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MARKOV MODELLING OF HUMAN-MACHINE INTERACTION  

IN AN AUGMENTED REALITY ENVIRONMENT  

FOR UAV/UGV-BASED HAZARDOUS AREA MONITORING SYSTEMS 
 

The subject of the study is Markov processes used for the formal description of the dynamics of states of un-

manned vehicles controlled by an operator through augmented reality–based human–machine interfaces. 

Within the scope of the research, unmanned aerial and ground vehicles are considered as complex multi-state 

technical systems whose functioning is determined both by their technical characteristics and by the specific 

features of human interaction with the control interface. The aim of the study is to assess the impact of aug-

mented reality–based human–machine interaction interfaces on the error-free decision-making of unmanned 

system operators, as well as on their responsiveness during control and reaction to changes in system states. 
The objectives of this study are to develop Markov models for the following scenarios: (a) without considering 

system failures and operator errors, with full recovery; (b) without considering failures, but allowing for oper-

ator errors, with full recovery; (c) considering system failures without operator errors, with full recovery; (d) 

considering both system failures and operator errors, with full recovery; and (e) without considering failures, 

allowing for operator errors, with the presence of a redundant unmanned system. The resulting Markov chains 

are intended to be used for modelling and subsequent comparison of the impact of different operating condi-

tions on the system. As a result of the study, the following were obtained: (a) a classifier of states of unmanned 

aerial vehicles within a hazardous environment monitoring system based on the possible presence of failures, 

operator errors, and system redundancy; (b) Markov models for various system operation scenarios; and (c) 

simulation results of system operation based on the developed Markov models. Conclusion. The scientific nov-

elty is as follows: a method for assessing the availability of monitoring systems with augmented reality–based 
human–machine interaction interfaces is proposed, which is based on single- and multi-fragment Markov 

models that take into account operator actions, partial failures, and the availability of reserve unmanned aeri-

al vehicles. The proposed method quantitatively evaluates the impact of augmented reality not only on subjec-

tive indicators but also on the overall system availability and reliability indicators. 
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1. Introduction 

 

1.1. Motivation  

 

Monitoring hazardous and potentially hazardous 

areas to detect explosive ordnance is often one of the 

most time-consuming tasks due to the high accuracy 

requirements for the data obtained. Accelerating the 

execution of such tasks is possible through the use of 

modern technologies, including cloud computing, digi-

tal twins, artificial intelligence (AI), unmanned aerial 

vehicles (UAVs), unmanned ground vehicles (UGVs), 

and augmented reality (AR). 

Unmanned systems enable the execution of terrain 

reconnaissance tasks to detect the presence of explosive 

or other potentially hazardous items. Their high mobili-

ty and speed of movement allow access to the most 

hard-to-reach areas. A suite of sensors, which may in-

clude optical detection devices, infrared or multispectral 

cameras, magnetometers, ground-penetrating radar, and 

LiDAR, provides the information necessary for subse-

quent analysis [1]. 

The information obtained from UAVs and UGVs 

can be used for analysis by artificial intelligence tools 

and for creating a digital map of the surveyed area. The 

application of AI will reduce data analysis time and 

increase accuracy in the process of detecting potentially 

explosive items by eliminating the human factor [2]. 

The use of digital twins in the detection process will 

allow for the highly accurate identification of unexplod-

ed ordnance (UXO), which should reduce the search 

area for the demining team and increase mission availa-

bility levels [3]. 

The use of cloud technologies for processing and 

analyzing information provides the necessary level of 

computational power. Storing and visualizing data in 
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real time ensures that all participants in the UXO moni-

toring process have up-to-date information on potential 

danger zones. 

The role of AR in the monitoring process may not 

be obvious; however, it is precisely human-machine 

interaction systems based on augmented reality that 

have the potential to significantly improve the quality of 

use and the response speed of personnel involved in the 

monitoring process [4], particularly UAV/UGV opera-

tors. An AR interface is capable of providing a high 

level of operator situational awareness through the sim-

ultaneous visualization of current operational parame-

ters of unmanned vehicles, high-resolution video 

streams, and area maps with plotted mission routes. De-

termining the impact level of augmented reality inter-

faces on the reactivity and error-free decision-making of 

unmanned systems operators during mission execution 

is one of the most pressing scientific tasks and can be 

used in the process of assessing their quality. 

 

1.2. State of the art  

 

Over recent decades, research in the field of un-

manned monitoring systems has developed along sever-

al interconnected directions. The first key research di-

rection focuses on the development of architectures for 

monitoring systems based on unmanned platforms, in-

cluding solutions based on UAVs, UGVs, and hybrid 

UAV/UGV systems, with an emphasis on scalability, 

reliability, and integration of multi-sensor payloads. The 

second direction is related to the application of aug-

mented reality technologies to improve human-machine 

interaction, particularly by enhancing operator situa-

tional awareness, reducing cognitive load, and increas-

ing the accuracy and speed of response during interac-

tion with individual unmanned vehicles or their groups. 

Significant attention here is given to research on the 

quality of AR interfaces themselves, including their 

ergonomic characteristics, methods of information 

presentation, level of immersion, and impact on the ac-

curacy and speed of operator decision-making. Finally, 

a separate but closely related research direction con-

cerns the modelling and analysis of such systems, in-

cluding the use of probabilistic and stochastic models to 

describe system dynamics, operator behaviour, error 

propagation, and system reliability. In the presented 

review, existing research in these directions is analysed, 

their limitations are identified, and unresolved issues 

motivating the research presented in this work are high-

lighted. 

The first research direction focuses on developing 

architectures for unmanned vehicle-based monitoring 

systems, including UAV-only solutions, UGV-based 

systems, and mixed UAV/UGV configurations. 

For example, article [5] examines the use of UAVs 

as part of an Advanced Air Mobility (AAM) system for 

autonomous surveillance in smart cities and other tasks, 

including environmental monitoring. The proposed sys-

tem is a multi-tiered structure combining a UAV fleet, 

ground control centres, and edge/cloud computing. Un-

like many publications primarily focused on sensor 

network integration, this work also pays significant at-

tention to reliability and survivability models, which are 

critically important for monitoring critical infrastructure 

objects. This approach reflects the trend of transitioning 

from conceptual to engineering-validated systems capa-

ble of functioning under conditions of failures, over-

loads, and uncertainty. 

Another work [6] is dedicated to the use of un-

manned systems in the processes of detecting and iden-

tifying unexploded ordnance (UXO). Traditionally, per-

forming detection and identification tasks for explosive 

items relies on using ground robots, ground-penetrating 

radars, magnetometers, and visual sensors; however, 

these often suffer from limited adaptability. In this case, 

the proposed solution addresses this problem through 

the use of robotic-biological systems that combine tech-

nical platforms with biological components. This en-

hances detection accuracy, reduces risks to personnel, 

and ensures scalability of solutions for humanitarian 

demining and security operations. For us, this work is 

interesting from the perspective of its approach to defin-

ing the overall system architecture and the interaction 

between components. 

Work [7] describes the use of UAVs in environ-

mental monitoring systems. The provided review indi-

cates that UAVs are typically equipped with multi-

sensor arrays and other measurement modules to ensure 

the high data quality required for real-time decision-

making. Significant attention is also given here to the 

integration of artificial intelligence methods and auto-

matic flight control. Overall, the work does not contain 

advanced mission planning algorithms or descriptions of 

monitoring system architectures, but it demonstrates 

practical engineering solutions for integrating multi-

sensor modules on UAVs, which is relevant for envi-

ronmental monitoring systems or hazardous areas. 

