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WAR-DRIVEN DISPLACEMENT AND COVID-19 IN POLAND:  

SIMULATION STUDY USING LSTM MODEL 
 

Russia’s full-scale invasion of Ukraine led to Europe’s largest and fastest displacement since World War II. 

Poland received the largest inflow. Rapid movement can affect COVID-19 spread and stress testing, reporting, 

and vaccination systems. Aim: To evaluate whether the invasion-related displacement coincided with short-term 
departures in Poland’s national COVID-19 cases and deaths using an intervention-anchored counterfactual 

forecasting approach learned from pre-invasion trends. Object of the study: Daily COVID-19 cases and deaths 

in Poland. Data come from the WHO dashboard, which spans May 2020 and centers on the 24 February 2022 

invasion with a 30-day post-invasion horizon. Methods: We fit a univariate stacked LSTM to pre-invasion data 

and forecast one step ahead for the first 30 days after 24 February 2022. The network uses LSTM(128) - 

LSTM(64) - Dense(25) - Dense(1) with a linear output. The timeline is split into training (before 24 January 

2022), validation (24 January-23 February 2022), and testing (24 February-+30 days). Each series (cases, 

deaths) fits six times with different random starts. Accuracy is measured using the mean absolute percentage 

error (MAPE). Deviations from the counterfactual are summarized as absolute and relative effects over the 30-

day window. Results: Observed daily values closely tracked the counterfactual during the first month after the 

invasion, with only modest, short-lived over-prediction in the middle of the window. Between the validation and 
test periods, the average MAPE rose from 5.94% to 14.39% for cases and from 5.90% to 14.62% for deaths, 

reflecting greater short-run uncertainty but no large national-level break. Conclusion: Despite exceptional mi-

gration pressure, Poland’s national COVID-19 series did not show a marked divergence from a data-driven 

counterfactual in the first month after 24 February 2022. Scientific novelty: To the best of our knowledge, this 

study provides the first Poland-focused, short-horizon, data-driven counterfactual of the invasion shock under 

real-world Omicron conditions. It uses a simple, transparent LSTM trained only on pre-shock national data, 

repeats fits to capture training variability, and quantifies departures with clear absolute and relative measures. 
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1. Introduction 

 

Large-scale emergencies reshape infectious disease 

dynamics by disrupting health systems, altering contact 

patterns, and driving sudden population movements. 

Conflicts and disasters interrupt routine surveillance and 

prevention, reduce access to diagnosis and care, and 

create conditions favoring respiratory pathogen 

transmission in shelters, transport hubs, and crowded 

housing [1]. Recent studies have underscored that 

conflict settings experience a higher burden and faster 

spread of infectious diseases, including COVID-19, 

precisely because mobility increases while public health 

capacity contracts [2]. 

Russia’s full-scale invasion of Ukraine on 24 

February 2022 triggered one of the largest and fastest 

displacement events in Europe since World War II, with 

Poland serving as the principal entry point and host 

during the first year. Between 24 February 2022 and 24 

February 2023, more than 10 million border crossings 

from Ukraine into Poland were recorded, primarily by 

women, children, and older adults, prompting an 

unprecedented public health response by Polish 

authorities and civil society [3]. In parallel, Ukraine 

entered the full-scale war with relatively low COVID-19 

vaccination coverage (less than 35% of the population 

was fully vaccinated by February 2022) [4]. This 

amplifies concern that cross-border flows could interact 

with heterogeneous immunity and testing practices to 

influence epidemic trajectories in receiving countries [5]. 

The invasion also degraded the health information 

systems of Ukraine. In early 2022, formal COVID-19 

surveillance and routine communicable disease reporting 

were severely disrupted, creating uncertainty about 

contemporaneous incidence in places of origin and 

complicating risk assessment for countries receiving 
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refugees [6]. At the same time, Poland rapidly expanded 

refugees’ access to health services. It deployed targeted 

public health initiatives, yet the short-term epidemiologic 

impact of the sudden population inflow on Poland’s 

COVID-19 time series remains only partially quantified  

[7]. 

Human mobility is a key driver of respiratory 

infection dynamics, and multiple reviews and modelling 

studies during the pandemic have shown strong links 

between movement patterns and epidemic waves [8]. 

