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MARKOV MODELLING OF HUMAN-MACHINE INTERACTION
IN AN AUGMENTED REALITY ENVIRONMENT
FOR UAV/UGV-BASED HAZARDOUS AREA MONITORING SYSTEMS

The subject of the study is Markov processes used for the formal description of the dynamics of states of un-
manned vehicles controlled by an operator through augmented reality—based human-machine interfaces.
Within the scope of the research, unmanned aerial and ground vehicles are considered as complex multi-state
technical systems whose functioning is determined both by their technical characteristics and by the specific
features of human interaction with the control interface. The aim of the study is to assess the impact of aug-
mented reality—based human—machine interaction interfaces on the error-free decision-making of unmanned
system operators, as well as on their responsiveness during control and reaction to changes in system states.
The objectives of this study are to develop Markov models for the following scenarios: (a) without considering
system failures and operator errors, with full recovery; (b) without considering failures, but allowing for oper-
ator errors, with full recovery; (c) considering system failures without operator errors, with full recovery; (d)
considering both system failures and operator errors, with full recovery; and (e) without considering failures,
allowing for operator errors, with the presence of a redundant unmanned system. The resulting Markov chains
are intended to be used for modelling and subsequent comparison of the impact of different operating condi-
tions on the system. As a result of the study, the following were obtained: (a) a classifier of states of unmanned
aerial vehicles within a hazardous environment monitoring system based on the possible presence of failures,
operator errors, and system redundancy; (b) Markov models for various system operation scenarios; and (c)
simulation results of system operation based on the developed Markov models. Conclusion. The scientific nov-
elty is as follows: a method for assessing the availability of monitoring systems with augmented reality—based
human-machine interaction interfaces is proposed, which is based on single- and multi-fragment Markov
models that take into account operator actions, partial failures, and the availability of reserve unmanned aeri-
al vehicles. The proposed method quantitatively evaluates the impact of augmented reality not only on subjec-
tive indicators but also on the overall system availability and reliability indicators.

Keywords: augmented reality; unmanned aerial vehicles; Markov chains; human-machine interaction.

clude optical detection devices, infrared or multispectral
cameras, magnetometers, ground-penetrating radar, and
LiDAR, provides the information necessary for subse-
quent analysis [1].

The information obtained from UAVs and UGVs
can be used for analysis by artificial intelligence tools
and for creating a digital map of the surveyed area. The

1. Introduction

1.1. Motivation

Monitoring hazardous and potentially hazardous
areas to detect explosive ordnance is often one of the
most time-consuming tasks due to the high accuracy

requirements for the data obtained. Accelerating the
execution of such tasks is possible through the use of
modern technologies, including cloud computing, digi-
tal twins, artificial intelligence (Al), unmanned aerial
vehicles (UAVS), unmanned ground vehicles (UGVS),
and augmented reality (AR).

Unmanned systems enable the execution of terrain
reconnaissance tasks to detect the presence of explosive
or other potentially hazardous items. Their high mobili-
ty and speed of movement allow access to the most
hard-to-reach areas. A suite of sensors, which may in-

application of Al will reduce data analysis time and
increase accuracy in the process of detecting potentially
explosive items by eliminating the human factor [2].
The use of digital twins in the detection process will
allow for the highly accurate identification of unexplod-
ed ordnance (UXO), which should reduce the search
area for the demining team and increase mission availa-
bility levels [3].

The use of cloud technologies for processing and
analyzing information provides the necessary level of
computational power. Storing and visualizing data in
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real time ensures that all participants in the UXO moni-
toring process have up-to-date information on potential
danger zones.

The role of AR in the monitoring process may not
be obvious; however, it is precisely human-machine
interaction systems based on augmented reality that
have the potential to significantly improve the quality of
use and the response speed of personnel involved in the
monitoring process [4], particularly UAV/UGV opera-
tors. An AR interface is capable of providing a high
level of operator situational awareness through the sim-
ultaneous visualization of current operational parame-
ters of unmanned vehicles, high-resolution video
streams, and area maps with plotted mission routes. De-
termining the impact level of augmented reality inter-
faces on the reactivity and error-free decision-making of
unmanned systems operators during mission execution
is one of the most pressing scientific tasks and can be
used in the process of assessing their quality.

1.2. State of the art

Over recent decades, research in the field of un-
manned monitoring systems has developed along sever-
al interconnected directions. The first key research di-
rection focuses on the development of architectures for
monitoring systems based on unmanned platforms, in-
cluding solutions based on UAVs, UGVs, and hybrid
UAV/UGV systems, with an emphasis on scalability,
reliability, and integration of multi-sensor payloads. The
second direction is related to the application of aug-
mented reality technologies to improve human-machine
interaction, particularly by enhancing operator situa-
tional awareness, reducing cognitive load, and increas-
ing the accuracy and speed of response during interac-
tion with individual unmanned vehicles or their groups.
Significant attention here is given to research on the
quality of AR interfaces themselves, including their
ergonomic characteristics, methods of information
presentation, level of immersion, and impact on the ac-
curacy and speed of operator decision-making. Finally,
a separate but closely related research direction con-
cerns the modelling and analysis of such systems, in-
cluding the use of probabilistic and stochastic models to
describe system dynamics, operator behaviour, error
propagation, and system reliability. In the presented
review, existing research in these directions is analysed,
their limitations are identified, and unresolved issues
motivating the research presented in this work are high-
lighted.

The first research direction focuses on developing
architectures for unmanned vehicle-based monitoring
systems, including UAV-only solutions, UGV-based
systems, and mixed UAV/UGV configurations.

For example, article [5] examines the use of UAVs

as part of an Advanced Air Mobility (AAM) system for
autonomous surveillance in smart cities and other tasks,
including environmental monitoring. The proposed sys-
tem is a multi-tiered structure combining a UAV fleet,
ground control centres, and edge/cloud computing. Un-
like many publications primarily focused on sensor
network integration, this work also pays significant at-
tention to reliability and survivability models, which are
critically important for monitoring critical infrastructure
objects. This approach reflects the trend of transitioning
from conceptual to engineering-validated systems capa-
ble of functioning under conditions of failures, over-
loads, and uncertainty.

Another work [6] is dedicated to the use of un-
manned systems in the processes of detecting and iden-
tifying unexploded ordnance (UXO). Traditionally, per-
forming detection and identification tasks for explosive
items relies on using ground robots, ground-penetrating
radars, magnetometers, and visual sensors; however,
these often suffer from limited adaptability. In this case,
the proposed solution addresses this problem through
the use of robotic-biological systems that combine tech-
nical platforms with biological components. This en-
hances detection accuracy, reduces risks to personnel,
and ensures scalability of solutions for humanitarian
demining and security operations. For us, this work is
interesting from the perspective of its approach to defin-
ing the overall system architecture and the interaction
between components.

Work [7] describes the use of UAVs in environ-
mental monitoring systems. The provided review indi-
cates that UAVs are typically equipped with multi-
sensor arrays and other measurement modules to ensure
the high data quality required for real-time decision-
making. Significant attention is also given here to the
integration of artificial intelligence methods and auto-
matic flight control. Overall, the work does not contain
advanced mission planning algorithms or descriptions of
monitoring system architectures, but it demonstrates
practical engineering solutions for integrating multi-
sensor modules on UAVSs, which is relevant for envi-
ronmental monitoring systems or hazardous areas.