Thus, the reviewed works provide a general under-

standing of the structure of monitoring systems, the role 

of unmanned vehicles with multi-sensor modules, and 

the use of artificial intelligence and cloud computing 

tools. 

At the same time, existing works still have a num-

ber of common shortcomings that need to be consid-

ered. The first such shortcoming is the insufficient cov-

erage of human-machine interaction mechanisms, their 

potential impact on the operator and system dynamics, 

and the possibilities of using modern interfaces, particu-

larly augmented reality, to enhance situational aware-

ness when managing a UAV fleet. The second short-
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coming can be noted as the primary focus in the re-

viewed works being predominantly on the concept and 

general system structure, whereas the interaction be-

tween components, as well as the operator's role under 

conditions of errors or partial failures, remain described 

only at a conceptual level. It is also worth separately 

noting the simplified implementation of the system ar-

chitecture without considering a swarm approach in 

work [7]. Combined with the absence of mechanisms 

for real-time data processing and analysis using cloud 

computing, this solution could significantly limit its 

applicability for complex and critical tasks. 

In summary, it can be concluded that existing re-

search does not provide a comprehensive integration of 

UAV-based monitoring system architectures with mod-

ern AR interfaces and formal models of operator and 

system behaviour. Instead, these issues are partially 

addressed in works [8-16], which belong to the second 

research direction, namely the use of augmented reality 

technologies for human-machine interaction in un-

manned systems. 

Article [8] discusses the use of virtual environ-

ments of augmented and virtual reality in UAV control 

processes. The authors of the study focus on creating an 

intuitive human-machine interaction system for control-

ling and servicing unmanned aerial vehicles, which 

combines the video stream from the drone with overlaid 

navigation elements. The developed system is used as a 

tool for detecting and analysing UAV operator errors 

during test flights. And although the authors of the study 

note the positive impact of AR on control accuracy and 

error minimization in the control process, the article 

provides no calculations or other evidence to support 

these conclusions. 

Study [9] examines the impact of augmented reali-

ty on the situational awareness of the operator during 

UAV flight control. The authors of the work propose 

using virtual objects to mark UAV movement routes. 

Based on the results of the experiment conducted in the 

study, it is claimed that this approach increases the level 

of situational awareness and operator efficiency. How-

ever, this version of the control interface lacks elements 

responsible for displaying information about the current 

state of the UAV. This could negatively impact mission 

performance in the event of the UAV transitioning to a 

state of partial or complete failure. This scenario and its 

impact on the accuracy of the operator's actions are not 

considered by the authors of this study. 

A similar application of AR for UGV control is 

considered in article [10]. The authors of the work sug-

gest an increase in the level of situational awareness for 

operators of ground vehicles when remote operators use 

augmented reality interfaces, including for orientation 

and route planning in an unfamiliar environment. How-

ever, the impact of AR on the operator's responsiveness 

and the accuracy of their actions is not considered, and 

the assumptions described above lack scientific substan-

tiation. 

The authors of [11] reach conclusions regarding 

the impact of AR on the error-free performance of un-

manned system operators that are contrary to those of 

previous studies. Their research uses an augmented real-

ity interface they developed to assess task performance 

accuracy and cognitive load levels. The authors also 

note the low level of situational awareness among the 

respondents who participated in the study, as well as the 

low quality of use. It is quite likely that the latter indica-

tor is the reason for the respondents' negative feedback, 

as in human-machine interaction systems with a high 

level of immersion, which includes AR, it is one of the 

key factors. The quality of using AR interfaces directly 

affects the physical and mental state of operators, which 

impacts situational awareness, reactivity, and the accu-

racy of operator decisions [12, 13]. The authors con-

clude that further research should be directed towards 

optimizing interfaces to reduce their negative impact on 

human-machine interaction. 

Specifically, study [14] presents an AR interface 

for mobile devices that enables the control of a UAV 

fleet using virtual manipulators implemented on a touch 

screen. However, a significant drawback of this ap-

proach is the operator's need to maintain constant visual 

contact with the drone to monitor flight direction and 

ensure a stable connection with the mobile device. This 

limitation is due to the fact that the window displaying 

the video stream from the UAV occupies less than 10% 

of the screen area and is partially obscured by virtual 

control elements. Given the limited size and resolution 

of mobile device displays, such a small display area 

makes it difficult or nearly impossible to effectively 

perceive video information from the UAV's onboard 

systems. As a result, this approach to using AR may be 

acceptable for personal use but does not meet the re-

quirements of monitoring systems. 

In the work [15], the application of augmented re-

ality for first-person control of UAVs using AR glasses 

is proposed. Flight control in this case is carried out 

using a traditional remote control, while video infor-

mation from the drone's cameras is displayed as virtual 

windows. This approach is more convenient from the 

perspective of controlling a single unit; however, it does 

not provide the capability to control a fleet of UAVs. 

Furthermore, this AR interface lacks the informational 

elements necessary for monitoring the unit's status, such 

as battery level, altitude, speed, etc. Given this, the use 

of such a solution in monitoring systems is impossible. 

In the study [16], a UAV control interface is pro-

posed, which is positioned as a system with augmented 

reality elements. Unlike the previous approach, it im-

plements the main informational indicators necessary 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 4(116)               ISSN 2663-2012 (online) 

38 

for controlling an unmanned unit. However, the inter-

face retains a number of limitations, including the small 

size of the elements intended for displaying the video 

stream from the UAV and the flight map, as well as the 

lack of capability for controlling a group of unmanned 

units. Additionally, the question of classifying the pro-

posed human-machine interaction system as a class of 

AR interfaces remains debatable, since all virtual con-

trol elements are implemented in two-dimensional 

space, whereas the classical definition of augmented 

reality [17] assumes their spatial (three-dimensional) 

placement. Considering the presented approaches and 

the identified shortcomings of existing AR interfaces, it 

is advisable to develop and present our own design vari-

ant. 

The cited research demonstrates significant interest 

in enhancing operator situational awareness and improv-

ing human-machine interaction. However, from the per-

spective of studying the impact of AR on operator effec-

tiveness within complex monitoring systems, they have 

a number of fundamental limitations. In particular, the 

reviewed works focus primarily on the development of 

individual AR interfaces or experimental prototypes and 

are generally limited to qualitative or experimental 

evaluation with small samples, lacking formal model-

ling of operator and system behaviour over time. In 

these studies, AR is considered as a visualisation tool, 

but there is no analysis of how the use of AR affects the 

probabilities of the system being in various states, the 

occurrence of errors, or failures. Furthermore, in most 

works, AR is considered in the context of controlling a 

single device or a specific task, without accounting for 

UAV fleets, multi-level management architectures, and 

partial failure scenarios, which are critical for monitor-

ing systems in hazardous areas. It is also important that 

none of the reviewed works propose a probability or 

Markov chain approach to assessing the impact of AR 

interfaces on operator behaviour and overall system 

dynamics.  

