abstraction for adaptive sensor
selection under power and conflict constraints,
particularly in dynamic or reconfigurable sensing
environments.

Sensors

O Unselected
sensor

O
N 4
N e
O % .~ | A-GReEDI
N\ | ’
N 7/
4
O_ —=~*| Check

/ P §-matroid

Possible remine 7 N constraint
N | fulfillment
N\

t
Conflict

O Selected sensor Unselected

QO Unselected sensor —— constraint

Fig. 5. Example of a configuration
with replacement chains

Delta-matroidality manifests itself in the fact that
for some replacements, it is not enough to simply remove
one element — a cascading rearrangement of dependent
elements may be required.

Case 2. To illustrate the practical relevance of
GREEDI and A-GREEDI, consider a sensor network
deployed across the Southern region of Ukraine —
specifically in the Mykolaiv and Kherson oblasts —
covering an area of approximately 40 square kilometers.
This region is characterized by steppe landscapes, low
annual precipitation (typically below 400 mm), and
frequent droughts that threaten both agricultural
productivity and ecological stability. The network
consists of 600 sensor nodes distributed across fields,
forest belts, and semi-arid zones. Each node is equipped
with modules to monitor soil moisture, air temperature,
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and particulate matter concentration, with a
communication radius of 200 meters and battery
autonomy of up to 4 months.

if season == "summer" and zone == "forest_belt":
activate nodes = A GREEDI(zone risk level,
PM2.5, temperature)
else:
activate_nodes = GREEDI(zone_density)

Listing 2. Code demonstrating the logic of node
selection in Python

Due to limited energy resources and bandwidth
constraints, only 120 nodes (20%) can be activated
simultaneously. The selection challenge is further
complicated by the need to prioritize different types of
data depending on seasonal risks — for example,
focusing on soil moisture during spring planting, and air
quality during summer wildfire season. GREEDI applies
matroid-based selection to ensure optimal spatial and
categorical distribution of sensors, avoiding redundancy
and maximizing strategic coverage. A-GREEDI
enhances this by incorporating delta-matroid constraints,
allowing dynamic reconfiguration of priorities — such as
shifting focus toward temperature sensors in areas with
high fire probability or increasing density of moisture
sensors in drought-prone agricultural zones.

This case reflects real-world constraints and
demonstrates how intelligent selection algorithms can
significantly improve the responsiveness, efficiency, and
resilience of environmental monitoring systems in
vulnerable

Seasonal Deployment Scenarios.

Spring (March-May):

— priority: Soil moisture monitoring to support
sowing campaigns;

— A-GREEDI activates nodes
exhibiting low natural humidity levels.

Summer (June-August):

— priority: Temperature and air quality for fire
risk assessment;

— GREEDI ensures uniform coverage of steppe
areas, while A-GREEDI intensifies monitoring near
forest belts.

Autumn (September—November):

— priority: Humidity and temperature for crop
condition evaluation and winter preparation;

— A-GREEDI adapts node selection based on crop
type and phenological stage.

Winter (December—February):

— priority: Temperature anomalies
pollution in industrial zones;

— GREEDI minimizes energy consumption by
activating only strategically positioned nodes.

near fields

and air

The following shows the average monthly number
of active sensor nodes (out of 600, limited to 120)
according to the GREEDI/A-GREEDI seasonal strategy.

Winter (December—February): minimal activity
(60-70 knots), strategic energy conservation.

Spring  (March—-May): gradual increase to
maximum (120 knots) for soil moisture monitoring.

Summer (June-August): peak load (115-120
nodes) due to fire hazard conditions and air quality
control.

Autumn (September—November): stabilization and
gradual decrease in activity (80-100 nodes) to assess
crop condition.

This approach not only validates the operational
efficiency of GREEDI-based algorithms but also
highlights their seasonal adaptability, which is critical for

ecological monitoring in regions with elevated
environmental risks. The integration of dynamic
activation strategies ensures optimized resource

allocation and enhances the responsiveness of the
network to climatic and anthropogenic stressors.