Thus, the reviewed works provide a general under-
standing of the structure of monitoring systems, the role
of unmanned vehicles with multi-sensor modules, and
the use of artificial intelligence and cloud computing
tools.

At the same time, existing works still have a num-
ber of common shortcomings that need to be consid-
ered. The first such shortcoming is the insufficient cov-
erage of human-machine interaction mechanisms, their
potential impact on the operator and system dynamics,
and the possibilities of using modern interfaces, particu-
larly augmented reality, to enhance situational aware-
ness when managing a UAV fleet. The second short-
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coming can be noted as the primary focus in the re-
viewed works being predominantly on the concept and
general system structure, whereas the interaction be-
tween components, as well as the operator's role under
conditions of errors or partial failures, remain described
only at a conceptual level. It is also worth separately
noting the simplified implementation of the system ar-
chitecture without considering a swarm approach in
work [7]. Combined with the absence of mechanisms
for real-time data processing and analysis using cloud
computing, this solution could significantly limit its
applicability for complex and critical tasks.

In summary, it can be concluded that existing re-
search does not provide a comprehensive integration of
UAV-based monitoring system architectures with mod-
ern AR interfaces and formal models of operator and
system behaviour. Instead, these issues are partially
addressed in works [8-16], which belong to the second
research direction, namely the use of augmented reality
technologies for human-machine interaction in un-
manned systems.

Article [8] discusses the use of virtual environ-
ments of augmented and virtual reality in UAV control
processes. The authors of the study focus on creating an
intuitive human-machine interaction system for control-
ling and servicing unmanned aerial vehicles, which
combines the video stream from the drone with overlaid
navigation elements. The developed system is used as a
tool for detecting and analysing UAV operator errors
during test flights. And although the authors of the study
note the positive impact of AR on control accuracy and
error minimization in the control process, the article
provides no calculations or other evidence to support
these conclusions.

Study [9] examines the impact of augmented reali-
ty on the situational awareness of the operator during
UAV flight control. The authors of the work propose
using virtual objects to mark UAV movement routes.
Based on the results of the experiment conducted in the
study, it is claimed that this approach increases the level
of situational awareness and operator efficiency. How-
ever, this version of the control interface lacks elements
responsible for displaying information about the current
state of the UAV. This could negatively impact mission
performance in the event of the UAV transitioning to a
state of partial or complete failure. This scenario and its
impact on the accuracy of the operator's actions are not
considered by the authors of this study.

A similar application of AR for UGV control is
considered in article [10]. The authors of the work sug-
gest an increase in the level of situational awareness for
operators of ground vehicles when remote operators use
augmented reality interfaces, including for orientation
and route planning in an unfamiliar environment. How-
ever, the impact of AR on the operator's responsiveness

and the accuracy of their actions is not considered, and
the assumptions described above lack scientific substan-
tiation.

The authors of [11] reach conclusions regarding
the impact of AR on the error-free performance of un-
manned system operators that are contrary to those of
previous studies. Their research uses an augmented real-
ity interface they developed to assess task performance
accuracy and cognitive load levels. The authors also
note the low level of situational awareness among the
respondents who participated in the study, as well as the
low quality of use. It is quite likely that the latter indica-
tor is the reason for the respondents' negative feedback,
as in human-machine interaction systems with a high
level of immersion, which includes AR, it is one of the
key factors. The quality of using AR interfaces directly
affects the physical and mental state of operators, which
impacts situational awareness, reactivity, and the accu-
racy of operator decisions [12, 13]. The authors con-
clude that further research should be directed towards
optimizing interfaces to reduce their negative impact on
human-machine interaction.

Specifically, study [14] presents an AR interface
for mobile devices that enables the control of a UAV
fleet using virtual manipulators implemented on a touch
screen. However, a significant drawback of this ap-
proach is the operator's need to maintain constant visual
contact with the drone to monitor flight direction and
ensure a stable connection with the mobile device. This
limitation is due to the fact that the window displaying
the video stream from the UAV occupies less than 10%
of the screen area and is partially obscured by virtual
control elements. Given the limited size and resolution
of mobile device displays, such a small display area
makes it difficult or nearly impossible to effectively
perceive video information from the UAV's onboard
systems. As a result, this approach to using AR may be
acceptable for personal use but does not meet the re-
quirements of monitoring systems.

In the work [15], the application of augmented re-
ality for first-person control of UAVs using AR glasses
is proposed. Flight control in this case is carried out
using a traditional remote control, while video infor-
mation from the drone's cameras is displayed as virtual
windows. This approach is more convenient from the
perspective of controlling a single unit; however, it does
not provide the capability to control a fleet of UAVS.
Furthermore, this AR interface lacks the informational
elements necessary for monitoring the unit's status, such
as battery level, altitude, speed, etc. Given this, the use
of such a solution in monitoring systems is impossible.

In the study [16], a UAV control interface is pro-
posed, which is positioned as a system with augmented
reality elements. Unlike the previous approach, it im-
plements the main informational indicators necessary
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for controlling an unmanned unit. However, the inter-
face retains a number of limitations, including the small
size of the elements intended for displaying the video
stream from the UAV and the flight map, as well as the
lack of capability for controlling a group of unmanned
units. Additionally, the question of classifying the pro-
posed human-machine interaction system as a class of
AR interfaces remains debatable, since all virtual con-
trol elements are implemented in two-dimensional
space, whereas the classical definition of augmented
reality [17] assumes their spatial (three-dimensional)
placement. Considering the presented approaches and
the identified shortcomings of existing AR interfaces, it
is advisable to develop and present our own design vari-
ant.

The cited research demonstrates significant interest
in enhancing operator situational awareness and improv-
ing human-machine interaction. However, from the per-
spective of studying the impact of AR on operator effec-
tiveness within complex monitoring systems, they have
a number of fundamental limitations. In particular, the
reviewed works focus primarily on the development of
individual AR interfaces or experimental prototypes and
are generally limited to qualitative or experimental
evaluation with small samples, lacking formal model-
ling of operator and system behaviour over time. In
these studies, AR is considered as a visualisation tool,
but there is no analysis of how the use of AR affects the
probabilities of the system being in various states, the
occurrence of errors, or failures. Furthermore, in most
works, AR is considered in the context of controlling a
single device or a specific task, without accounting for
UAV fleets, multi-level management architectures, and
partial failure scenarios, which are critical for monitor-
ing systems in hazardous areas. It is also important that
none of the reviewed works propose a probability or
Markov chain approach to assessing the impact of AR
interfaces on operator behaviour and overall system
dynamics.