Works focused on the application of Markov mod-

els for analysing user and operator behaviour, particu-

larly in augmented reality and unmanned system con-

trol, have a number of limitations. For example, in study 

[18], Markov chains are used to analyse the processing 

of visual stimuli in 2D, 3D and AR environments as part 

of a laboratory experiment, which allows conclusions to 

be drawn about the mechanisms of perception. however, 

the results obtained are not related to real scenarios of 

human-machine interaction in complex technical sys-

tems, in particular with UAV control or monitoring 

tasks, where time constraints and the risk of operator 

errors are critical. In [19], a formalisation of a UAV 

swarm is proposed in the form of a multi-station queu-

ing system with degradation, but the behaviour of the 

operator is considered only indirectly and is not linked 

to interaction interfaces or the use of AR technologies, 

which limits the ability to assess the impact of humans 

on the operation of the system. Research [20], which 

uses hidden Markov models to identify the behavioural 

patterns of UAV operators, demonstrates the potential 

of statistical analysis of user actions, but does not take 

into account the specifics of augmented reality, in par-

ticular the spatial placement of information, cognitive 

load and changes in operator reactivity in AR interfaces. 

Taken together, these works confirm the feasibility 

of using Markov models to describe user behaviour and 

the states of technical systems, but do not provide a 

comprehensive approach to modelling the interaction 

between the operator and the UAV in augmented reali-

ty, which justifies the need for further research aimed at 

combining AR interfaces, formal Markov models and 

monitoring system architectures in a single study.  

 

1.3. Objectives and methodology 

 

The aim of this work is to develop and analyse a 

UAV-based hazardous area monitoring system with 

augmented reality interfaces and to formalise the influ-

ence of operator behaviour, human errors, and technical 

failures on system dynamics using Markov state models. 

Special attention is given to evaluating the role of AR 

interfaces in improving situational awareness, operator 

reactivity, and error-free decision-making. 

To achieve this aim, the study analyses existing 

UAV-based monitoring architectures and their human–

machine interaction limitations, develops a generalised 

system architecture incorporating UAVs/UGVs and an 

operator AR interface, formalises system and operator 

behaviour as state-transition models, constructs Markov 

models for different operational scenarios, performs 

simulation-based probabilistic analysis of system states, 

and evaluates the impact of AR interfaces and operator 

behaviour on overall system performance. 

The research methodology combines information 

system architecture design, Markov process modelling, 

and simulation techniques. Several system architectures 

were considered, and the most suitable one was selected 

for further study. Key factors such as system failures, 

operator errors, and the availability of backup 

UAVs/UGVs were classified to define operational sce-

narios. Five representative scenarios were analysed, 

covering combinations of failures, operator errors, and 

reserve systems. For each scenario, an appropriate Mar-

kov model was developed, parameterised, and expressed 

using Kolmogorov–Chapman equations, which were 

then used for simulation and visualisation of state prob-

abilities. 

The article is structured as follows: 

- development of a monitoring system architecture 

(section 2.1); 
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- development of a availability model classifier 

based on possible system usage scenarios (section 2.2); 

- development and simulation of a system availa-

bility models: without accounting for failures and opera-

tor errors, with full recovery (section 3.1); 

without accounting for failures but with the possi-

bility of operator errors, with full recovery (section 3.2); 

accounting for failures but without unmanned systems 

operator errors, with full recovery (section 3.3); ac-

counting for failures and operator errors, with full re-

covery (section 3.4); without accounting for failures but 

with the possibility of operator errors, with a reserve 

unmanned system present (section 3.5); 

- discussion of the obtained results (section 4), 

main contribution. and further research steps (section 5). 

 

2. UAV/UGV-based monitoring system 
 

2.1 System architecture 

 

Since the human-machine interface of augmented 

reality cannot exist as an object separate from the sys-

tem, the authors of the study, based on previously re-

viewed works [1-3], developed a UXO monitoring sys-

tem architecture that formalises the interrelationships 

between its functional and informational components. 

The system is designed for the remote detection, analy-

sis, and spatial localisation of explosive ordnance with 

minimised risks to personnel. 

The scheme presented in Fig. 1 illustrates a com-

prehensive UXO monitoring system that combines 

modern technologies for managing unmanned aerial 

vehicles, augmented reality, as well as centralised data 

analysis and processing infrastructure. This system en-

sures efficient, safe, and scalable execution of demining 

operations, significantly reducing the risk to sappers and 

enabling work to be conducted in complex and hazard-

ous conditions. 

The system’s key elements for monitoring system 

are UAVs and UGVs, which enable remote surveying of 

hazardous zones, reduce risks for sappers, and provide 

high-precision data. 

UGVs are equipped with optical cameras, thermal 

and multispectral sensors, magnetometers, and ground-

penetrating radar. Combined with AI algorithms and 

automated processing, these tools identify explosive 

objects and generate spatial maps of contaminated areas 

for demining planning. 

A central server aggregates and stores critical in-

formation—coordinates of hazardous zones, mine threat 

history, cleared territory maps, telemetry, and video 

data—and transmits it in real time to the control centre 

and control station. 

The control centre serves as the analytical hub, 

managing operations, monitoring UAV swarms and 

demining groups, analysing incoming data, logging 

events, generating reports, and ensuring information 

security. 

Demining or rescue groups operate directly in the 

field. Though AR glasses can enhance situational 

awareness, this study focuses on operator interaction 

with the monitoring system rather than AR use by de-

miners (sappers). 

The control station, located near the operational 

area, handles local management, technical support, and 

UAV/ground system coordination. Operators use remote 

control units for manual or semi-autonomous control, 

analyse real-time video, and adjust routes. 
 

 
Fig. 1. Architecture of monitoring system 
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Here, operators employ AR glasses to visualise 

mine threat maps, UAV and ground system statuses, and 

telemetry. Their behaviour in AR and transitions be-

tween autonomous, semi-autonomous, and manual 

modes can be formalised with Markov models, enabling 

quantitative analysis of human-machine interaction. 

 

2.2 Models classification 

 

This work examines several modes in which the 

monitoring systems UAV may operate considering mis-

sion particularities, operator activities, failures and so 

on. 

 To systemize various modes and appropriative 

models and simplify understanding, a multi-level classi-

fier of scenarios (modes) has been developed, covering 

technical, human and organisational factors that affect 

the overall system reliability (Fig. 2). 

The first level of classification characterises the 

technical state of the system, determining the presence 

or absence of failures. The system can operate in normal 

mode under conditions without malfunctions or transi-

tion to states of partial or complete failure when corre-

sponding events are recorded. In the case of combined 

failures, the scenario of the system transitioning from a 

state of partial failure to complete failure is considered. 

The second level takes into account the possibility of 

operator errors arising during mission execution. In the 

case of error-free operator work, the system maintains 

predictable behaviour, whereas the occurrence of an 

error causes a transition to one of the subtypes of viola-

tions, such as incorrect transition to protected mode, 

control error, or their combination. 

The third level of classification determines the 

presence of reserve unmanned vehicles and the possibil-

ity of restoring operational capability. If reserve drones 

are present, the option of their replacement until func-

tionality is restored is considered. In the case of no re-

serves, scenarios are limited to possible partial or com-

plete recovery of the used vehicles. 

Base to this classification, several descriptions can 

be created. In this study, we develop and investigate 

five models M0-M4. The simplest scenario M0 (red 

line) considers the case where there are no failures and 

no operator errors, with full recovery should the system 

transition into a protected operating mode. 
 