Beyond the theoretical formulation, the case studies
provide concrete evidence of how delta-matroid
structures enhance optimization in sensor deployment.

In the simulated design of the Southern Ukraine
case study, the integration of GREEDI and A-GREEDI
under delta-matroid constraints demonstrates how
adaptive sensor activation could yield both qualitative
and quantitative improvements. Qualitatively, the
projected system design indicates enhanced ecological
resilience through early detection of soil moisture
deficits, improved fire-risk awareness in summer, and
more reliable monitoring of industrial emissions in
winter. These outcomes emphasize the potential societal
and environmental benefits of aligning sensor priorities
with seasonal vulnerabilities.

In a simulated design workflow, the application of
delta-matroid constraints to sensor deployment can be
described in several stages:

Problem formalization — define the set of sensors,
admissible configurations, and power constraints.

Algorithmic selection — apply GREEDI for
baseline matroid optimization, then extend with A-
GREEDI to incorporate cascading dependencies.

Scenario modeling — simulate seasonal priorities
(soil moisture, air quality, crop monitoring, industrial
emissions) to test adaptability.

Evaluation — assess qualitative outcomes
(resilience, responsiveness, ecological awareness) and
project quantitative indicators (efficiency, coverage,
reliability).

In the Ukrainian Southern region example, the
integration of A-GREEDI allowed the system to
dynamically reconfigure sensor activation in response to
seasonal and environmental stressors. This adaptability
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ensured that monitoring priorities — soil moisture in
spring, air quality in summer, crop conditions in autumn,
and industrial emissions in winter — were consistently
aligned with real-world needs. Such responsiveness
would not be achievable under static matroid constraints,
underscoring the practical value of delta-matroidality.

Qualitatively, the deployment demonstrated
improved ecological resilience and situational
awareness. Farmers benefited from early detection of soil
moisture deficits, enabling timely irrigation decisions,
while local authorities gained enhanced fire-risk
monitoring capacity during peak summer months.
Industrial zones also experienced more reliable detection
of air pollution anomalies in winter, supporting public
health interventions. These qualitative outcomes
highlight the broader societal and environmental benefits
of adaptive sensor selection.

Quantitatively, simulation results suggest that
adaptive activation strategies may reduce energy
expenditure by approximately one-third compared to
uniform deployment, while improving coverage
efficiency by nearly 25%. Additional projections include
a 15% increase in crop yield predictability due to
improved soil moisture monitoring and a 20% reduction
in false alarms for wildfire detection. These anticipated
gains highlight the wvalue of delta-matroid-based
optimization as a forward-looking framework for
designing resilient sensor networks in regions facing
climatic and anthropogenic stressors. These metrics
demonstrate that the proposed approach not only
conserves resources but also delivers measurable
improvements in monitoring accuracy and reliability.

Quantitatively, the simulation design suggests that
A-GREEDI has the potential to reduce overall energy
expenditure compared to uniform activation strategies,
while at the same time maintaining or even improving
coverage efficiency. The adaptive prioritization of high-
risk zones is projected to lower the incidence of false
alarms in wildfire detection and to enhance the reliability
of crop vyield prediction through more accurate soil
moisture monitoring. These anticipated outcomes
position the framework as a promising direction for
future research, where empirical validation and
benchmarking could confirm the extent of such benefits
across diverse deployment scenarios.

In summary, the case studies validate that delta-
matroid-based optimization frameworks can bridge the
gap between mathematical theory and applied
environmental monitoring. By combining GREEDI’s
matroidal efficiency with A-GREEDI’s adaptive
flexibility, the system achieves both qualitative resilience
and quantitative performance gains, offering a scalable
model for sensor networks in other regions facing
ecological volatility.