Works focused on the application of Markov mod-
els for analysing user and operator behaviour, particu-
larly in augmented reality and unmanned system con-
trol, have a number of limitations. For example, in study
[18], Markov chains are used to analyse the processing
of visual stimuli in 2D, 3D and AR environments as part
of a laboratory experiment, which allows conclusions to
be drawn about the mechanisms of perception. however,
the results obtained are not related to real scenarios of
human-machine interaction in complex technical sys-
tems, in particular with UAV control or monitoring
tasks, where time constraints and the risk of operator
errors are critical. In [19], a formalisation of a UAV
swarm is proposed in the form of a multi-station queu-
ing system with degradation, but the behaviour of the
operator is considered only indirectly and is not linked

to interaction interfaces or the use of AR technologies,
which limits the ability to assess the impact of humans
on the operation of the system. Research [20], which
uses hidden Markov models to identify the behavioural
patterns of UAV operators, demonstrates the potential
of statistical analysis of user actions, but does not take
into account the specifics of augmented reality, in par-
ticular the spatial placement of information, cognitive
load and changes in operator reactivity in AR interfaces.
Taken together, these works confirm the feasibility
of using Markov models to describe user behaviour and
the states of technical systems, but do not provide a
comprehensive approach to modelling the interaction
between the operator and the UAV in augmented reali-
ty, which justifies the need for further research aimed at
combining AR interfaces, formal Markov models and
monitoring system architectures in a single study.

1.3. Obijectives and methodology

The aim of this work is to develop and analyse a
UAV-based hazardous area monitoring system with
augmented reality interfaces and to formalise the influ-
ence of operator behaviour, human errors, and technical
failures on system dynamics using Markov state models.
Special attention is given to evaluating the role of AR
interfaces in improving situational awareness, operator
reactivity, and error-free decision-making.

To achieve this aim, the study analyses existing
UAV-based monitoring architectures and their human—
machine interaction limitations, develops a generalised
system architecture incorporating UAVs/UGVs and an
operator AR interface, formalises system and operator
behaviour as state-transition models, constructs Markov
models for different operational scenarios, performs
simulation-based probabilistic analysis of system states,
and evaluates the impact of AR interfaces and operator
behaviour on overall system performance.

The research methodology combines information
system architecture design, Markov process modelling,
and simulation techniques. Several system architectures
were considered, and the most suitable one was selected
for further study. Key factors such as system failures,
operator errors, and the availability of backup
UAVs/UGVs were classified to define operational sce-
narios. Five representative scenarios were analysed,
covering combinations of failures, operator errors, and
reserve systems. For each scenario, an appropriate Mar-
kov model was developed, parameterised, and expressed
using Kolmogorov—Chapman equations, which were
then used for simulation and visualisation of state prob-
abilities.

The article is structured as follows:

- development of a monitoring system architecture
(section 2.1);
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- development of a availability model classifier
based on possible system usage scenarios (section 2.2);

- development and simulation of a system availa-
bility models: without accounting for failures and opera-
tor errors, with full recovery (section 3.1);

without accounting for failures but with the possi-
bility of operator errors, with full recovery (section 3.2);
accounting for failures but without unmanned systems
operator errors, with full recovery (section 3.3); ac-
counting for failures and operator errors, with full re-
covery (section 3.4); without accounting for failures but
with the possibility of operator errors, with a reserve
unmanned system present (section 3.5);

- discussion of the obtained results (section 4),
main contribution. and further research steps (section 5).

2. UAV/UGV-based monitoring system

2.1 System architecture

Since the human-machine interface of augmented
reality cannot exist as an object separate from the sys-
tem, the authors of the study, based on previously re-
viewed works [1-3], developed a UXO monitoring sys-
tem architecture that formalises the interrelationships
between its functional and informational components.
The system is designed for the remote detection, analy-
sis, and spatial localisation of explosive ordnance with
minimised risks to personnel.

The scheme presented in Fig. 1 illustrates a com-
prehensive UXO monitoring system that combines
modern technologies for managing unmanned aerial
vehicles, augmented reality, as well as centralised data
analysis and processing infrastructure. This system en-
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automated processing, these tools identify explosive
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Here, operators employ AR glasses to visualise
mine threat maps, UAV and ground system statuses, and
telemetry. Their behaviour in AR and transitions be-
tween autonomous, semi-autonomous, and manual
modes can be formalised with Markov models, enabling
quantitative analysis of human-machine interaction.

2.2 Models classification

This work examines several modes in which the
monitoring systems UAV may operate considering mis-
sion particularities, operator activities, failures and so
on.

To systemize various modes and appropriative
models and simplify understanding, a multi-level classi-
fier of scenarios (modes) has been developed, covering
technical, human and organisational factors that affect
the overall system reliability (Fig. 2).

The first level of classification characterises the
technical state of the system, determining the presence
or absence of failures. The system can operate in normal
mode under conditions without malfunctions or transi-
tion to states of partial or complete failure when corre-

Absent

!

sponding events are recorded. In the case of combined
failures, the scenario of the system transitioning from a
state of partial failure to complete failure is considered.
The second level takes into account the possibility of
operator errors arising during mission execution. In the
case of error-free operator work, the system maintains
predictable behaviour, whereas the occurrence of an
error causes a transition to one of the subtypes of viola-
tions, such as incorrect transition to protected mode,
control error, or their combination.

The third level of classification determines the
presence of reserve unmanned vehicles and the possibil-
ity of restoring operational capability. If reserve drones
are present, the option of their replacement until func-
tionality is restored is considered. In the case of no re-
serves, scenarios are limited to possible partial or com-
plete recovery of the used vehicles.

Base to this classification, several descriptions can
be created. In this study, we develop and investigate
five models MO-M4. The simplest scenario MO (red
line) considers the case where there are no failures and
no operator errors, with full recovery should the system
transition into a protected operating mode.
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False transition to
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Control error and
transition to
protected state
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Partial Full
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Fig. 2. Models’ classification: MO — red, M1 — green, M2 — blue, M3 — purple, M4 — grey
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The first model M1 (green line) considers the case
without failures, but with operator errors and full recov-
ery when the system transitions into a protected operat-
ing mode.

The second model M2 (blue line) considers a
model variant accounting for the presence of faultless
operator failures, with full recovery.

The third model M3 (purple line) considers a sce-
nario accounting for failures and operator errors, with
full recovery in the event of transitioning to a protected
state.

The fourth model M4 (grey line) considers the
case without accounting for system failures, with the
possibility of operator error, and with the presence of
backup UAVs/UGVs.

Thus, the proposed classifier provides a compre-
hensive representation of possible states of unmanned
systems. This approach allows for the formation of for-
mal models, risk assessment in UAV/UGV fleets, pre-
diction of error consequences, and determination of op-
timal recovery strategies. The obtained structure forms
the basis for building analytical and simulation models
aimed at improving the availability of unmanned com-
plexes.

3. Markov models

3.1. Initial model, MO

The system described in this paper is characterized
by a clearly defined finite set of states between which
stochastic transitions occur. At any given time, the sys-
tem occupies exactly one state, and all possible transi-
tions between states can be described by the correspond-
ing transition intensities. The probability of the system

transitions. This property is typical of processes in
which changes in operating modes are caused by local
events (such as operator intervention, erroneous actions,
or component failures) and is consistent with the actual
logic of operation of monitoring systems as well as with
the defining properties of continuous-time Markov pro-
cesses. Therefore, the use of this classical mathematical
framework is both feasible and justified, as it enables
the step-by-step development and analysis of monitor-
ing system models.

The simplest case considers a scenario with no
failures and no UAV/UGV operator errors, with full
recovery if the system enters a protected mode of opera-
tion. In this case, the system has only four possible
states, as shown on the transition graph of this model
(Fig. 3).