However, mobility data can be incomplete or non-

representative, and real-time displacement during crises 

is especially difficult to capture [9]. Complementing 

mechanistic reasoning with data-driven approaches that 

can extract signals from observed surveillance time series 

is important. 

Time-series deep learning offers a pragmatic 

method for estimating counterfactual trajectories when 

structural data on contacts, testing policy, and mobility 

are sparse or unreliable [10]. Long short-term memory 

(LSTM) networks and related hybrids have repeatedly 

shown competitive performance for forecasting COVID-

19 cases across diverse settings, capturing nonlinearities 

and regime changes without prespecifying the 

transmission structure [11]. Recent evaluations and 

reviews, ranging from standalone LSTM and encoder-

decoder variants to ARIMA-LSTM ensembles, report 

improved short-horizon accuracy over classical 

baselines, supporting their use as empirical tools for 

policy-relevant nowcasting and scenario 

comparison [12]. 

For Central and Eastern Europe, initial 

commentaries and modelling analyses suggested that 

refugee flows could have detectable effects on host-

country COVID-19 signals [13]. However, robust, 

country-specific quantification anchored in observed 

data has been limited. One cross-country analysis using a 

generalized SIR framework reported short-term 

departures from the expected trajectories in several 

Western European countries in March 2022 [14]. 

However, the model structure and cross-national 

aggregation raise questions about the magnitude and 

timing of Poland’s level. In Poland, one year later, public 

health scholars documented the breadth of the response, 

including legal access to care, vaccination offers, and 

information campaigns [3]. However, these descriptive 

accounts did not isolate the net contribution of the 

February-March 2022 migration shock to the reported 

incidence. 

This study addresses this gap by estimating the 

short-term impact of population flows caused by the 

COVID-19 invasion of Poland. Using daily case (and 

death) series compiled from international surveillance 

feeds, LSTM-based forecasting models were trained on 

pre-invasion Polish data to construct counterfactual 

trajectories and compare them with observed post-

invasion outcomes. Focusing on the first month after 24 

February 2022, when border crossings peaked, we 

quantify deviations from the counterfactual and examine 

their temporal alignment with the displacement wave was 

examined. Our data-driven design provides mechanistic 

insights into mobility and vaccination heterogeneity 

while remaining resilient to Ukraine’s upstream reporting 

instabilities. 

The goal and objectives are to develop and evaluate 

an intervention-anchored, short-horizon counterfactual 

forecasting pipeline for Poland’s national COVID-19 

cases and deaths around 24 February 2022 by training a 

univariate stacked LSTM on pre-invasion data, 

generating one-step-ahead forecasts for the first 30 days, 

and assessing deviations with MAPE plus absolute and 

relative effect measures, as a practical template for rapid 

post-shock situational assessment. 

The paper offers three contributions. First, we 

present an intervention-anchored counterfactual 

forecasting setup that trains a univariate stacked LSTM 

strictly on pre-invasion observations and preserves 

temporal causality by producing the post-invasion path 

via one-step-ahead predictions. Second, we provide a 

transparent evaluation protocol that repeats model fitting 

across six random initializations, reports out-of-sample 

MAPE, and summarizes deviations from the 

counterfactual over the 30-day window using absolute 

and relative effects. Third, the pipeline is applied to 

Poland’s national COVID-19 time series and the outputs 

within Poland’s refugee-health response and the 

literature on conflict, mobility, and respiratory epidemics 

are interpreted. 

Section 2 (Current Research Analysis) provides a 

comprehensive review of recent research on conflicts and 

epidemiology. Section 3 (Materials and Methods) 

describes the model and experimental design. Section 4 

(Results) applies the model to the spread of COVID-19 

in Poland around the Russian full-scale invasion of 

Ukraine. Section 5 (Discussion) interprets the results and 

identifies implications for pandemic preparedness. 

Finally, the Conclusions summarize the theoretical and 

practical contributions of this study. 

 

2. Current Research Analysis 

 

Since 2022, research at the intersection of forced 

displacement and respiratory epidemics has expanded. 

However, key empirical and methodological gaps 

remain, especially for quantifying how sudden, large-

scale cross-border flows shape COVID-19 dynamics in 

host countries, such as Poland. This section synthesizes 

the most relevant evidence and outlines where our study 

has advanced the field. 