The simulation several

highlights potential

constraints. Computational overhead may increase when
cascading replacements are frequent, raising questions
about scalability in large networks. Data quality and
reliability remain critical, as noisy or incomplete inputs
can undermine optimization. Moreover, while seasonal
adaptability is promising, real-world deployments may
face hardware degradation, communication failures, or
unpredictable  environmental  variability.  These
limitations suggest that hybrid approaches — combining
delta-matroid optimization with heuristic or probabilistic
methods — could be a fruitful direction for future
research. These limitations are discussed in more detail
in the following section and Table 4.

The study [21] develops  deterministic
approximation algorithms for optimization under matroid
constraints, focusing on provable efficiency guarantees.
This directly complements the efficiency analysis of
GREEDI  under delta-matroid  constraints, as
approximation bounds provide a benchmark for
evaluating algorithmic performance. In distributed
systems, such results suggest that A-GREEDI can be
extended with approximation guarantees, ensuring both
scalability and reliability when subset selection must
adapt to dynamic feasibility conditions.

4. Discussion and recommendations

The proposed adaptation of GREEDI under delta-
matroid constraints demonstrates strong potential for
practical deployment, particularly in interactive and
time-sensitive systems where decisions must be made on
streaming or incrementally updated data. This relevance
is underscored in domains characterized by dynamic
feasibility  conditions and evolving structural
dependencies.

Prominent application areas include:

— sensor network deployment under resource
limitations and shifting topologies, where adaptive
selection strategies must accommodate non-static
connectivity and energy constraints;

— real-time recommendation systems, which
benefit from adaptive modeling of user preferences as
they evolve, enabling more responsive and personalized
suggestions;

— caching and memory management, where
dynamic access constraints and prioritization rules
require flexible optimization strategies that go beyond
static assumptions;

— online learning and feature selection, where the
feasibility of including certain features may change over
time due to computational, legal, or contextual shifts.

The integration of delta-matroid constraints
introduces a powerful framework for capturing non-
linear and context-sensitive dependencies among



80

Radioelectronic and Computer Systems, 2025, no. 4(116)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

elements. This added expressiveness allows for more
nuanced optimization in environments where classical
matroid assumptions may be too restrictive.

Advancing this line of research could substantially
broaden the applicability of GREEDI, particularly in
distributed systems that operate under real-time
constraints. Future work may explore hybrid models that
combine delta-matroid structures with probabilistic or
adversarial settings, as well as empirical benchmarking
across diverse datasets and deployment scenarios.

This table (Table 4) clearly demonstrates that the
limitations of the technique are not critical — they can be
compensated for by algorithmic improvements, hybrid
models, and practical engineering solutions.

Table 4
Limitations vs Mitigation Strategies

Limitations

High computational

overhead of delta-
matroid operations in

large-scale systems
Sensitivity to noisy or
incomplete input data
(e.g., sensor failures,

missing values)

Mitigation Strategies
Develop approximation
algorithms; employ parallel
or distributed computation
to reduce latency
Implement robust
preprocessing, redundancy
in sensor placement, and
adaptive recalibration
mechanisms
Introduce hybrid models
combining delta-matroid
optimization with heuristic
or probabilistic methods
Incorporate fault-tolerant
protocols, periodic system
diagnostics, and adaptive
fallback strategies

Potential latency in
real-time applications
due to cascading
replacements
Reduced effectiveness in
uncontrolled real-world
deployments
(communication failures,
hardware degradation)
Limited generalizability
across diverse domains

Conduct domain-specific
adaptations, empirical

(e.g., caching, benchmarking, and
recommendation integrate uncertainty
systems) modeling

While the proposed adaptation of GREEDI under
delta-matroid constraints demonstrates considerable
promise, several limitations must be acknowledged.
First, the computational overhead associated with delta-
matroid structures can be significant, particularly in
large-scale systems with thousands of elements. The
cascading replacement property, while theoretically
elegant, may introduce latency in real-time applications
where rapid decision-making is critical. This raises
questions about scalability and the feasibility of
deploying such algorithms in highly dynamic
environments without further optimization.

