Modelling and digitalization 25

UDC 004.942: 614:4 doi: 10.32620/reks.2025.4.02

Mykola BUTKEVYCH?, levgen MENIAILOV?, Yaroslav LUTSIV?,
Bohdan KRAIVSKY I3, Dmytro CHUMACHENKO?*

! National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

$0.M. Beketov National University of Urban Economy in Kharkiv, Kharkiv, Ukraine
4 Max Planck Institute for Demographic Research, Rostock, Germany

WAR-DRIVEN DISPLACEMENT AND COVID-19 IN POLAND:
SIMULATION STUDY USING LSTM MODEL

Russia’s full-scale invasion of Ukraine led to Europe’s largest and fastest displacement since World War 1.
Poland received the largest inflow. Rapid movement can affect COVID-19 spread and stress testing, reporting,
and vaccination systems. Aim: To evaluate whether the invasion-related displacement coincided with short-term
departures in Poland’s national COVID-19 cases and deaths using an intervention-anchored counterfactual
forecasting approach learned from pre-invasion trends. Object of the study: Daily COVID-19 cases and deaths
in Poland. Data come from the WHO dashboard, which spans May 2020 and centers on the 24 February 2022
invasion with a 30-day post-invasion horizon. Methods: We fit a univariate stacked LSTM to pre-invasion data
and forecast one step ahead for the first 30 days after 24 February 2022. The network uses LSTM(128) -
LSTM(64) - Dense(25) - Dense(1) with a linear output. The timeline is split into training (before 24 January
2022), validation (24 January-23 February 2022), and testing (24 February-+30 days). Each series (cases,
deaths) fits six times with different random starts. Accuracy is measured using the mean absolute percentage
error (MAPE). Deviations from the counterfactual are summarized as absolute and relative effects over the 30-
day window. Results: Observed daily values closely tracked the counterfactual during the first month after the
invasion, with only modest, short-lived over-prediction in the middle of the window. Between the validation and
test periods, the average MAPE rose from 5.94% to 14.39% for cases and from 5.90% to 14.62% for deaths,
reflecting greater short-run uncertainty but no large national-level break. Conclusion: Despite exceptional mi-
gration pressure, Poland’s national COVID-19 series did not show a marked divergence from a data-driven
counterfactual in the first month after 24 February 2022. Scientific novelty: To the best of our knowledge, this
study provides the first Poland-focused, short-horizon, data-driven counterfactual of the invasion shock under
real-world Omicron conditions. It uses a simple, transparent LSTM trained only on pre-shock national data,
repeats fits to capture training variability, and quantifies departures with clear absolute and relative measures.
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during the first year. Between 24 February 2022 and 24
February 2023, more than 10 million border crossings

1. Introduction

Large-scale emergencies reshape infectious disease
dynamics by disrupting health systems, altering contact
patterns, and driving sudden population movements.
Conflicts and disasters interrupt routine surveillance and
prevention, reduce access to diagnosis and care, and
create conditions favoring respiratory pathogen
transmission in shelters, transport hubs, and crowded
housing [1]. Recent studies have underscored that
conflict settings experience a higher burden and faster
spread of infectious diseases, including COVID-19,
precisely because mobility increases while public health
capacity contracts [2].

Russia’s full-scale invasion of Ukraine on 24
February 2022 triggered one of the largest and fastest
displacement events in Europe since World War 11, with
Poland serving as the principal entry point and host

from Ukraine into Poland were recorded, primarily by
women, children, and older adults, prompting an
unprecedented public health response by Polish
authorities and civil society [3]. In parallel, Ukraine
entered the full-scale war with relatively low COVID-19
vaccination coverage (less than 35% of the population
was fully vaccinated by February 2022) [4]. This
amplifies concern that cross-border flows could interact
with heterogeneous immunity and testing practices to
influence epidemic trajectories in receiving countries [5].