Multiple reviews have concluded that armed 
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conflict creates conditions, crowding, disrupted health 

services, interrupted surveillance, and population 

movements that amplify the transmission of infectious 

diseases, including COVID-19. A 2024 systematic 

review catalogued these pathways across settings and 

stressed the need for preparedness plans that explicitly 

address disease risks in conflict-affected populations [1]. 

Evidence specific to migrants and refugees during 

COVID-19 pandemic indicates a consistently higher risk 

of infection and severe outcomes than among host 

populations, although heterogeneity across settings is 

substantial. The most comprehensive peer-reviewed 

synthesis to date found elevated infection risk and 

differences in hospitalization and ICU admission among 

migrants and forcibly displaced people, reinforcing the 

importance of inclusive prevention and care [15]. 

Within the Ukrainian context, early commentaries 

documented the rapid collapse of routine COVID-19 

reporting after 24 February 2022, invasion, complicating 

real-time situational awareness [16]. Subsequent 

modeling work projected large epidemic waves under 

conditions of low vaccination coverage and service 

disruption [6]. This study highlighted the feasibility and 

life-saving potential of vaccinating refugees in receiving 

countries when in-country vaccination is constrained. 

Peer-reviewed studies directly estimating the 

impact of the COVID-19 pandemic on Ukrainian refugee 

flows in host countries are still scarce. A comparative 

analysis using a generalized SIR framework inferred 

short-lived increases in transmission potential in several 

European countries in March 2022 [14]. For Poland, 

similar contemporaneous infection prevalence in Ukraine 

and Poland likely muted any additional growth 

attributable to inflows. Polish public health syntheses 

describe an extensive humanitarian response and 

universal access to COVID-19 vaccination for refugees, 

but also document low early uptake (e.g., ~35,400 

vaccinations by mid-April 2022) and structural barriers, 

suggesting potential for pockets of susceptibility [3]. 

Complementary micro-level studies focus on 

behavioral and access determinants among Ukrainians in 

Poland. Qualitative research and surveys have identified 

low vaccination uptake, safety concerns, logistical 

hurdles, and information gaps as barriers, while 

underscoring the need for tailored outreach [17]. A 

broader clinical and genomic characterization of 

Poland’s epidemic shows that the Omicron BA.1/BA.2 

transition dominated early-2022 trends, with marked 

regional heterogeneity in testing, vaccination, and 

mortality, background dynamics that any displacement-

effect analysis must account for [18]. In parallel, 

European evidence consistently emphasizes a structural 

data problem: migrant and refugee variables are often 

missing from health information systems, limiting the 

ability to precisely link flows to outcomes [19]. 

A robust literature ties human mobility to SARS-

CoV-2 transmission. Review by N. Kostandova and 

colleagues of 232 studies documented extensive use of 

population-level mobility data (e.g., mobile phone-based 

indicators), generally finding that, albeit with notable 

methodological variability and bias risks, reduced 

mobility correlates with reduced transmission [20]. The 

review also highlighted the lack of standardized 

approaches to integrate mobility into epidemic analyses. 

Earlier reviews similarly reported a strong association 

between changes in mobility and respiratory virus spread 

[9]. However, very few of these studies isolate the causal 

effect of exogenous, cross-border displacement shocks 

on host-country incidence, as opposed to within-country 

policy-driven mobility changes, leaving an important gap 

for the Ukraine-Poland case. 

Data-driven forecasting has matured. Recent 

reviews and comparative studies have reported that deep 

learning models, particularly LSTM variants and hybrids 

(e.g., ARIMA-LSTM, stacked LSTM-GRU), often 

match or outperform classical baselines for short-term 

forecasts while requiring careful handling of 

nonstationarity and exogenous signals [21]. Large multi-

model evaluations covering Germany and Poland during 

2020-2021 show that forecast ensembles improve 

calibration and accuracy, but predictive skill can degrade 

rapidly beyond 1-2 weeks, an important caveat for 

attributing effects of sudden population inflows [22]. 

Contemporaneous variant waves and subnational 

heterogeneity complicate empirical attribution. Genomic 

and epidemiological analyses indicate that the BA.1-

BA.2 transition drove the early-2022 dynamics of 

Poland, with regional variation in testing and vaccination 

correlated with mortality [18]. Independent European 

surveillance reported lower Omicron severity vs. Delta 

but very high transmission, implying large, rapidly 

changing incidence baselines around the time of the 

refugee influx [23]. Together with incompletely captured 

migration variables in routine health data, these features 

create identification problems that prior studies either 

acknowledge or sidestep [19]. 