Operator`s error

Error type

Absent Present

False transition to 
protected state

Control error
Control error and 

transition to 
protected state

Failures Absent Present

FullPartial

Reserve UAGVs Present Absent

FullPartial

Failure types

Repair type

Combined

 
Fig. 2. Models’ classification: M0 – red, M1 – green, M2 – blue, M3 – purple, M4 – grey 
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The first model M1 (green line) considers the case 

without failures, but with operator errors and full recov-

ery when the system transitions into a protected operat-

ing mode. 

The second model M2 (blue line) considers a 

model variant accounting for the presence of faultless 

operator failures, with full recovery. 

The third model M3 (purple line) considers a sce-

nario accounting for failures and operator errors, with 

full recovery in the event of transitioning to a protected 

state. 

The fourth model M4 (grey line) considers the 

case without accounting for system failures, with the 

possibility of operator error, and with the presence of 

backup UAVs/UGVs. 

Thus, the proposed classifier provides a compre-

hensive representation of possible states of unmanned 

systems. This approach allows for the formation of for-

mal models, risk assessment in UAV/UGV fleets, pre-

diction of error consequences, and determination of op-

timal recovery strategies. The obtained structure forms 

the basis for building analytical and simulation models 

aimed at improving the availability of unmanned com-

plexes. 

 

3. Markov models 
 

3.1. Initial model, M0 

 

The system described in this paper is characterized 

by a clearly defined finite set of states between which 

stochastic transitions occur. At any given time, the sys-

tem occupies exactly one state, and all possible transi-

tions between states can be described by the correspond-

ing transition intensities. The probability of the system 

transitioning to a subsequent state depends exclusively 

on its current state and not on the sequence of preceding 

transitions. This property is typical of processes in 

which changes in operating modes are caused by local 

events (such as operator intervention, erroneous actions, 

or component failures) and is consistent with the actual 

logic of operation of monitoring systems as well as with 

the defining properties of continuous-time Markov pro-

cesses. Therefore, the use of this classical mathematical 

framework is both feasible and justified, as it enables 

the step-by-step development and analysis of monitor-

ing system models. 

The simplest case considers a scenario with no 

failures and no UAV/UGV operator errors, with full 

recovery if the system enters a protected mode of opera-

tion. In this case, the system has only four possible 

states, as shown on the transition graph of this model 

(Fig. 3). 

System state SA assumes that the system is in a 

normal operational state and is controlled by automated 

means.  

System state SM assumes that the system is in a 

normal operational state and is manually controlled by 

the operator. 

System state HIM describes the operator's reaction 

to the information received during manual control of the 

system. 

System state SP assumes that the system is in a 

non-operational, protected state. A forced return is initi-

ated. 

To calculate the probabilities of the system being 

in each of these states, it is necessary to formulate and 

solve a system of balance equations (1). This system 

describes the temporal evolution of state probabilities as 

a function of the transition intensities between states and 

provides a formal basis for analysing both transient and 

steady-state behaviour of the monitoring system under 

autonomous and operator-assisted control modes.

 

A
AM AP A PA P MA M

M
MA MH MP M AM A HMM HIM

P
PA P AP A MP M HMP HIM

HIM
HMP HMM HIM

dP (t)
 = -(λ  + λ )P (t) + μ P (t) + λ P (t),

dt

dP (t)
 = -(λ  + λ  + λ )P (t) + λ P (t) + μ P (t),

dt

dP (t)
 = -μ P (t) + λ P (t) + λ P (t) + μ P (t),

dt

dP (t)
 = -(μ  + μ )P (

dt
MH M

A M P HIM

t) + λ P (t)=0,

P (t) + P (t) + P (t) + P (t) = 1,
















                     (1) 
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Fig. 3. Transition graph for the model M0 

 

where AM – transition intensity from state SA to state 

SM; 

AP – transition intensity from state SA to state SP; 

MA – transition intensity from state SM to state SA; 

MP – transition intensity from state SM to state SP; 

MH – transition intensity from state SM to state HIM; 

μPA – transition intensity from state SP to state SA; 

μHMM – transition intensity from state HIM to state 

SM; 

μHMP – transition intensity from state HIM to state SP; 

Pi – probability of the system being in a state i; 

i  {A, M, P, HIM, FM, FMR}. 

For t = 0: PA (0) = 1, PM (0) = PP (0) = PHIM (0) = 

0. Based on the analysis of publications [21–24] devot-

ed to the modelling of systems followed by the assess-

ment of their reliability and availability using Markov 

processes, the transition parameters were selected for 

the subsequent simulation of models M0–M4. The tran-

sition parameters used in the M0 are summarised in 

Table 1. These parameters represent the intensities of 

transitions between system states and are defined in 

units of hours (hr), which is consistent with the continu-

ous-time Markov chain formulation adopted in this 

study. The selected parameter ranges reflect realistic 

operational conditions of UAV/UGV-based monitoring 

systems and are chosen to capture typical dynamics of 

autonomous operation, operator intervention, and pro-

tective system responses. 

Figure 4 presents the time-dependent probabilities 

of the system being in each operational state, obtained 

via numerical simulation of the Markov model using the 

first set of transition parameters defined in Table 1. 

Table 1  

Transition parameters for the M0 

№ Transition Transition parameter 
Measurement range, hr 

1 2 3 

1 SA → SM λАМ 1 0,3333 2 

2 SA → SP λАP 2 5 20 

3 SM → SA λМA 0,3333 0,1 0,6666 

4 SM → SP λМP 2 5 20 

5 SM → HIM λМH 0,0083 

6 SP → SA μPA 0,5 1 2 

7 HIM → SM μHMM 0,0008 0,0028 0,0083 

8 HIM → SP μHMP 2 5 20 

 

 
Fig. 4. Simulation results for the M0 
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The choice of time scale in Fig. 4 and subsequent 

simulation results is due to the need to investigate the 

non-stationary part of the behaviour and determine the 

limits of the system's transition to a steady state, where 

the probabilities of being in the corresponding states 

remain unchanged. 

Analysis of the graph shows that, for the given 

transition intensities, the state of normal autonomous 

operation SA remains dominant over the entire simula-

tion interval. This indicates that, in the absence of ex-

ternal disturbances or critical failures, the system pre-

dominantly operates in autonomous mode, which is both 

expected and desirable for hazardous area monitoring 

systems. 

The probability of the protected state SP exhibits 

an inverse correlation with the probability of autono-

mous operation SA: as the likelihood of autonomous 

functioning decreases, the probability of entering the 

protected state increases, reflecting the timely activation 

of safety mechanisms under deteriorating operating 

conditions. 

The probability of the system operating in the 

manual control state SM does not exceed PM ≈ 0.17 at 

any time, confirming that manual control serves an aux-

iliary role and is engaged only in specific situations ra-

ther than as a primary operating mode. 

The operator response state HIM maintains a low 

and nearly constant probability of approximately 0.016 

throughout the simulation period, indicating a negligible 

impact on the overall system dynamics and confirming 

that active operator intervention is infrequent and not a 

determining factor in system operation. 
 