The invasion also degraded the health information
systems of Ukraine. In early 2022, formal COVID-19
surveillance and routine communicable disease reporting
were severely disrupted, creating uncertainty about
contemporaneous incidence in places of origin and
complicating risk assessment for countries receiving
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refugees [6]. At the same time, Poland rapidly expanded
refugees’ access to health services. It deployed targeted
public health initiatives, yet the short-term epidemiologic
impact of the sudden population inflow on Poland’s
COVID-19 time series remains only partially quantified
[7].

Human mobility is a key driver of respiratory
infection dynamics, and multiple reviews and modelling
studies during the pandemic have shown strong links
between movement patterns and epidemic waves [8].
However, mobility data can be incomplete or non-
representative, and real-time displacement during crises
is especially difficult to capture [9]. Complementing
mechanistic reasoning with data-driven approaches that
can extract signals from observed surveillance time series
is important.

Time-series deep learning offers a pragmatic
method for estimating counterfactual trajectories when
structural data on contacts, testing policy, and mobility
are sparse or unreliable [10]. Long short-term memory
(LSTM) networks and related hybrids have repeatedly
shown competitive performance for forecasting COVID-
19 cases across diverse settings, capturing nonlinearities
and regime changes without prespecifying the
transmission structure [11]. Recent evaluations and
reviews, ranging from standalone LSTM and encoder-
decoder variants to ARIMA-LSTM ensembles, report
improved short-horizon accuracy over classical
baselines, supporting their use as empirical tools for
policy-relevant nowecasting and scenario
comparison [12].

For Central and Eastern Europe, initial
commentaries and modelling analyses suggested that
refugee flows could have detectable effects on host-
country COVID-19 signals [13]. However, robust,
country-specific quantification anchored in observed
data has been limited. One cross-country analysis using a
generalized SIR framework reported short-term
departures from the expected trajectories in several
Western European countries in March 2022 [14].
However, the model structure and cross-national
aggregation raise questions about the magnitude and
timing of Poland’s level. In Poland, one year later, public
health scholars documented the breadth of the response,
including legal access to care, vaccination offers, and
information campaigns [3]. However, these descriptive
accounts did not isolate the net contribution of the
February-March 2022 migration shock to the reported
incidence.

This study addresses this gap by estimating the
short-term impact of population flows caused by the
COVID-19 invasion of Poland. Using daily case (and
death) series compiled from international surveillance
feeds, LSTM-based forecasting models were trained on
pre-invasion Polish data to construct counterfactual

trajectories and compare them with observed post-
invasion outcomes. Focusing on the first month after 24
February 2022, when border crossings peaked, we
quantify deviations from the counterfactual and examine
their temporal alignment with the displacement wave was
examined. Our data-driven design provides mechanistic
insights into mobility and vaccination heterogeneity
while remaining resilient to Ukraine’s upstream reporting
instabilities.

The goal and objectives are to develop and evaluate
an intervention-anchored, short-horizon counterfactual
forecasting pipeline for Poland’s national COVID-19
cases and deaths around 24 February 2022 by training a
univariate stacked LSTM on pre-invasion data,
generating one-step-ahead forecasts for the first 30 days,
and assessing deviations with MAPE plus absolute and
relative effect measures, as a practical template for rapid
post-shock situational assessment.

The paper offers three contributions. First, we
present an intervention-anchored  counterfactual
forecasting setup that trains a univariate stacked LSTM
strictly on pre-invasion observations and preserves
temporal causality by producing the post-invasion path
via one-step-ahead predictions. Second, we provide a
transparent evaluation protocol that repeats model fitting
across six random initializations, reports out-of-sample
MAPE, and summarizes deviations from the
counterfactual over the 30-day window using absolute
and relative effects. Third, the pipeline is applied to
Poland’s national COVID-19 time series and the outputs
within Poland’s refugee-health response and the
literature on conflict, mobility, and respiratory epidemics
are interpreted.

Section 2 (Current Research Analysis) provides a
comprehensive review of recent research on conflictsand
epidemiology. Section 3 (Materials and Methods)
describes the model and experimental design. Section 4
(Results) applies the model to the spread of COVID-19
in Poland around the Russian full-scale invasion of
Ukraine. Section 5 (Discussion) interprets the results and
identifies implications for pandemic preparedness.
Finally, the Conclusions summarize the theoretical and
practical contributions of this study.