Therefore, to our knowledge, the current research 

provides the first quantitatively grounded estimate of the 

short-run effect of the 2022 displacement shock on the 

incidence of COVID-19 in Poland under real-world 

Omicron conditions. 

 

3. Materials and Methods 

 

We quantified the short-run impact of the 24 

February 2022 shock on Poland’s COVID-19 indicators 

by learning pre-invasion dynamics from national 

surveillance time series and projecting a model-based 

counterfactual into the first post-invasion month. The 

analysis uses only Poland’s daily series and adheres to 
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the attached protocol: observations come from the WHO 

Coronavirus (COVID-19) Dashboard, the “red line” 

intervention date is 24 February 2022, records span from 

the beginning of May 2020, and two dependent variables, 

daily new positive tests and daily deaths, are retained for 

Poland [24]. Keeping with the documented data, the 

WHO series is treated as official but subject to revision 

and cross-source heterogeneity [25]. 

Time segmentation follows a three-block timeline 

centered on the intervention. Let t0 = 24 January 2022 

and t1 = 24 February 2022. We train on all dates before 

t0, tune on the adjacent validation window [t0, t1), and 

reserve [t1, t1+30 days) exclusively for out-of-sample 

evaluation and effect estimation. This temporally ordered 

hold-out approximates the operational nowcasting 

immediately preceding the shock and aligns with the 

interrupted time series guidance for evaluating 

population-level interventions occurring at a clearly 

defined time point [26]. 

Forecasts are generated using a stacked LSTM 

network tailored to univariate regression. The draft 

topology comprises LSTM(128) – LSTM(64) – 

Dense(25) – Dense(1), with hyperbolic tangent activation 

in LSTM units, a hard-sigmoid nonlinearity for recurrent 

gating, and a linear output appropriate for continuous 

targets (Figure 1). 
 

 
 

Figure 1. Model’s architecture 
 

We implemented this architecture for each Polish 

series (cases and deaths). The LSTM cell is defined by 

the following standard gating equations [27]: 
 

it = σ(Wixt +Uiht − 1+ bi), 

ft = σ(Wfxt +Ufht − 1+ bf), 

ct̃ = tanh(Wcxt +Ucht − 1 + bc), 

ct = ft⨀ct − 1+ it⨀ct̃, 

ot = σ(Woxt +Uoht − 1 + bo), 

ht = ot⨀tanh(ct), 
 

where () is the logistic function and ⨀ denotes the 

Hadamard product. The forget-gate ft enables irrelevant 

memory decay, addressing vanishing-gradient behavior 

in long sequences [28]. 

Training minimizes mean squared error (MSE) in 

the pre-intervention data while monitoring the validation 

MSE at each epoch. The epoch with the best validation 

score is the final model (Figure 2). Optimization uses 

Adam with its bias-corrected first and second moment 

estimates of the stochastic gradient gt [29]: 
 

mt = βmt − 1 + (1 − β1)gt, 

vt = β2vt − 1 + (1 − β2)gt⨀2, 

mt̂ =
mt

1 − β1
t , 

vt̂ =
vt

1 − β2
t , 

wt + 1 = wt − α
mt̂

√vt̂ + ε
. 

 

 
 

Figure 2. Training process 
 

Adam is well-suited to non-stationary, noisy 

objectives typical of time series epidemics. We adopt 

default hyperparameters unless stated otherwise in the 

sensitivity checks. 

The counterfactual trajectory for the post-

intervention window is the model’s one-step-ahead 

forecast initialized from the last pre-intervention state. 

Let yt denote the observed Polish surveillance count. We 

summarize the absolute “excess” over the first 30 days 

after 24 February 2022 as follows: 

 

Δ =∑t = t1
t1+30(yt − ŷt

cf), 
 

and the corresponding relative effect as 
 

δ = 100 ×
∑ t = t1

t1+30(yt − ŷt
cf)

∑ t = t1
t1+30ŷt

cf
. 

 

This interruption-anchored comparison is 

consistent with ITS logic. It estimates deviations from the 

extrapolated pre-trend at the point of a population-level 

shock while remaining fully data-driven. Each Polish 

series fits six times with different random initializations. 