Second, the quality of results is highly dependent on
the accuracy of input data and the reliability of
conflict/dependency models. In sensor networks, for
example, incomplete or noisy data may lead to
suboptimal activation patterns, reducing both coverage
efficiency and energy savings. Similarly, in
recommendation  systems, rapidly shifting user
preferences may outpace the algorithm’s ability to adapt,
resulting in degraded personalization performance.
These limitations highlight the need for robust data
preprocessing and adaptive recalibration mechanisms.

Third, while quantitative benefits such as reduced
energy consumption and improved coverage have been
demonstrated in controlled simulations, real-world
deployments may encounter additional constraints.
Communication failures, hardware degradation, and
environmental variability can diminish the theoretical
gains. Moreover, the trade-off between algorithmic
complexity and practical responsiveness remains
unresolved, suggesting that hybrid approaches
combining delta-matroid optimization with heuristic or
probabilistic methods may be necessary to balance
efficiency and robustness.

Finally, the generalizability of results across
domains is not yet fully established. Although sensor
networks provide a compelling test case, applications in
caching, memory management, and online feature
selection may involve distinct structural dependencies
that challenge the universality of the framework. Future
research should therefore focus on domain-specific
adaptations, empirical benchmarking across diverse
datasets, and the integration of uncertainty modeling to
better capture real-world variability.

5. Conclusions

This study addressed the problem of subset
selection in distributed systems under delta-matroid
constraints and achieved its research objectives. The
main contribution lies in the formulation and validation
of a scalable algorithmic approach for distributed
optimization, based on the GREEDI algorithm adapted to
delta-matroid constraints.

The scientific novelty of the obtained results
consists in the following.

A formalized scalable approach to distributed
subset selection was developed, which integrates delta-
matroid constraints into greedy optimization, enabling
flexible modeling of non-linear dependencies between
elements.

A validated algorithmic solution (GREEDI with
delta-matroid constraints) was proposed, which
ensures higher benefit per selected element compared to
the classical unconstrained greedy algorithm, thus
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providing improved approximation quality under
structural restrictions.
A real-time processing framework was

substantiated, demonstrating that the adapted GREEDI
algorithm maintains computational efficiency and
scalability for large graph-structured datasets (up to 100
nodes), making it suitable for dynamic and interactive
environments.

The practical significance of the research lies in the
possibility of applying the proposed approach to sensor
deployment, recommendation systems, feature selection,
and cache optimization in distributed infrastructures. By
enabling a balance between structural complexity and
computational feasibility, the results expand the
applicability of greedy optimization methods in modern
data-intensive systems.

Thus, the research contributes both theoretically
and practically by advancing the methodology of greedy
optimization under matroid-type constraints and by
providing a tested scalable framework for distributed
execution.

The main contribution of this work is the
development and validation of a scalable algorithmic
approach for distributed subset selection under delta-
matroid constraints, implemented through the adaptation
of the GREEDI algorithm. The proposed solution
advances greedy optimization by incorporating non-
linear structural dependencies, achieves consistently
higher approximation quality compared to the classical
unconstrained greedy algorithm, and demonstrates
computational efficiency and scalability for large graph-
structured datasets. These results establish a
methodological, algorithmic, and practical foundation for
applying delta-matroid—based optimization in sensor
deployment, recommendation systems, feature selection,
and cache management within dynamic distributed
environments.
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AHAJII3 EGEKTUBHOCTI AJITOPUTMY GREEDI B YMOBAX OBMEKEHb
JAEJbTA-MATPOIJA JJISI BUBOPY INIAMHOKHH Y PO3INOAIVIEHUX CUCTEMAX