System state Sa assumes that the system is in a
normal operational state and is controlled by automated
means.

System state Sy assumes that the system is in a
normal operational state and is manually controlled by
the operator.

System state Hlnv describes the operator's reaction
to the information received during manual control of the
system.

System state Sp assumes that the system is in a
non-operational, protected state. A forced return is initi-
ated.

To calculate the probabilities of the system being
in each of these states, it is necessary to formulate and
solve a system of balance equations (1). This system
describes the temporal evolution of state probabilities as
a function of the transition intensities between states and
provides a formal basis for analysing both transient and
steady-state behaviour of the monitoring system under

transitioning to a subsequent state depends exclusively ~autonomous and - operator-assisted  control - modes.
on its current state and not on the sequence of preceding
dP, (1)
# = _(}"AM + App)PA (1) + oA Pr (1) + Aya Py (D),
dr,, (t)
éﬂt = -wa + M+ Ae )P (0 + Aay Pa (0 + 1y Pt (1),
dP, (t
(;t( ! = UpaPo () + Ao Pa (1) + Ao Py (V) + B P (O, @)
dr,., (t)
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Fig. 3. Transition graph for the model MO

where Aam — transition intensity from state Sa to state

Swm;
Aap— transition intensity from state Sa to state Sp;
Ama— transition intensity from state Sw to state Sa;
Amp — transition intensity from state Sy to state Sg;
Amn — transition intensity from state Sy to state Hlw;
upa— transition intensity from state Sp to state Sa;
unmm — transition intensity from state Hlv to state

Swm;

unme — transition intensity from state Hly to state Sp;
— probability of the system being in a state i;
ie {A, M, P, H|M, FM, FMR}.

For t = 0: Pa (0) =1, Pm (0) = Pp (0) = Prim (0) =
0. Based on the analysis of publications [21-24] devot-
ed to the modelling of systems followed by the assess-
ment of their reliability and availability using Markov
processes, the transition parameters were selected for
the subsequent simulation of models M0—M4. The tran-
sition parameters used in the MO are summarised in
Table 1. These parameters represent the intensities of
transitions between system states and are defined in
units of hours (hr), which is consistent with the continu-
ous-time Markov chain formulation adopted in this
study. The selected parameter ranges reflect realistic
operational conditions of UAV/UGV-based monitoring
systems and are chosen to capture typical dynamics of
autonomous operation, operator intervention, and pro-
tective system responses.

Figure 4 presents the time-dependent probabilities
of the system being in each operational state, obtained
via numerical simulation of the Markov model using the
first set of transition parameters defined in Table 1.

Table 1
Transition parameters for the MO
No Transition Transition parameter 1 Measuremer;t range, hr 3
1 SA—> Swm Aam 1 0,3333 2
2 SA=> Sp Aap 2 5 20
3 Sm > Sa Ama 0,3333 0,1 0,6666
4 Sm—> Sp Amp 2 5 20
5 Sm = Him AMH 0,0083
6 Sp -> SA HPA 0,5 1 2
7 Hlm = Swm HHMM 0,0008 0,0028 0,0083
8 H|M -> Sp HHMP 2 5 20
1
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0.8 o
Fa
= TN - Py
“*:-:ms— === Pf”w
::‘-f esd e PP
‘-.-;% 0.4
=~ 03
e B S e e S e
0.1+
o .”—.——.__._____.__._ B L B B T
a 1 2 3 & T B a 10 i1 12z 13 1 15 ] 17 15 19

t, hours

Fig. 4. Simulation results for the M0
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The choice of time scale in Fig. 4 and subsequent
simulation results is due to the need to investigate the
non-stationary part of the behaviour and determine the
limits of the system's transition to a steady state, where
the probabilities of being in the corresponding states
remain unchanged.

Analysis of the graph shows that, for the given
transition intensities, the state of normal autonomous
operation Sa remains dominant over the entire simula-
tion interval. This indicates that, in the absence of ex-
ternal disturbances or critical failures, the system pre-
dominantly operates in autonomous mode, which is both
expected and desirable for hazardous area monitoring
systems.

The probability of the protected state Sp exhibits
an inverse correlation with the probability of autono-
mous operation Sa: as the likelihood of autonomous
functioning decreases, the probability of entering the
protected state increases, reflecting the timely activation
of safety mechanisms under deteriorating operating
conditions.

The probability of the system operating in the
manual control state Sy does not exceed Py ~ 0.17 at
any time, confirming that manual control serves an aux-
iliary role and is engaged only in specific situations ra-
ther than as a primary operating mode.

The operator response state Hly maintains a low
and nearly constant probability of approximately 0.016
throughout the simulation period, indicating a negligible
impact on the overall system dynamics and confirming
that active operator intervention is infrequent and not a
determining factor in system operation.

3.2. Model considering human errors, M1

The second model considers a scenario without
system failures but explicitly accounts for operator er-
rors, assuming full system recovery after transitioning to
the protected mode (Fig. 5). Unlike the first model, it

incorporates human-related factors, particularly errors
during manual control, which may degrade system op-
erability and trigger protective mechanisms.

To represent these effects, two additional states
were introduced: complete system inoperability due to
operator error during manual control (Fwm) and inopera-
bility followed by transition to the protected mode
(Fmr).

As a result, the number of possible state transitions
increased from eight to thirteen, enabling a more realis-
tic quantitative assessment of the impact of operator

reliability on system.

Aap

Fig. 5. Transition graph for the model M1

The transition parameters for the M1 are presented
in Table 2. Parameters common to the MO retain their
original values and ranges to ensure comparability be-
tween the models and to isolate the impact of operator-
induced effects.

Table 2

Transition parameters for the M1
Ne Transition Transition parameter 1 Measurem;nt range, hr 3
1 Sa—> Sm Aam 1 0,3333 2
2 Sa—> Sp Aap 2 5 20
3 Sm—> Sa A 0,3333 0,1 0,6666
4 Sm—> Sp Avip 2 5 20
5 Sm = Him vin 0,0083
6 Sp -> SA HrA 0,5 1 2
7 Hlm = Swm HHMM 0,0008 0,0028 0,0083
8 H|M -> Sp HUHMmP 2 5 20
9 Hlm > Fum AHMM 5 10 20
10 Hlm > Fur AHMMR 10 100 1000
11 Fm—=> Sm HMmM 0,00016 0,00004 0,00008
12 Fm—> Him HMHM 0,000128 0,00002 0,0000016
13 FMR - SA UMRA 0,5 1 2
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Additional parameters Aimm and Aummr Character-
ise the intensities of transitions from the operator reac-
tion state Hlw to failure states Fm and Fug, respectively.
These parameters are assigned higher values to reflect
the increased likelihood of incorrect operator actions
under stress or time-critical conditions.

Recovery transitions from failure states (pmm,
umHM, Umra) are modelled with comparatively low in-
tensities, reflecting the time-consuming nature of diag-
nosing operator-induced errors and restoring system
operability. The relatively higher recovery rate from the
protected failure state Fur to autonomous operation Sa
assumes that system protection mechanisms facilitate
faster stabilisation and recovery.