We report mean performance across runs and use the run-

to-run standard deviation to convey training variability. 

This repeated-fit practice stabilizes estimates in non-

convex neural optimization.Forecast accuracy is 

evaluated on held-out data using mean absolute 
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percentage error (MAPE). This setup is distinguished by 

strict pre-intervention training to preserve temporal 

causality, one-step-ahead counterfactual generation 

anchored at the intervention date, and repeated model fits 

to report optimization variability. 
 

4. Results 
 

The LSTM model trained on Poland’s pre-invasion 

series captured the marked weekly seasonality and the 

broader downward trend from late January to March 

2022. Visual inspection of the post-intervention forecasts 

against held-out observations shows close alignment for 

both outcomes, with a modest positive bias (model > 

observed) during the 30-day test window’s middle. This 

observation is consistent with the rapidly changing 

Omicron conditions observed in March 2022, when BA.2 

was taking over the WHO European Region. The WHO 

case/death series and definitions follow the 

organization’s dashboard specifications. 

Figure 3 shows the experimental results for 

Poland’s daily cases: model counterfactual vs. observed. 

The forecasted “after-shock” trajectory closely tracks the 

observed counts and reproduces the weekly cycle. Small, 

transient over-predictions appear in the second and third 

weeks after 24 February 2022. 

Figure 4 shows the experimental results for the 

daily deaths in Poland: model counterfactual vs. 

observed. As with cases, the forecast mimics the 

observed pattern with minor positive bias during mid-

window dates. 

 
Figure 3. The results for daily cases 

 

 
Figure 4. The results for death cases 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2025, no. 4(116)               ISSN 2663-2012 (online) 

30 

Quantitatively, the forecast error increased from the 

validation (“before”) to the post-intervention (“after”) 

window, which is expected when projecting across an 

abrupt regime change. The averages across six 

independent trainings correspond to absolute percentage 

error and are summarized in Table 1. 

 

Table 1. 

Experimental results (MAPE) 

Run Outcome Validation 

(before) 

Test (after) 

Run 1 Death 7.48 16.32 

Cases 5.81 13.67 

Run 2 Death 11.09 21.89 

Cases 6.32 14.09 

Run 3 Death 8.04 16.59 

Cases 5.60 15.58 

Run 4 Death 2.60 9.54 

Cases 5.04 13.42 

Run 5 Death 2.77 10.29 

Cases 6.46 13.01 

Run 6 Death 3.39 13.10 

Cases 6.41 16.57 

Average Death 5.90 14.62 

Cases 5.94 14.39 

 

These results indicate that a purely data-driven 

counterfactual trained on Poland’s pre-invasion 

trajectory reproduces the near-term post-invasion 

dynamics with good fidelity at daily resolution. At the 

same time, the increase in the absolute percentage error 

after 24 February 2022 reflects the added unpredictability 

during the transition period from BA.1 to BA.2. 

 

5. Discussion 
 

Our analysis indicates that Poland’s national 

COVID-19 trajectory during the first 30 days after the 

Russian full-scale invasion of Ukraine remained close to 

a counterfactual learned from pre-invasion data, with 

only modest, transient over-prediction. 

Epidemiologically, this pattern suggests that an 

exceptional migration shock did not translate into a large, 

immediate discontinuity in daily national incidence 

during a phase of rapid Omicron sublineage turnover and 

high background transmission. 

Variant dynamics are the first and most proximate 

explanation. Independent genetic-epidemiology work 

from Poland documented the transition from Delta to 

Omicron and the sequential rise of BA.1, BA.2, and later 

BA.5 in early-mid 2022, with regional heterogeneity in 

timing [30]. Such turnover shifts short-run baselines and 

reduces the transportability of pre-shock patterns, 

precisely when our model shows a small, mid-window 

positive bias. When the incidence is already high and 

changes quickly because of subvariant replacement, 

additional introductions or mixing shocks need not create 

visible step changes at the national scale, even if they 

affect risk in specific localities. 