2. Current Research Analysis

Since 2022, research at the intersection of forced
displacement and respiratory epidemics has expanded.
However, key empirical and methodological gaps
remain, especially for quantifying how sudden, large-
scale cross-border flows shape COVID-19 dynamics in
host countries, such as Poland. This section synthesizes
the most relevant evidence and outlines where our study
has advanced the field.

Multiple reviews have concluded that armed
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conflict creates conditions, crowding, disrupted health
services, interrupted surveillance, and population
movements that amplify the transmission of infectious
diseases, including COVID-19. A 2024 systematic
review catalogued these pathways across settings and
stressed the need for preparedness plans that explicitly
address disease risks in conflict-affected populations [1].
Evidence specific to migrants and refugees during
COVID-19 pandemic indicates a consistently higher risk
of infection and severe outcomes than among host
populations, although heterogeneity across settings is
substantial. The most comprehensive peer-reviewed
synthesis to date found elevated infection risk and
differences in hospitalization and ICU admission among
migrants and forcibly displaced people, reinforcing the
importance of inclusive prevention and care [15].

Within the Ukrainian context, early commentaries
documented the rapid collapse of routine COVID-19
reporting after 24 February 2022, invasion, complicating
real-time situational awareness [16]. Subsequent
modeling work projected large epidemic waves under
conditions of low vaccination coverage and service
disruption [6]. This study highlighted the feasibility and
life-saving potential of vaccinating refugees in receiving
countries when in-country vaccination is constrained.

Peer-reviewed studies directly estimating the
impact of the COVID-19 pandemic on Ukrainian refugee
flows in host countries are still scarce. A comparative
analysis using a generalized SIR framework inferred
short-lived increases in transmission potential in several
European countries in March 2022 [14]. For Poland,
similar contemporaneous infection prevalence in Ukraine
and Poland likely muted any additional growth
attributable to inflows. Polish public health syntheses
describe an extensive humanitarian response and
universal access to COVID-19 vaccination for refugees,
but also document low early uptake (e.g., ~35,400
vaccinations by mid-April 2022) and structural barriers,
suggesting potential for pockets of susceptibility [3].

Complementary micro-level studies focus on
behavioral and access determinants among Ukrainians in
Poland. Qualitative research and surveys have identified
low vaccination uptake, safety concerns, logistical
hurdles, and information gaps as barriers, while
underscoring the need for tailored outreach [17]. A
broader clinical and genomic characterization of
Poland’s epidemic shows that the Omicron BA.1/BA.2
transition dominated early-2022 trends, with marked
regional heterogeneity in testing, vaccination, and
mortality, background dynamics that any displacement-
effect analysis must account for [18]. In parallel,
European evidence consistently emphasizes a structural
data problem: migrant and refugee variables are often
missing from health information systems, limiting the
ability to precisely link flows to outcomes [19].

A robust literature ties human mobility to SARS-
CoV-2 transmission. Review by N. Kostandova and
colleagues of 232 studies documented extensive use of
population-level mobility data (e.g., mobile phone-based
indicators), generally finding that, albeit with notable
methodological variability and bias risks, reduced
mobility correlates with reduced transmission [20]. The
review also highlighted the lack of standardized
approaches to integrate mobility into epidemic analyses.
Earlier reviews similarly reported a strong association
between changes in mobility and respiratory virus spread
[9]. However, very few of these studies isolate the causal
effect of exogenous, cross-border displacement shocks
on host-country incidence, as opposed to within-country
policy-driven mobility changes, leaving an important gap
for the Ukraine-Poland case.

Data-driven forecasting has matured. Recent
reviews and comparative studies have reported that deep
learning models, particularly LSTM variants and hybrids
(e.g., ARIMA-LSTM, stacked LSTM-GRU), often
match or outperform classical baselines for short-term
forecasts while requiring careful handling of
nonstationarity and exogenous signals [21]. Large multi-
model evaluations covering Germany and Poland during
2020-2021 show that forecast ensembles improve
calibration and accuracy, but predictive skill can degrade
rapidly beyond 1-2 weeks, an important caveat for
attributing effects of sudden population inflows [22].