The chosen parameter ranges enable the evaluation
of system robustness under varying degrees of operator
reliability and provide a quantitative basis for assessing
the impact of human factors on the safety and efficiency
of UAV/UGYV monitoring systems.

Based on the results of calculations performed us-
ing the transition intensities from the first parameter set,
the time-dependent probabilities of the system being in
each of the possible states were obtained and are pre-
sented in Fig. 6. These probabilities characterise the
dynamic behaviour of the system under conditions that
explicitly take into account operator-related errors.

Compared to the simulation results of the model
without operator errors (Fig. 4), the probability of the
system operating in the normal autonomous state Sa
decreases by approximately 0.03. Despite this reduction,
Sa remains the dominant and most probable operating
mode throughout the simulation interval, indicating suf-
ficient robustness of the autonomous control mecha-
nisms even in the presence of human-induced disturb-
ances.

1

The probabilities of the protected state Sp and the
manually controlled normal state Sy also slightly de-
crease; however, these changes are minor and do not
qualitatively affect the overall system behaviour. This
suggests that the inclusion of operator errors mainly
redistributes probabilities among failure-related states
rather than significantly influencing the primary opera-
tional modes.

Importantly, the probability of the operator re-
sponse state Hlym remains unchanged compared to the
baseline model, indicating that operator reaction fre-
quency is not affected by the introduction of human
errors. Instead, the consequences of operator actions
become more critical.

A notable result of the M1 is the emergence of a
non-negligible probability of system inoperability due to
operator error during manual control Fy. Although this
probability does not exceed Pem ~ 0.05, it is considera-
bly higher than the probability of the operator response
state Hly, highlighting the increased risk associated
with manual intervention. In contrast, the probability of
inoperability followed by a transition to the protected
state Fmr remains extremely low and can be neglected
within the considered time horizon.

Overall, the results demonstrate that incorporating
operator errors enhances the realism by revealing latent
risks of manual control while preserving the dominance
of autonomous operating modes.

3.3 Model without operator errors and with
full recovery, M2

The third case considers a Markov model of the
system's operation that accounts for the presence of
technical failures in the absence of operator errors and
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Fig. 6. Simulation for the M1
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assumes the possibility of fully restoring the system's
functionality. This approach allows for a separate analy-
sis of the impact of hardware and software failures on
the system's state dynamics without the additional com-
plication associated with the human factor.

On the transition graph (Fig. 7), the Fy and Fur
states are absent, as this scenario does not anticipate
operator errors during manual control. Instead, a hum-
ber of new states have been introduced into the model,
reflecting the specifics of partial failures and the sys-
tem's and operator's response to them. Specifically, the
following are considered the manual control state of the
system with a partial failure Sup, the operator response
state to changes in the system with a partial failure Hlwpe
and the partial operational state of the system due to a
partial failure Dy.

)\MMP

Yy,

Fig. 7. Transition graph for the model M2

The introduction of these states allows for a more
detailed description of the degraded operating modes of
the system, which are characteristic of real-world
UAV/UGV operations in complex and dynamic envi-
ronments, as well as for assessing the impact of partial
failures on the system's probabilistic characteristics.

The parameters of the transitions for the M2 are
provided in Table 3. Each transition parameter charac-
terises the intensity of the system's state change and has
a physical interpretation corresponding to the actual
operational processes of the monitoring system.

Transitions from autonomous operation Sa to
manual control Sy, protected mode Sp, and partial fail-
ure Dp are governed by parameters Aam, Aap, and Aar,
respectively, with elevated Aa_ values reflecting the
likelihood of partial technical failures under complex
conditions.

Transitions from manual control Sw describe sys-
tem behaviour under active operator intervention, where
Aamp characterises the risk of transitioning to manual
control with partial failure Swe, while Amn remains low,
assuming stable operator behaviour.

Recovery parameters (Lpa, HHMM, HHMP, HLMP, HLP)
represent the system’s ability to restore operational ca-
pability after failures or interventions.

Special attention is given to partial failure states
D. and Swme, Whose mutual transitions model cyclic deg-
radation and recovery processes. The operator response
state to partial failures Hlmp has extremely low transi-
tion intensities, indicating limited operator influence
during technical degradation.

Table 3

Transition parameters for the M2

N Transition Transition parameter Measurement range, hr
) 1 2 3
1 Sa—> Sm ham 1 0,3333 2
2 Sa > Sp Aap 2 5 20
3 Sa—> Do AaL 10 25 100
4 Sm = Sa A 0,3333 0,1 0,6666
5 Sm > Sp Avip 2 5 20
6 Sm =~ Hlm Avin 0,0083
7 Sm > Swp Ammp 10 25 100
8 Sp > Sa [IEYN 0,5 1 2
9 Him > Swm LHMM 0,0008 0,0028 0,0083
10 Hlm > Sp HHMP 2 5 20
11 DL > Swp KLmp 1 0,3333 2
12 DL>Sp Hep 2 5 20
13 Smp - DL AnpL 0,3333 0,1 0,6666
14 Swe = Hlwp AMPHMP 0,0083
15 Swmp > Sp Avpp 2 5 20
16 Hlmp = Swp HHMPMP 0,0008 0,0028 0,0083
17 Hlve > Sp HHMPP 2 5 20
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Fig. 8. Simulation for the M2

Parameter ranges are defined for three intensity
sets to support sensitivity analysis. Simulation results
for the first parameter set show that autonomous opera-
tion Sa remains dominant, confirming a high level of
system autonomy even in the presence of partial fail-
ures.

)\MPL

Fig. 9. Transition graph for the model M3

The integration of these specified states and transi-
tions enables the analysis of complex operational sce-
narios, particularly situations where operator errors can
lead to system failures, or conversely, where technical
faults prompt operator intervention with an increased
risk of erroneous actions. The full restoration of system
functionality following a transition to a protected state is
modelled as a key mechanism for enhancing the overall
reliability and safety of the system's operation.

The transition parameters provided in Table 4 de-
fine the transition intensities between the states of the

M3, which simultaneously accounts for both system
technical failures and operator errors, under the condi-
tion of full operational recovery during the transition to
a protected mode. The parameter values were selected
to ensure consistency with previous models and to re-
flect the realistic dynamics of the human-machine sys-
tem's operation under the monitoring of hazardous are-
as.

The probability of the operator response state Hlwm
remains almost unchanged compared to previous mod-
els, indicating stable operator response characteristics in
the absence of erroneous actions. At the same time, an
increase in the probability of the protected state Sp and a
slight decrease in the probability of the manual control
state Su are observed, which can be attributed to the
larger number of failure scenarios that trigger automatic
transitions to the protected mode in order to preserve
system integrity.

The probability of the manual control state with
partial failure Swp is relatively low but nearly twice as
high as that of the operator response state Hly, indicat-
ing an increased risk of performance degradation during
manual control under partial failure conditions even
without operator errors. The probability of the operator
response state to partial failures Hivp is extremely low
and can be neglected within the scope of this analysis.