The migration context further supports a diffuse 

national signal. Demographic and border-statistics 

syntheses estimate >8.8 million crossings into Poland 

from Ukraine and >7 million returns from Poland to 

Ukraine in 2022, with sustained onward mobility across 

the EU in subsequent months. Women and children 

dominated these flows and were widely distributed 

across Polish regions and EU destinations, which dilutes 

any single-place, single-time effect on transmission at the 

national level [31]. As of mid-2025 (27 per 1,000 

residents), Eurostat reports around 1.0 million people 

under temporary protection in Poland, underscoring the 

magnitude and persistence of displacement while also 

showing its dispersion [32]. 

Health system responses likely moderated the short-

run transmission consequences. From 24 February 2022, 

Poland granted people fleeing the war broad access to 

publicly financed care. It enabled vaccination under 

national and EU temporary protection frameworks, 

lowering barriers to primary care and immunization [33]. 

However, migrant health research across Europe 

demonstrates that structural and informational barriers 

persist: a recent systematic review shows that migrants 

and forcibly displaced people experienced higher 

infection and worse outcomes than host populations even 

in later stages of the pandemic [15]. Pan-European 

surveys of Ukrainian refugees identified difficulties in 

navigating services and maintaining continuity of care 

[34]. These realities imply pockets of elevated risk, even 

if national aggregates remain stable. Polish hospital data 

independently recorded a sharp post-invasion rise in the 

number of admissions of Ukrainian patients (from 2 to 22 

per day), with the case-mix shifting towards women and 

children [35]. This demonstrates a systemic impact that 

would not necessarily manifest as abrupt changes in the 

national incidence of COVID-19. 

These strands suggest a coherent interpretation of 

the study’s results. Poland’s epidemic signal largely 

reflected variant-driven baselines at the national level 

and over a short horizon. Simultaneously, the migration 

shock was temporally extended, spatially diffused, and 

partially offset by rapid access to services. None of this 

negates the likelihood of local effects or equity gaps. On 

the contrary, elevated vulnerability among displaced 

populations and documented barriers to access argue for 

continued targeted vaccination, culturally adapted 

communication, and low-barrier primary care in 

reception and settlement areas. 

Several limitations frame the inference and point to 

the next steps. First, univariate national time series 

cannot absorb exogenous covariates; thus, deviations 
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from counterfactuals are descriptive rather than causal. 

Second, national aggregation can mask spatial 

heterogeneity. Third, routine surveillance often lacks 

standardized migrant identifiers, which hinders linkage 

and timely attribution. Recent Polish and European 

initiatives to integrate border-guard, population, 

education, and insurance registers into an integrated 

register of refugees illustrate a feasible path to close these 

gaps and enable public health analytics that are 

migration-aware. 

Policy implications directly follow. Public health 

monitoring should extend beyond national aggregates to 

subnational, migration-aware dashboards that combine 

epidemiologic indicators with high-resolution mobility 

and settlement data, program data on vaccination and 

primary care among beneficiaries of temporary 

protection, and standardized refugee identifiers with 

strong privacy safeguards. Maintaining broad access to 

care under temporary protection provisions and investing 

in tailored uptake strategies remain essential to mitigate 

concentrated risks that national-level models may not 

detect. 

 

6. Conclusions 
 

This study used the Polish national time series to 

estimate a counterfactual COVID-19 trajectory around 

the full-scale Russian invasion of Ukraine. Over the first 

30 days after the shock, the observed incidence closely 

tracked forecasts learned on pre-invasion dynamics. Any 

deviations were modest and transient. Interpreted in con-

text, this pattern is consistent with a period of rapid Omi-

cron sublineage turnover, with BA.2 having a docu-

mented growth advantage over BA.1, which shifts short-

run baselines and can mute the national-level signal of an 

external shock. 

Methodologically, the study operationalizes an ITS-

compatible, pre-shock–trained LSTM counterfactual 

with transparent deviation metrics. Practically, it pro-

vides a reproducible framework to guide early post-shock 

surveillance and reinforces the need for the already out-

lined subnational, migration-aware monitoring steps. 

This study provides a Poland-specific, data-driven 

counterfactual for the immediate post-invasion month, 

isolating short-run effects under real-world Omicron con-

ditions while avoiding cross-country pooling. Framing 

the migration shock against contemporaneous variant dy-

namics and policy context adds a disciplined interpreta-

tion. 