3.2. Model considering human errors, M1 
 

The second model considers a scenario without 

system failures but explicitly accounts for operator er-

rors, assuming full system recovery after transitioning to 

the protected mode (Fig. 5). Unlike the first model, it 

incorporates human-related factors, particularly errors 

during manual control, which may degrade system op-

erability and trigger protective mechanisms.  

To represent these effects, two additional states 

were introduced: complete system inoperability due to 

operator error during manual control (FM) and inopera-

bility followed by transition to the protected mode 

(FMR). 

As a result, the number of possible state transitions 

increased from eight to thirteen, enabling a more realis-

tic quantitative assessment of the impact of operator 

reliability on system. 

SA SP

SM

HIM
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FMR

μPA

λАP

μ
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μ M
M
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Fig. 5. Transition graph for the model M1 
 

The transition parameters for the M1 are presented 

in Table 2. Parameters common to the M0 retain their 

original values and ranges to ensure comparability be-

tween the models and to isolate the impact of operator-

induced effects. 

Table 2  

Transition parameters for the M1 

№ Transition Transition parameter 
Measurement range, hr 

1 2 3 

1 SA → SM λАМ 1 0,3333 2 

2 SA → SP λАP 2 5 20 

3 SM → SA λМA 0,3333 0,1 0,6666 

4 SM → SP λМP 2 5 20 

5 SM → HIM λМH 0,0083 

6 SP → SA μPA 0,5 1 2 

7 HIM → SM μHMM 0,0008 0,0028 0,0083 

8 HIM → SP μHMP 2 5 20 

9 HIM → FM λНММ 5 10 20 

10 HIM → FMR λНМMR 10 100 1000 

11 FM → SM μMM 0,00016 0,00004 0,00008 

12 FM → HIM μMHM 0,000128 0,00002 0,0000016 

13 FMR → SA μMRA 0,5 1 2 
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Additional parameters λHMM and λHMMR character-

ise the intensities of transitions from the operator reac-

tion state HIM to failure states FM and FMR, respectively. 

These parameters are assigned higher values to reflect 

the increased likelihood of incorrect operator actions 

under stress or time-critical conditions. 

Recovery transitions from failure states (μMM, 

μMHM, μMRA) are modelled with comparatively low in-

tensities, reflecting the time-consuming nature of diag-

nosing operator-induced errors and restoring system 

operability. The relatively higher recovery rate from the 

protected failure state FMR to autonomous operation SA 

assumes that system protection mechanisms facilitate 

faster stabilisation and recovery. 

The chosen parameter ranges enable the evaluation 

of system robustness under varying degrees of operator 

reliability and provide a quantitative basis for assessing 

the impact of human factors on the safety and efficiency 

of UAV/UGV monitoring systems. 

Based on the results of calculations performed us-

ing the transition intensities from the first parameter set, 

the time-dependent probabilities of the system being in 

each of the possible states were obtained and are pre-

sented in Fig. 6. These probabilities characterise the 

dynamic behaviour of the system under conditions that 

explicitly take into account operator-related errors. 

Compared to the simulation results of the model 

without operator errors (Fig. 4), the probability of the 

system operating in the normal autonomous state SA 

decreases by approximately 0.03. Despite this reduction, 

SA remains the dominant and most probable operating 

mode throughout the simulation interval, indicating suf-

ficient robustness of the autonomous control mecha-

nisms even in the presence of human-induced disturb-

ances. 

The probabilities of the protected state SP and the 

manually controlled normal state SM also slightly de-

crease; however, these changes are minor and do not 

qualitatively affect the overall system behaviour. This 

suggests that the inclusion of operator errors mainly 

redistributes probabilities among failure-related states 

rather than significantly influencing the primary opera-

tional modes. 

Importantly, the probability of the operator re-

sponse state HIM remains unchanged compared to the 

baseline model, indicating that operator reaction fre-

quency is not affected by the introduction of human 

errors. Instead, the consequences of operator actions 

become more critical. 

A notable result of the M1 is the emergence of a 

non-negligible probability of system inoperability due to 

operator error during manual control FM. Although this 

probability does not exceed PFM ≈ 0.05, it is considera-

bly higher than the probability of the operator response 

state HIM, highlighting the increased risk associated 

with manual intervention. In contrast, the probability of 

inoperability followed by a transition to the protected 

state FMR remains extremely low and can be neglected 

within the considered time horizon. 

Overall, the results demonstrate that incorporating 

operator errors enhances the realism by revealing latent 

risks of manual control while preserving the dominance 

of autonomous operating modes.  

 

3.3 Model without operator errors and with 

full recovery, M2 

 

The third case considers a Markov model of the 

system's operation that accounts for the presence of 

technical failures in the absence of operator errors and 

 
Fig. 6. Simulation for the M1 
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assumes the possibility of fully restoring the system's 

functionality. This approach allows for a separate analy-

sis of the impact of hardware and software failures on 

the system's state dynamics without the additional com-

plication associated with the human factor. 

On the transition graph (Fig. 7), the FM and FMR 

states are absent, as this scenario does not anticipate 

operator errors during manual control. Instead, a num-

ber of new states have been introduced into the model, 

reflecting the specifics of partial failures and the sys-

tem's and operator's response to them. Specifically, the 

following are considered the manual control state of the 

system with a partial failure SMP, the operator response 

state to changes in the system with a partial failure HIMP 

and the partial operational state of the system due to a 

partial failure DL. 
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Fig. 7. Transition graph for the model M2 

 

The introduction of these states allows for a more 

detailed description of the degraded operating modes of 

the system, which are characteristic of real-world 

UAV/UGV operations in complex and dynamic envi-

ronments, as well as for assessing the impact of partial 

failures on the system's probabilistic characteristics.  

The parameters of the transitions for the M2 are 

provided in Table 3. Each transition parameter charac-

terises the intensity of the system's state change and has 

a physical interpretation corresponding to the actual 

operational processes of the monitoring system. 

Transitions from autonomous operation SA to 

manual control SM, protected mode SP, and partial fail-

ure DL are governed by parameters λAM, λAP, and λAL, 

respectively, with elevated λAL values reflecting the 

likelihood of partial technical failures under complex 

conditions. 

Transitions from manual control SM describe sys-

tem behaviour under active operator intervention, where 

λMMP characterises the risk of transitioning to manual 

control with partial failure SMP, while λMH remains low, 

assuming stable operator behaviour. 

Recovery parameters (μPA, μHMM, μHMP, μLMP, μLP) 

represent the system’s ability to restore operational ca-

pability after failures or interventions. 

Special attention is given to partial failure states 

DL and SMP, whose mutual transitions model cyclic deg-

radation and recovery processes. The operator response 

state to partial failures HIMP has extremely low transi-

tion intensities, indicating limited operator influence 

during technical degradation. 