A notable probability is associated with the partial-
ly operational state D¢, which reaches approximately
0.1. Although this probability does not directly depend
on operator intervention, it correlates with a decrease in
the probabilities of autonomous operation Sa and manu-
al control Sy, as well as an increase in the probability of
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Table 4
Transition parameters for the M3
Ne Transition Transition parameter 1 Measuremeznt range, hr 3
1 Sa = Swm Aam 1 0,3333 2
2 Sa—> Sp AAp 2 5 20
3 Sa—> Do AAL 10 25 100
4 Sm = Sa Ama 0,3333 0,1 0,6666
5 Sm > Sp Amp 2 5 20
6 Sm = Hlm AMH 0,0083
7 Sm > Swe AMimvp 10 25 100
8 SP 9 SA HrPA 0,5 l 2
9 Him = Swm HHMM 0,0008 0,0028 0,0083
10 H|M - Sp HHMmP 2 5 20
11 Hlm > Fum AHMM 5 10 20
12 Hlm - Fur AHMMR 10 100 1000
13 Fm = Swm HMm 0,05 0,002 0,0001
14 Fm = Him MHM 0,25 0,01 0,08
15 Fmr = Sa HUMRA 0,5 1 2
16 DL > Swe HLMP 1 0,3333 2
17 D|_ 9 Sp KLp 2 5 20
18 Swp > DL AmpL 0,3333 0,1 0,6666
19 Swmp = Hlwpe AMPHMP 0,0083
20 Sme > Sp Ampp 2 5 20
21 Hlmp = Swp MHMPMP 5 10 20
22 HlMP -> SP HKHMPP 2 5 20

the Swp state. This indicates that technical degradation
alone can lead to partial failures and a reduction in
overall system effectiveness, even in the absence of
operator errors.

3.4. Model with consideration of operator
failures and errors, with full recovery in case of
transition to a protected state, M3

This variant considers a Markov model of system

operation, which simultaneously accounts for the pres-
1

ence of technical failures and operator errors, and also
provides for the full restoration of system functionality
in the event of a transition to a protected operating
mode. This approach allows the model to approximate
the real-world operating conditions of monitoring sys-
tems for hazardous areas, where technical malfunctions
and human factors may occur simultaneously and mutu-
ally influence the overall system dynamics.

In the transition graph (Fig. 9), this model com-
bines the properties of M1 and M2, including all
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Fig. 10. Simulation for the M3
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relevant states associated with autonomous and manual
system operation, protected mode, operator response,
operator errors, as well as full and partial failures. Thus,
the model encompasses both states of non-functionality
caused by operator errors (Fm, Fmr) and states related to
partial technical system failures (D, Swme, Hlmp), allow-
ing for a comprehensive description of the processes of
degradation and recovery of the system's functional ca-
pabilities.

Based on the parameter values from the first set of
transitions, a model simulation was performed, taking
into account the presence of failures and operator errors,
with full recovery in the event of a transition to a pro-
tected state (Fig. 10).

As in all previous modelling scenarios, the domi-
nant state is normal autonomous operation Sa, confirm-
ing stable autonomous functioning even with failures or
operator errors. The rapid convergence of Sa probability
to a stationary value indicates overall system stability.

The operator response state Hly remains low and
constant, showing limited influence under non-critical
conditions. Meanwhile, stable probabilities for the pro-
tected state Sp and manual control state Sy reflect the
need for operator intervention to handle malfunctions or
uncertain conditions, reducing full autonomy.

Manual control with partial failure Supe stays low
but consistently higher than Hlw, pointing to increased
risks during manual control due to cognitive load or
decision-making complexity. Probabilities of operator
response to partial failures Hlye and final failures (Fwm,
Fwvp) are negligible, confirming effective protective
mechanisms.

Degraded operation due to partial failure D, stabi-
lises around 0.05, with a clear correlation: as Sa de-
creases, Sm and Swp increase, showing that greater sys-
tem complexity or operator involvement raises partial
failure risks and reduces autonomous performance.

3.5. Two-fragment model, M4

Based on the M1, which describes the system's op-
eration in the absence of failures but accounts for possi-
ble operator errors and full restoration of functionality
when the system transitions into a protected operating
mode, a two-fragment system model was developed.
The proposed approach allows the operational process
to be divided into interconnected fragments, reflecting
the primary and backup control circuits of unmanned
systems as described, for example, in study [25].

Unlike previous single-segment models, this ver-
sion considers a scenario where the system's inherent
failures are not taken into account; however, the occur-
rence of operator errors during manual or semi-
autonomous control is permitted. Additionally, the pres-
ence of backup unmanned systems is envisaged, which
can be engaged in case of reduced effectiveness or erro-
neous actions by the operator in the primary system
fragment. This approach allows for a more accurate
simulation of real-world operating conditions of moni-
toring systems, where the redundancy of technical
means is one of the key mechanisms for enhancing reli-
ability and resilience.

A transition graph of the M4, illustrating the inter-
action between the primary and backup system frag-
ments, as well as the possible transitions between their
states, is provided in Fig. 11.

The equation for the two-fragment model is pre-
sented in formula (2), which describes the system of
Kolmogorov differential equations for the probabilities
of the system being in each of the possible states, taking
into account the interaction of two interconnected frag-
ments of the model. Initial conditions are the similar to
formula (1).

Mpaz+(1-Pcw)

Hpa1*Pew

Fig.11. Transition graph for the model M4
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where Aami — transition intensity from state Sa; to state
Swi;

Aapi— transition intensity from state Sa; to state Spi;

Amai— transition intensity from state Swi to state Saj;

Jpi— transition intensity from state Sy to state Spi;

Jmi — transition intensity from state Sy to state Hi-
Mi

pai— transition intensity from state Sp; to state Saj;

unmmi — transition intensity from state Hlwi to state
Swi;

unmei — transition intensity from state Hlwi to state
Spi;

Anmmi — transition intensity from state Hlwi to state
Fwmi;

Anmmri — transition intensity from state Hlw; to state
Furi;

ummi— transition intensity from state Fy; to state Swi;

umnmi — transition intensity from state Fu; to state
Hlwmi;

UmRrai — transition intensity from state Fugi to state
Sai;

Pcw — probability of a successful switch to the re-
serve fragment;

Pji — probability of the system being in a state j;

j S {A, M, P, H|M, Fm, FMR}, I S {l, 2}

The transition parameters for the M4 are presented
in Table 5 and define the transition intensities between
states for the main and reserve fragments of the system.
The proposed parameter values are based on the as-
sumption of identical functional characteristics of both
system fragments, as well as maintaining consistency
with parameters used in previous models, which allows
for a correct comparative evaluation of simulation re-
sults.

Overall, the selected parameter set allows the M4
to be effectively applied for assessing the reliability and
resilience of AR-oriented UAV/UGV-based monitoring
systems with redundancy. Figure 12 presents the simu-
lation results of M4, illustrating the temporal evolution
of state probabilities and enabling analysis of redundan-
cy effectiveness, operator influence, and system stability
in the steady-state regime.