Despite the largest displacement in Europe since 

WWII, with Poland hosting around 994,000 temporary 

protection beneficiaries by July 2025, national aggre-

gates did not exhibit a sharp discontinuity. This suggests 

that the short-term impacts were spatially diffuse and 

partly absorbed by the rapid access measures. This un-

derscores the need to target services and communication 

to local settings with a higher arrival concentration. 

This work contributes to a reproducible counterfac-

tual forecasting pipeline for non-stationary univariate se-

ries anchored at a known intervention. The method trains 

a stacked LSTM only on pre-intervention data, uses a 

temporally ordered train/validation/test split consistent 

with interrupted time series guidance, and forms the post-

intervention counterfactual via one-step-ahead forecasts. 

Repeated fits summarize neural optimization variability, 

and deviations are reported as explicit absolute and rela-

tive effects over a fixed 30-day horizon. 

Applied to Poland’s COVID-19 time series, the 

pipeline achieves low validation error and coherent post-

intervention tracking. It is an efficient tool for crisis-

aware nowcasting with transparent effect quantification. 
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ПЕРЕМІЩЕННЯ НАСЕЛЕННЯ, ЗУМОВЛЕНЕ ВІЙНОЮ, ТА COVID-19 У ПОЛЬЩІ: 

МОДЕЛЮВАННЯ ІЗ ЗАСТОСУВАННЯМ МОДЕЛІ LSTM 

М. В. Буткевич, Є. С. Меняйлов, Я. С. Луців, Б. Б. Краївський, Д. І. Чумаченко 

Повномасштабне вторгнення росії в Україну спричинило найбільше й найшвидше переміщення насе-

лення в Європі від часів Другої світової війни. Найбільші потоки прийняла Польща. Швидке переміщення 
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може впливати на поширення COVID-19 і створювати навантаження на системи тестування, звітності та вак-

цинації. Мета: перевірити, чи пов’язані потоки населення з короткостроковими відхиленнями національної 

захворюваності на COVID-19 у Польщі від контрфактичної траєкторії, побудованої на довоєнних трендах. 

Предмет дослідження: національні щоденні дані Польщі щодо випадків COVID-19 і смертей. Дані отримано 

з дашбордів ВООЗ. Охоплення починається з травня 2020 року та зосереджується на подіях 24 лютого 2022 

року з горизонтом у 30 днів після вторгнення. Методи: було підібрано одновимірну стековану LSTM на до-

воєнних даних і виконано покрокове (на один крок уперед) прогнозування для перших 30 днів після 24 лютого 

2022 року. Архітектура мережі: LSTM(128) - LSTM(64) - Dense(25) - Dense(1) із лінійним виходом. Шкала 

часу поділена на навчання (до 24 січня 2022 року), валідацію (24 січня - 23 лютого 2022 року) та тестування 

(24 лютого - +30 днів). Кожен ряд (випадки, смерті) навчено шість разів із різними випадковими ініціалізаці-

ями. Точність оцінена за середньою абсолютною відносною похибкою (MAPE). Відхилення від контрфакти-
чної траєкторії обцінено як абсолютні та відносні показники за 30-денний період. Результати: спостережу-

вані щоденні значення відповідали контрфактичній траєкторії протягом першого місяця після вторгнення, із 

лише помірним, короткочасним переоцінюванням у середині вікна. Середній MAPE зріс із 5,94% до 14,39% 

для випадків і з 5,90% до 14,62% для смертей між періодами валідації та тестування, що відображає більшу 

короткострокову невизначеність, але без виразного зламу на національному рівні. Висновок: у перший місяць 

після 24 лютого 2022 року національні часові ряди COVID-19 у Польщі не демонстрували помітного відхи-

лення від контрфактичної траєкторії, попри безпрецедентний міграційний тиск. Наукова новизна: дослі-

дження, наскільки нам відомо, є першою зосередженою на Польщі короткостроковою контрфактичною оцін-

кою шоку від вторгнення, побудованою на даних в умовах реального домінування Omicron. Застосовано про-

сту й прозору LSTM, навчену лише на довоєнних національних даних. Виконано кілька незалежних прогонів 

для врахування варіабельності навчання. Відхилення кількісно оцінено за чіткими абсолютними та віднос-
ними показниками. 

Ключові слова: епідемічна модель; епідемічний процес; моделювання епідемії; моделювання; глибоке 

навчання; LSTM; війна. 
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