 

Table 3  

Transition parameters for the M2 

№ 
Transition Transition parameter Measurement range, hr 

1 2 3 

1 SA → SM λАМ 1 0,3333 2 

2 SA → SP λАP 2 5 20 

3 SA → DL λAL 10 25 100 

4 SM → SA λМA 0,3333 0,1 0,6666 

5 SM → SP λМP 2 5 20 

6 SM → HIM λМH 0,0083 

7 SM → SMP λМMP 10 25 100 

8 SP → SA μPA 0,5 1 2 

9 HIM → SM μHMM 0,0008 0,0028 0,0083 

10 HIM → SP μHMP 2 5 20 

11 DL → SMP μLMP 1 0,3333 2 

12 DL → SP μLP 2 5 20 

13 SMP → DL λМPL 0,3333 0,1 0,6666 

14 SMP → HIMP λМPHMP 0,0083 

15 SMP → SP λМPP 2 5 20 

16 HIMP → SMP μHMPMP 0,0008 0,0028 0,0083 

17 HIMP → SP μHMPP 2 5 20 
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Fig. 8. Simulation for the M2 

 

Parameter ranges are defined for three intensity 

sets to support sensitivity analysis. Simulation results 

for the first parameter set show that autonomous opera-

tion SA remains dominant, confirming a high level of 

system autonomy even in the presence of partial fail-

ures. 

SA SM

SP

FMFMR

HIM

DL SMP

HIMP

λАМ

λ A
L

λМA

λ
M

M
P

μ
H

M
P

μ
M

H
M

μLMP

λMPL

λ Н
М

М

 
Fig. 9.  Transition graph for the model M3 

 

The integration of these specified states and transi-

tions enables the analysis of complex operational sce-

narios, particularly situations where operator errors can 

lead to system failures, or conversely, where technical 

faults prompt operator intervention with an increased 

risk of erroneous actions. The full restoration of system 

functionality following a transition to a protected state is 

modelled as a key mechanism for enhancing the overall 

reliability and safety of the system's operation. 

The transition parameters provided in Table 4 de-

fine the transition intensities between the states of the 

M3, which simultaneously accounts for both system 

technical failures and operator errors, under the condi-

tion of full operational recovery during the transition to 

a protected mode. The parameter values were selected 

to ensure consistency with previous models and to re-

flect the realistic dynamics of the human-machine sys-

tem's operation under the monitoring of hazardous are-

as. 

The probability of the operator response state HIM 

remains almost unchanged compared to previous mod-

els, indicating stable operator response characteristics in 

the absence of erroneous actions. At the same time, an 

increase in the probability of the protected state SP and a 

slight decrease in the probability of the manual control 

state SM are observed, which can be attributed to the 

larger number of failure scenarios that trigger automatic 

transitions to the protected mode in order to preserve 

system integrity. 

The probability of the manual control state with 

partial failure SMP is relatively low but nearly twice as 

high as that of the operator response state HIM, indicat-

ing an increased risk of performance degradation during 

manual control under partial failure conditions even 

without operator errors. The probability of the operator 

response state to partial failures HIMP is extremely low 

and can be neglected within the scope of this analysis. 

A notable probability is associated with the partial-

ly operational state DL, which reaches approximately 

0.1. Although this probability does not directly depend 

on operator intervention, it correlates with a decrease in 

the probabilities of autonomous operation SA and manu-

al control SM, as well as an increase in the probability of  
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Table 4 

Transition parameters for the M3 

№ Transition Transition parameter 
Measurement range, hr 

1 2 3 

1 SA → SM λАМ 1 0,3333 2 

2 SA → SP λАP 2 5 20 

3 SA → DL λAL 10 25 100 

4 SM → SA λМA 0,3333 0,1 0,6666 

5 SM → SP λМP 2 5 20 

6 SM → HIM λМH 0,0083 

7 SM → SMP λМMP 10 25 100 

8 SP → SA μPA 0,5 1 2 

9 HIM → SM μHMM 0,0008 0,0028 0,0083 

10 HIM → SP μHMP 2 5 20 

11 HIM → FM λHMM 5 10 20 

12 HIM → FMR λHMMR 10 100 1000 

13 FM → SM μMM 0,05 0,002 0,0001 

14 FM → HIM μMHM 0,25 0,01 0,08 

15 FMR → SA μMRA 0,5 1 2 

16 DL → SMP μLMP 1 0,3333 2 

17 DL → SP μLP 2 5 20 

18 SMP → DL λМPL 0,3333 0,1 0,6666 

19 SMP → HIMP λМPHMP 0,0083 

20 SMP → SP λМPP 2 5 20 

21 HIMP → SMP μHMPMP 5 10 20 

22 HIMP → SP μHMPP 2 5 20 

 

the SMP state. This indicates that technical degradation 

alone can lead to partial failures and a reduction in 

overall system effectiveness, even in the absence of 

operator errors. 
 

3.4. Model with consideration of operator 

failures and errors, with full recovery in case of 

transition to a protected state, M3 
 

This variant considers a Markov model of system 

operation, which simultaneously accounts for the pres-

ence of technical failures and operator errors, and also 

provides for the full restoration of system functionality 

in the event of a transition to a protected operating 

mode. This approach allows the model to approximate 

the real-world operating conditions of monitoring sys-

tems for hazardous areas, where technical malfunctions 

and human factors may occur simultaneously and mutu-

ally influence the overall system dynamics. 

In the transition graph (Fig. 9), this model com-

bines the properties of M1 and M2, including all 

 

 
Fig. 10. Simulation for the M3 
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relevant states associated with autonomous and manual 

system operation, protected mode, operator response, 

operator errors, as well as full and partial failures. Thus, 

the model encompasses both states of non-functionality 

caused by operator errors (FM, FMR) and states related to 

partial technical system failures (DL, SMP, HIMP), allow-

ing for a comprehensive description of the processes of 

degradation and recovery of the system's functional ca-

pabilities. 

Based on the parameter values from the first set of 

transitions, a model simulation was performed, taking 

into account the presence of failures and operator errors, 

with full recovery in the event of a transition to a pro-

tected state (Fig. 10). 

As in all previous modelling scenarios, the domi-

nant state is normal autonomous operation SA, confirm-

ing stable autonomous functioning even with failures or 

operator errors. The rapid convergence of SA probability 

to a stationary value indicates overall system stability. 

The operator response state HIM remains low and 

constant, showing limited influence under non-critical 

conditions. Meanwhile, stable probabilities for the pro-

tected state SP and manual control state SM reflect the 

need for operator intervention to handle malfunctions or 

uncertain conditions, reducing full autonomy. 

Manual control with partial failure SMP stays low 

but consistently higher than HIM, pointing to increased 

risks during manual control due to cognitive load or 

decision-making complexity. Probabilities of operator 

response to partial failures HIMP and final failures (FM, 

FMP) are negligible, confirming effective protective 

mechanisms. 

Degraded operation due to partial failure DL stabi-

lises around 0.05, with a clear correlation: as SA de-

creases, SM and SMP increase, showing that greater sys-

tem complexity or operator involvement raises partial 

failure risks and reduces autonomous performance. 

3.5. Two-fragment model, M4 

 

Based on the M1, which describes the system's op-

eration in the absence of failures but accounts for possi-

ble operator errors and full restoration of functionality 

when the system transitions into a protected operating 

mode, a two-fragment system model was developed. 

The proposed approach allows the operational process 

to be divided into interconnected fragments, reflecting 

the primary and backup control circuits of unmanned 

systems as described, for example, in study [25]. 

Unlike previous single-segment models, this ver-

sion considers a scenario where the system's inherent 

failures are not taken into account; however, the occur-

rence of operator errors during manual or semi-

autonomous control is permitted. Additionally, the pres-

ence of backup unmanned systems is envisaged, which 

can be engaged in case of reduced effectiveness or erro-

neous actions by the operator in the primary system 

fragment. This approach allows for a more accurate 

simulation of real-world operating conditions of moni-

toring systems, where the redundancy of technical 

means is one of the key mechanisms for enhancing reli-

ability and resilience. 