The principal feature of the two-fragment model is
the introduction of the Pcw (Probability of Correct
Switching) parameter, which represents the likelihood
of a successful switch to the reserve fragment during
recovery from the protected state or after failure states
Fmri. The Pcw value varies from 0.5 to 0.9, reflecting
different efficiencies of redundancy management and
automatic recovery mechanisms.
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Table 5
Transition parameters for the M4
- Transition pa- Measurement range, hr
Ne Transition rameter 1 > 3
1 Sa1 = Swmu Ahami 1 0,3333 2
2 Sa1 = Spy AP 2 5 20
3 Smi > Sa1 AMAL 0,3333 0,1 0,6666
4 Sm1 = Sp1 AP 2 5 20
5 Sm1 =~ Hima AMHI 0,0083
6 Sp1 > Sat upa1(1-Pew) 0,5*(1-Pcw) 1*(1-Pcw) 2*(1-Pcw)
7 Sp1 > Spz HeaiPew 0,5*Pcw 1*Pcw 2* (1-Pcw)
8 Hlmi > Sm1 HHMML 0,0008 0,0028 0,0083
9 Hlmi = Spy HHMPL 2 5 20
10 Hlmi > Fma AHMML 5 10 20
11 Hlmi = Fur: AHMMRI 10 100 1000
12 Fmi = Swmu IVIVEY 0,00016 0,00004 0,000008
13 Fumi = Hiwa UMHM1 0,000128 0,00002 0,0000016
14 Fumr1 = Sa1 umra1(1-Pew) 0,5*(1-Pcw) 1*(1-Pcw) 2*(1-Pcw)
15 Fvr1 > Saz umratPow 0,5*Pcw 1*Pew 2* (1-Pcw)
16 Sa2 = Swme Aam2 1 0,3333 2
17 Sa2 = Sp2 Aap2 2 5 20
18 Smz2 = Sa2 a2 0,3333 0,1 0,6666
19 Smz = Sez Amp2 2 5 20
20 Smz = Hiwe M2 0,0083
21 Sp2 > Saz pra2Pow 0,5*Pcw 1*Pcw 2* (1-Pcw)
22 Sp2 > Sa1 peaz(1-Pew) 0,5*(1-Pcw) 1*(1-Pcw) 2*(1-Pcw)
23 Himz > Swmez HHMM2 0,0008 0,0028 0,0083
24 Hlmz - Sp2 HHMP2 2 5 20
25 Hlmz > Fwmz AHMM2 5 10 20
26 Hlmz > Fumre AHMMR2 10 100 1000
27 Fmz = Swmz LMm2 0,00016 0,00004 0,000008
28 Fmz = Hiwe HUMHM2 0,000128 0,00002 0,0000016
29 Fumr2 = Saz UMRA2 0,5 1 2
Pcw | 0,5 0,7 0,9
1
=038
« P
- A
E 0.6 Py
T 0.4 —mPe
o === P,
o
Q0.2 PP leiedeminlemintesieie il ieleieleielen
/
0 ; ; ;
0 5 10 15 20
t, hours

Transitions such as Sp; — Sa: / Saz , Fvri —
Sa1 / Saz , and their counterparts for the second frag-
ment are weighted by the Pcw coefficient, thereby mod-

Fig. 12. Simulation for the M4

elling the probabilistic distribution between restoring
operation of the current fragment and activating the re-
serve. The share (1 — Pcw) corresponds to recovery of
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the primary fragment, while Pcw represents successful
switching to the reserve.

Transition parameters from operator response
states Hlw; to failure states Fiy; and Fugri characterise the
probability of operator-induced errors during manual
control and are inherited from previous models, reflect-
ing an increased risk of critical errors. Low reverse tran-
sition intensities indicate slow recovery and prolonged
residence in failure-related states. Identical parameters
in both fragments eliminate subsystem asymmetry, al-
lowing the analysis to focus on the effect of redundancy
on reliability and mitigation of the human factor.

Compared to the single-fragment model, the M4
shows an increase of approximately 0.05 in the proba-
bility of normal autonomous operation Sa, which re-
mains the dominant system state, indicating improved
operational stability in the presence of operator influ-
ence. Probabilities of the protected state Sp and manual
control state Su also increase slightly, without signifi-
cantly affecting overall state distribution. The operator
response state Him remains at levels similar to previous
models, indicating minimal impact of the two-fragment
structure on operator dynamics.

The probability of system inoperability due to op-
erator error during manual control Sgm remains nearly
unchanged and does not exceed 0.05 after stabilisation.
Its higher value compared to Hlm suggests that operator
actions more often lead to errors than successful dis-
turbance compensation. The probability of transition to
a protected inoperable state Fyr is negligible and can be
excluded from further analysis. Overall, the results con-
firm the suitability of the M4 for analysing the impact of
the human factor on system reliability and stability.

4. Results and Discussion

The obtained results show that the probability of
the system being in the protected state is directly deter-
mined by the control mode, automatic or manual. Anal-
ysis of the time-dependent state probabilities reveals a
short transient process, after which the system reaches a
steady-state regime, with the most intensive probability
redistribution occurring at the initial stage of operation.

Throughout the simulation, normal autonomous
operation Sa remains the dominant state: its probability
decreases from the initial value but stabilises at the
highest level, confirming high autonomous stability. An
inverse relationship between Sa and the protected state
SP is observed, where reduced autonomy leads to an
increased protected-state probability, indicating an ade-
quate system response.

The probability of the manual control state Sm in-
creases at the beginning of the simulation, then stabilis-
es and does not exceed 0.17, demonstrating the auxiliary
role of manual control. At the same time, the probability

of the manual control state with partial failure Syp re-
mains low but exceeds that of the operator response
state Hlwv, indicating an increased risk of partial failures
during manual operation.

The probabilities of operator response to partial
failures Hlwve, as well as the emergency states Fv and
Fmp, are extremely small and have a negligible impact
on overall system dynamics. In contrast, the probability
of the degraded performance state D, is noticeable and
stabilises at approximately 0.05, showing no direct de-
pendence on immediate operator intervention.

The operator response state Hly maintains a con-
stant probability over time, indicating that operator reac-
tions do not significantly influence steady-state system
behaviour. Finally, automatic control reduces the likeli-
hood of transitions to the protected state compared to
manual control, reflecting the impact of the human fac-
tor. The probabilities of transitions to inoperable states
due to operator errors remain low under the considered
conditions.

The applicability limits of the proposed models are
determined by the types of UAVS, their missions, and
the characteristics of the cyber-physical environment,
provided that these factors do not violate the formulated
assumptions to an extent that would significantly affect
the accuracy of the results, in particular the calculation
of the availability index. If such an influence becomes
critical, it is necessary to employ semi-Markov models
or simulation-based modelling.

Despite the fact that this article mainly refers to the
use of UAVSs, the Markov models obtained describe the
states of the system and the transitions between them in
such a way that they can be used to model the operation
of UGVs.

The impact of hazardous environments can be tak-
en into account through appropriate coefficients that
increase the failure rate or the probability of mission
abortions. This work does not consider in detail scenari-
os of such impacts, including cyber-attacks, which may
be the subject of further research.

The trustworthiness of the proposed models is
confirmed through their theoretical consistency with the
properties of Markov processes, including prob-ability
normalization and non-negativity of transition
intensities. Additional validation is provided by the
agreement of the obtained results with known limit-ing
cases and trends reported in related studies on Markov-
based reliability and availability = modelling.
Furthermore, a numerical stability and sensitivity
analysis demonstrates that moderate variations in the
transition parameters do not lead to qualitative changes
in the system behaviour, confirming the credibility of
the proposed approach.
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5. Conclusions

The article substantiates the expediency of using
Markov chains for formalised modelling of user and
system behaviour in augmented reality. This approach
represents human-machine interaction as a finite set of
states with probabilistic transitions, enabling quantita-
tive analysis of AR-based monitoring and control sys-
tems.