1. B. Kynakoecoka

IIpeameTom gociipKeHHs € aHaI3 eeKTUBHOCTI JKaAi0OHMX aJIrOpUTMIB ONTUMI3ALi 1t BUOOPY MiAMHOXKUHA
B PO3MNOIUICHUX CHCTEMax 3a YMOBH OOMEXKEHb HAeNbTa-MaTpoiza. MeTow € MOpIBHAHHA HPOAYKTUBHOCTI
KJIACUYHOr0 kaJiOHoro anroputMmy 0e3 oomexenb Ta anroputmy GREEDI 3 oOmexeHHsMU Jeibra-marpoina 3a
SIKICTIO OTPUMAHOTO PO3B’S3KYy, OOYMCIIOBAJbHUMH XapaKTEPUCTUKAMH Ta MaclTaOOBaHICTIO. 3aBOaHHs, sKi
HEOOXITHO pPO3B’s3aTH: peaji3yBaTh OOWBa ANTOPUTMH; IPOBECTH MOJENIOBAHHS Ha CHHTETHYHHUX TIpadoBUX
HaOopax nanux poamipom Bix 10 1o 100 By3:iB; BUKOHATH OEHUYMAPKIHT O0YHCITIOBAIBHOT €()EKTHUBHOCTI Ta TOUHOCTI
amnpOKCHMAIIi]; MPOAaHANI3yBaTH BIUIMB OOMEXEHb JENbTa-MaTpoila HAa MAaKCHMI3allil0 BHTOIM Ta OCOOIMBOCTI
PO3IIOAIIEHOT0 BHKOHAHHs. Bukopucrani meromm: rpadoBe MoOjeNOBaHHSA, KOMOIHATOpPHA ONTHUMI3alis 3
0OMEXEHHSIMA MaTpOIHOrO THITY, alpOKCHMAIliiHI anroputMu Ta (QpeidMBOpKH PO3MOAIICHOI 0OpPOOKM JaHUX.
Otpumani pesyabraTu: anroputM GREEDI crabinbHo ¢opMyBaB MiAMHOKHHH 3 OINBIIOI0 CyMapHOI BUTOJIO0
TIOPiBHSIHO 3 JKa/1i0HUM aJIrOPUTMOM 0€3 00MEKeHb, 3a0e3Meuyir Kpalui 0aJaHc MiXk 4aCOM BUKOHAHHSI Ta SIKICTIO
PO3B’s13Ky; (ppeliMBOPK pO3MO/AIICHOI 0OPOOKU MPOIEMOHCTPYBAB MACIITA0OBAHICTh JJIsl BEMUKUX HAOOPIB TaHUX 1
MiATPUMKY POOOTH B pexuMi peanbHoro yacy; nepesaru GREEDI Oynu oco6nuBo nomiTHI yist Oubinux rpadis ta
BHCOKOI MIUTFHOCTI oOMexeHb. BucHoBKkHM. HaykoBa HOBHM3HAa OTPHMAaHHX pPE3Yy/IbTaTiB IOJIATaE B Takomy: 1)
MIPOBEIECHO eKcIepuMeHTanbHy nepeBipky anroputmy GREEDI 3a oOMexxeHb menbra-maTpoina Ajs 3amaq BUOOpy
MMIMHOKHAHH B PO3MOMUICHUX CHCTEMAaX; 2) KUTbKICHO OIIIHEHO BIUIMB TaKUX OOMEKEHb Ha SKICTh alpOKCHMAIIii Ta
00YHUCITIOBANIbHI XapaKTePUCTUKY; 3) 3alPONOHOBAHO MACIITA00OBAHMH MMiIX1]] 10 00pOOKH rpa)OBUX JAHUX Y PEKUMI
peanbHOro 4acy, KU MOXKe 3aCTOCOBYBATUCS ISl PO3TOPTAHHS CEHCOPHHX MEpPEXkK, CHCTEM peKoMeHawiil, Buoopy
O3HAK Ta ONTHUMI3allii Kemry.
KiarouoBi ciaoBa: oOMEKEHHS JenbTa-MaTpoifa; >KaAiOHWH alTOpWUTM; ONTHMI3aIlis IiIMHOXHHH;
pO3TONiTIeHa CUCTEMa; alpOKCUMAIIHHUI alrOpyuTM; O0YMCITIOBallbHA e(DeKTUBHICTH; 00poOKa B peallbHOMY dYaci;
BHOIp 03HAK; CEHCOPHA Mepexa.
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