A transition graph of the M4, illustrating the inter-

action between the primary and backup system frag-

ments, as well as the possible transitions between their 

states, is provided in Fig. 11. 

The equation for the two-fragment model is pre-

sented in formula (2), which describes the system of 

Kolmogorov differential equations for the probabilities 

of the system being in each of the possible states, taking 

into account the interaction of two interconnected frag-

ments of the model. Initial conditions are the similar to 

formula (1). 
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Fig.11. Transition graph for the model M4 
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    (2) 

where AMi – transition intensity from state SAi to state 

SMi; 

APi – transition intensity from state SAi to state SPi; 

MAi – transition intensity from state SMi to state SAi; 

λМPi – transition intensity from state SMi to state SPi; 

λМHi – transition intensity from state SMi to state HI-

Mi; 

μPAi – transition intensity from state SPi to state SAi; 

μHMMi – transition intensity from state HIMi to state 

SMi; 

μHMPi – transition intensity from state HIMi to state 

SPi; 

HMMi – transition intensity from state HIMi to state 

FMi; 

HMMRi – transition intensity from state HIMi to state 

FMRi; 

μMMi – transition intensity from state FMi to state SMi; 

μMHMi – transition intensity from state FMi to state 

HIMi; 

μMRAi – transition intensity from state FMRi to state 

SAi; 

PCW – probability of a successful switch to the re-

serve fragment; 

Pji – probability of the system being in a state j; 

j  {A, M, P, HIM, FM, FMR}, i  {1, 2}. 

The transition parameters for the M4 are presented 

in Table 5 and define the transition intensities between 

states for the main and reserve fragments of the system. 

The proposed parameter values are based on the as-

sumption of identical functional characteristics of both 

system fragments, as well as maintaining consistency 

with parameters used in previous models, which allows 

for a correct comparative evaluation of simulation re-

sults. 

Overall, the selected parameter set allows the M4 

to be effectively applied for assessing the reliability and 

resilience of AR-oriented UAV/UGV-based monitoring 

systems with redundancy. Figure 12 presents the simu-

lation results of M4, illustrating the temporal evolution 

of state probabilities and enabling analysis of redundan-

cy effectiveness, operator influence, and system stability 

in the steady-state regime. 

The principal feature of the two-fragment model is 

the introduction of the PCW (Probability of Correct 

Switching) parameter, which represents the likelihood 

of a successful switch to the reserve fragment during 

recovery from the protected state or after failure states 

FMRᵢ. The PCW value varies from 0.5 to 0.9, reflecting 

different efficiencies of redundancy management and 

automatic recovery mechanisms. 
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Table 5 

Transition parameters for the M4 

№ Transition 
Transition pa-

rameter 

Measurement range, hr 

1 2 3 

1 SA1 → SM1 λАМ1 1 0,3333 2 

2 SA1 → SP1 λАP1  2 5 20 

3 SM1 → SA1 λМA1 0,3333 0,1 0,6666 

4 SM1 → SP1 λМP1 2 5 20 

5 SM1 → HIM1 λМH1 0,0083 

6 SP1 → SA1 μPA1(1-PCW)  0,5*(1-PCW) 1*(1-PCW)  2*(1-PCW) 

7 SP1 → SA2 μPA1PCW  0,5*PCW 1*PCW 2* (1-PCW) 

8 HIM1 → SM1 μHMM1 0,0008 0,0028 0,0083 

9 HIM1 → SP1 μHMP1 2 5 20 

10 HIM1 → FM1 λHMM1 5 10 20 

11 HIM1 → FMR1 λHМMR1 10 100 1000 

12 FM1 → SM1 μMM1 0,00016 0,00004 0,000008 

13 FM1 → HIM1 μMHM1 0,000128 0,00002 0,0000016 

14 FMR1 → SA1 μMRA1(1-PCW)  0,5*(1-PCW) 1*(1-PCW)  2*(1-PCW) 

15 FMR1 → SA2 μMRA1PCW  0,5*PCW 1*PCW 2* (1-PCW) 

16 SA2 → SM2 λАМ2 1 0,3333 2 

17 SA2 → SP2 λАP2 2 5 20 

18 SM2 → SA2 λМA2 0,3333 0,1 0,6666 

19 SM2 → SP2 λМP2 2 5 20 

20 SM2 → HIM2 λМH2 0,0083 

21 SP2 → SA2 μPA2PCW  0,5*PCW 1*PCW 2* (1-PCW) 

22 SP2 → SA1 μPA2(1-PCW)  0,5*(1-PCW) 1*(1-PCW)  2*(1-PCW) 

23 HIM2 → SM2 μHMM2 0,0008 0,0028 0,0083 

24 HIM2 → SP2 μHMP2 2 5 20 

25 HIM2 → FM2 λHMМ2 5 10 20 

26 HIM2 → FMR2 λHМMR2 10 100 1000 

27 FM2 → SM2 μMM2 0,00016 0,00004 0,000008 

28 FM2 → HIM2 μMHM2 0,000128 0,00002 0,0000016 

29 FMR2 → SA2 μMRA2 0,5 1 2 

PCW 0,5 0,7 0,9 
 

 
 

Fig. 12. Simulation for the M4 

 

Transitions such as SP₁  → SA₁  / SA₂ , FMR₁  → 

SA₁  / SA₂ , and their counterparts for the second frag-

ment are weighted by the PCW coefficient, thereby mod-

elling the probabilistic distribution between restoring 

operation of the current fragment and activating the re-

serve. The share (1 − PCW) corresponds to recovery of 
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the primary fragment, while PCW represents successful 

switching to the reserve. 

Transition parameters from operator response 

states HIMᵢ to failure states FMᵢ and FMRᵢ characterise the 

probability of operator-induced errors during manual 

control and are inherited from previous models, reflect-

ing an increased risk of critical errors. Low reverse tran-

sition intensities indicate slow recovery and prolonged 

residence in failure-related states. Identical parameters 

in both fragments eliminate subsystem asymmetry, al-

lowing the analysis to focus on the effect of redundancy 

on reliability and mitigation of the human factor. 

Compared to the single-fragment model, the M4 

shows an increase of approximately 0.05 in the proba-

bility of normal autonomous operation SA, which re-

mains the dominant system state, indicating improved 

operational stability in the presence of operator influ-

ence. Probabilities of the protected state SP and manual 

control state SM also increase slightly, without signifi-

cantly affecting overall state distribution. The operator 

response state HIM remains at levels similar to previous 

models, indicating minimal impact of the two-fragment 

structure on operator dynamics. 

The probability of system inoperability due to op-

erator error during manual control SFM remains nearly 

unchanged and does not exceed 0.05 after stabilisation. 

Its higher value compared to HIM suggests that operator 

actions more often lead to errors than successful dis-

turbance compensation. The probability of transition to 

a protected inoperable state FMR is negligible and can be 

excluded from further analysis. Overall, the results con-

firm the suitability of the M4 for analysing the impact of 

the human factor on system reliability and stability. 