The main contribution is the study of UAV moni-
toring systems where AR serves as a key element of
interaction. Unlike most works that examine architec-
ture, interfaces, and operator behaviour separately, this
research integrates them into one applied task, consider-
ing operating modes (autonomous, manual, protected),
failures, operator errors, and backup drones.

The scientific novelty lies in a newly proposed
method for assessing the availability of monitoring sys-
tems for potentially hazardous areas with augmented
reality—based human—machine interaction interfaces,
which, unlike existing approaches, is based on single-
and multi-fragment Markov models and accounts for
operator reactivity and error-free performance, partial
failures, and the availability of reserve UAVS, thereby
enabling analysis of parameter impacts on the readiness
function and their justified selection to meet specified
requirements.

Simulation results show rapid transition to steady
state, with autonomous operation remaining dominant,
confirming its stability. An inverse correlation between
autonomous and protected states indicates adequate sys-
tem response to reduced capability. Manual control
plays a supporting role but carries higher risk of partial
failures, while operator response state has minimal in-
fluence.

Thus, the study confirms the feasibility of Markov
models for analysing complex AR-integrated systems
and provides a basis for modelling other cyber-physical
systems, optimising AR interface design, and supporting
engineering solutions to enhance reliability, safety, and
efficiency of UAV/UGV-based systems.
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MAPKOBCBHKE MOJIEJIIOBAHHSI JTIOAUHO-MAIIIMHHOL B3AEMO/I1T
B AR-CEPEJIOBHUIIII JIJIA CACTEM MOHITOPAUHT'Y HEBE3IIEYHUX TEPUTOPIN
HA OCHOBI UAV/UGV

€. 0. Kanapcokuii, B. C. Xapuenko, O. O. Opexos, IO. JI. ITonouosnuii

IIpeameTom nociimkeHHs € MapKOBCHKI MPOLIECH, 1[0 BUKOPUCTOBYIOTHCS JUIS (DOPMabHOTO OIUCY AWHAMIKH
cTaHiB OE3MIJIOTHUX arapariB, KEPOBAHUX OINEPATOPOM 3a JOIMOMOTOI0 JIIOAWHO-MAIIMHHUX 1HTep]elCiB Ha OCHOBI
JIOIIOBHEHOI peasibHOCTI. B Mexax mociimkeHHs Oe3MiIoTHI JITanbHI Ta HA3€MHI arapaTy po3TJIIAloThCs SIK CKIIa-
JIHI 0araToCTaHOBI TEXHIYHI CHCTEMH, (DYHKIIOHYBaHHS SIKUX BU3HAYAETHCS SIK TEXHIYHUMH XapaKTePUCTUKAMHU, TaK
1 0cOOIMBOCTSIMH B3a€MOIi JItoMHM 3 iHTepdeiicoM kepyBaHHS. MeToI0 HOCITIDKEHHS € OI[IHIOBaHHS BIUIMBY iHTe-
pdeticiB TrOqMHO-MAIIMHHOI B3a€MO/Iii Ha OCHOBI JIOIIOBHEHOI peajbHOCTI Ha OE3MOMIIIKOBICTD MPUHAHSTTS PillleHb
OIepaTopoM OE3MIIOTHHX CHCTEM, a TAKOXK Ha HOro peakTHUBHICTH Y MPOILECi KEpYBaHHS Ta pearyBaHHS Ha 3MiHY
CTaHIB cHCTeMH. 3aBHAHHSAMM JIAHOTO JOCII/KEHHS € po3po0MTH MapKOBCHKI Mojedi (a) O6e3 ypaxyBaHHS BiZIMOB i
TIOMHJIOK Oreparopa Oe3IiJIOTHUX CHCTEM, 3 IMOBHUM BijHOBIEHHsAM; (b) 0e3 ypaxyBaHHS BiZIMOB 3 MOXKJIMBICTIO
JIOIYILIEHHS TIOMHJIOK OIepaTOpOM, 3 TIOBHUM BiJHOBIJICHHSIM; (C) 3 YpaXyBaHHSIM BiMOB O€3 MMOMUIIOK ollepaTropa
0E3ITIOTHUX CHCTEM, 3 ITIOBHUM BiJHOBICHH:M; (d) 3 ypaxyBaHHSIM BiJIMOB i IOMHJIOK OllepaTopa, 3 MOBHUM BiJHO-
BJICHHsIM; (€) 0e3 ypaxyBaHHS BiZ]MOB 3 MOXIIMBICTIO JOMYILIEHHS MOMHJIOK OIIEPaTOPOM, 3 HASBHOIO PE3EPBHOIO
6e3minoTHOIO cucTeMoro. OTprMaHi JIaHIIord MapkoBa MaroTh OyTH BUKOPUCTaHI JUIsi MOAENIOBAHHS 1 MOAAIBIIOTO
TIOPiBHSIHHS BIUIMBY Pi3HUX YMOB Ha cucTeMy. B pesyawTati nociipkeHHs: Oyino orpumano (a) kinacudikarop cra-
HIiB OE3MIJIOTHUX JITAJIBHUX anapariB B CKJaJli CHCTEMH MOHITOPUHTY HeOe3NeUHHX CEpeIOBUIL Ha OCHOBI MOXJIH-
BOi HasBHOCTI BiJIMOB, IOMUJIOK OIepaTopa Ta pe3epBy amapatis; (b) Moaeni MapkoBa Juis pi3HHUX CLEHapiiB podo-
TH cucTeMH; (C) pe3ysIbTaTH CUMYJISIii poOOTH CHCTEMH Ha OCHOBI po3pobieHux mopeneit MapkoBa. BucHoBok.
HaykoBa HOBHM3HA MOJIsira€ y HACTYITHOMY: BIIEpIlle 3alPONOHOHBAHO METOJ OI[iHIOBaHHS TOTOBHOCTI CHCTEM MOHI-
TOPHHTY 3 iHTep(deiicaMu JFOIMHO-MAIIHHOI B3a€MO/IIT Ha OCHOBI JIOITOBHEHOI PealIbHOCTI, 1110 0a3yeThCsl HA OJTHO-
Ta GararoparMeHTHUX MapKOBCBKHUX MOJEINSX, SIKI BPaXxOBYIOTh JIii orepaTopa, YacTKOBI BiJIMOBH Ta HAasBHICTh
pe3epBHUX Oe3MUIOTHUX anapatiB. MeToj KUTBKICHO OIIIHIOE BIUTHB JIOTIOBHEHOI peabHOCTI HE TUTBKH Ha CY0'€KTH-
BHI ITOKa3HUKH, ajie i Ha IOKa3HUKW TOTOBHOCTI Ta HAAIWHOCTI CUCTEMH B IIJIIOMY.

Karw4oBi cjioBa: 10MoOBHEHA peabHICTh; OE3MIJIOTHI CHCTEMH; JIAHIFOTH MapKoBa; JTF0IMHO-MAallIHHHA B3a€-
MO
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