 

4. Results and Discussion 
 

The obtained results show that the probability of 

the system being in the protected state is directly deter-

mined by the control mode, automatic or manual. Anal-

ysis of the time-dependent state probabilities reveals a 

short transient process, after which the system reaches a 

steady-state regime, with the most intensive probability 

redistribution occurring at the initial stage of operation. 

Throughout the simulation, normal autonomous 

operation SA remains the dominant state: its probability 

decreases from the initial value but stabilises at the 

highest level, confirming high autonomous stability. An 

inverse relationship between SA and the protected state 

SP is observed, where reduced autonomy leads to an 

increased protected-state probability, indicating an ade-

quate system response. 

The probability of the manual control state SM in-

creases at the beginning of the simulation, then stabilis-

es and does not exceed 0.17, demonstrating the auxiliary 

role of manual control. At the same time, the probability 

of the manual control state with partial failure SMP re-

mains low but exceeds that of the operator response 

state HIM, indicating an increased risk of partial failures 

during manual operation. 

The probabilities of operator response to partial 

failures HIMP, as well as the emergency states FM and 

FMP, are extremely small and have a negligible impact 

on overall system dynamics. In contrast, the probability 

of the degraded performance state DL is noticeable and 

stabilises at approximately 0.05, showing no direct de-

pendence on immediate operator intervention. 

The operator response state HIM maintains a con-

stant probability over time, indicating that operator reac-

tions do not significantly influence steady-state system 

behaviour. Finally, automatic control reduces the likeli-

hood of transitions to the protected state compared to 

manual control, reflecting the impact of the human fac-

tor. The probabilities of transitions to inoperable states 

due to operator errors remain low under the considered 

conditions. 

The applicability limits of the proposed models are 

determined by the types of UAVs, their missions, and 

the characteristics of the cyber-physical environment, 

provided that these factors do not violate the formulated 

assumptions to an extent that would significantly affect 

the accuracy of the results, in particular the calculation 

of the availability index. If such an influence becomes 

critical, it is necessary to employ semi-Markov models 

or simulation-based modelling. 

Despite the fact that this article mainly refers to the 

use of UAVs, the Markov models obtained describe the 

states of the system and the transitions between them in 

such a way that they can be used to model the operation 

of UGVs. 

The impact of hazardous environments can be tak-

en into account through appropriate coefficients that 

increase the failure rate or the probability of mission 

abortions. This work does not consider in detail scenari-

os of such impacts, including cyber-attacks, which may 

be the subject of further research. 

The trustworthiness of the proposed models is 

confirmed through their theoretical consistency with the 

properties of Markov processes, including prob-ability 

normalization and non-negativity of transition 

intensities. Additional validation is provided by the 

agreement of the obtained results with known limit-ing 

cases and trends reported in related studies on Markov-

based reliability and availability modelling. 

Furthermore, a numerical stability and sensitivity 

analysis demonstrates that moderate variations in the 

transition parameters do not lead to qualitative changes 

in the system behaviour, confirming the credibility of 

the proposed approach. 
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5. Conclusions 
 

The article substantiates the expediency of using 

Markov chains for formalised modelling of user and 

system behaviour in augmented reality. This approach 

represents human-machine interaction as a finite set of 

states with probabilistic transitions, enabling quantita-

tive analysis of AR-based monitoring and control sys-

tems.   

The main contribution is the study of UAV moni-

toring systems where AR serves as a key element of 

interaction. Unlike most works that examine architec-

ture, interfaces, and operator behaviour separately, this 

research integrates them into one applied task, consider-

ing operating modes (autonomous, manual, protected), 

failures, operator errors, and backup drones.   

The scientific novelty lies in a newly proposed 

method for assessing the availability of monitoring sys-

tems for potentially hazardous areas with augmented 

reality–based human–machine interaction interfaces, 

which, unlike existing approaches, is based on single- 

and multi-fragment Markov models and accounts for 

operator reactivity and error-free performance, partial 

failures, and the availability of reserve UAVs, thereby 

enabling analysis of parameter impacts on the readiness 

function and their justified selection to meet specified 

requirements.   

Simulation results show rapid transition to steady 

state, with autonomous operation remaining dominant, 

confirming its stability. An inverse correlation between 

autonomous and protected states indicates adequate sys-

tem response to reduced capability. Manual control 

plays a supporting role but carries higher risk of partial 

failures, while operator response state has minimal in-

fluence.   

Thus, the study confirms the feasibility of Markov 

models for analysing complex AR-integrated systems 

and provides a basis for modelling other cyber-physical 

systems, optimising AR interface design, and supporting 

engineering solutions to enhance reliability, safety, and 

efficiency of UAV/UGV-based systems.   
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МАРКОВСЬКЕ МОДЕЛЮВАННЯ ЛЮДИНО-МАШИННОЇ ВЗАЄМОДІЇ  

В AR-СЕРЕДОВИЩІ ДЛЯ СИСТЕМ МОНІТОРИНГУ НЕБЕЗПЕЧНИХ ТЕРИТОРІЙ  

НА ОСНОВІ UAV/UGV  

Є. О. Канарський, В. С. Харченко, О. О. Орєхов, Ю. Л. Поночовний 

Предметом дослідження є марковські процеси, що використовуються для формального опису динаміки 

станів безпілотних апаратів, керованих оператором за допомогою людино-машинних інтерфейсів на основі 

доповненої реальності. В межах дослідження безпілотні літальні та наземні апарати розглядаються як скла-

дні багатостанові технічні системи, функціонування яких визначається як технічними характеристиками, так 

і особливостями взаємодії людини з інтерфейсом керування. Метою дослідження є оцінювання впливу інте-

рфейсів людино-машинної взаємодії на основі доповненої реальності на безпомилковість прийняття рішень 
оператором безпілотних систем, а також на його реактивність у процесі керування та реагування на зміну 

станів системи. Завданнями даного дослідження є розробити марковські моделі (a) без урахування відмов і 

помилок оператора безпілотних систем, з повним відновленням; (b) без урахування відмов з можливістю 

допущення помилок оператором, з повним відновленням; (c) з урахуванням відмов без помилок оператора 

безпілотних систем, з повним відновленням; (d) з урахуванням відмов і помилок оператора, з повним відно-

вленням; (e) без урахування відмов з можливістю допущення помилок оператором, з наявною резервною 

безпілотною системою. Отримані ланцюги Маркова мають бути використані для моделювання і подальшого 

порівняння впливу різних умов на систему. В результаті дослідження було отримано (a) класифікатор ста-

нів безпілотних літальних апаратів в складі системи моніторингу небезпечних середовищ на основі можли-

вої наявності відмов, помилок оператора та резерву апаратів; (b) моделі Маркова для різних сценаріїв робо-

ти системи; (c) результати симуляції роботи системи на основі розроблених моделей Маркова.  Висновок. 
Наукова новизна полягає у наступному: вперше запропононвано метод оцінювання готовності систем моні-

торингу з інтерфейсами людино-машинної взаємодії на основі доповненої реальності, що базується на одно- 

та багатофрагментних марковських моделях, які враховують дії оператора, часткові відмови та наявність 

резервних безпілотних апаратів. Метод кількісно оцінює вплив доповненої реальності не тільки на суб'єкти-

вні показники, але й на показники готовності та надійності системи в цілому. 

Ключові слова: доповнена реальність; безпілотні системи; ланцюги Маркова; людино-машинна взає-

модія.  
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