Contemporaneous variant waves and subnational
heterogeneity complicate empirical attribution. Genomic
and epidemiological analyses indicate that the BA.1-
BA.2 transition drove the early-2022 dynamics of
Poland, with regional variation in testing and vaccination
correlated with mortality [18]. Independent European
surveillance reported lower Omicron severity vs. Delta
but very high transmission, implying large, rapidly
changing incidence baselines around the time of the
refugee influx [23]. Together with incompletely captured
migration variables in routine health data, these features
create identification problems that prior studies either
acknowledge or sidestep [19].

Therefore, to our knowledge, the current research
provides the first quantitatively grounded estimate of the
short-run effect of the 2022 displacement shock on the
incidence of COVID-19 in Poland under real-world
Omicron conditions.

3. Materials and Methods

We quantified the short-run impact of the 24
February 2022 shock on Poland’s COVID-19 indicators
by learning pre-invasion dynamics from national
surveillance time series and projecting a model-based
counterfactual into the first post-invasion month. The
analysis uses only Poland’s daily series and adheres to
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the attached protocol: observations come from the WHO
Coronavirus (COVID-19) Dashboard, the “red line”
intervention date is 24 February 2022, records span from
the beginning of May 2020, and two dependent variables,
daily new positive tests and daily deaths, are retained for
Poland [24]. Keeping with the documented data, the
WHO series is treated as official but subject to revision
and cross-source heterogeneity [25].

Time segmentation follows a three-block timeline
centered on the intervention. Let to = 24 January 2022
and t; = 24 February 2022. We train on all dates before
to, tune on the adjacent validation window [to, t1), and
reserve [t;, t1+30 days) exclusively for out-of-sample
evaluation and effect estimation. This temporally ordered
hold-out approximates the operational nowcasting
immediately preceding the shock and aligns with the
interrupted time series guidance for evaluating
population-level interventions occurring at a clearly
defined time point [26].

Forecasts are generated using a stacked LSTM
network tailored to univariate regression. The draft
topology comprises LSTM(128) — LSTM(64) -
Dense(25) — Dense(1), with hyperbolic tangent activation
in LSTM units, a hard-sigmoid nonlinearity for recurrent
gating, and a linear output appropriate for continuous
targets (Figure 1).

Layer (type) OQutput Shape

Lstm_46 (LSTMH) (None, 1, 128)
lstm_41 (LSTM) (None, 64)
dense_40 (Dense) (None, 25)
dense_41 (Dense) (None, 1)

Figure 1. Model’s architecture

We implemented this architecture for each Polish
series (cases and deaths). The LSTM cell is defined by
the following standard gating equations [27]:

iy = o(Wijx, + Ujh, — 1 + by),
fo = o(Wgx, + Ugh, — 1 + by),
¢ = tanh(W.x, + U.h, — 1 4+ b),
¢ =f,0c — 1+ 1,08,
oy = o(Wyx, + Ush, — 1 + by),
h, = 0,® tanh(c,),

where o(-) is the logistic function and © denotes the
Hadamard product. The forget-gate f; enables irrelevant
memory decay, addressing vanishing-gradient behavior
in long sequences [28].

Training minimizes mean squared error (MSE) in
the pre-intervention data while monitoring the validation

MSE at each epoch. The epoch with the best validation
score is the final model (Figure 2). Optimization uses
Adam with its bias-corrected first and second moment
estimates of the stochastic gradient g [29]:

m = Bme — 1+ (1 — B)ge
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Figure 2. Training process

Adam is well-suited to non-stationary, noisy
objectives typical of time series epidemics. We adopt
default hyperparameters unless stated otherwise in the
sensitivity checks.

The counterfactual trajectory for the post-
intervention window is the model’s one-step-ahead
forecast initialized from the last pre-intervention state.
Let y: denote the observed Polish surveillance count. We
summarize the absolute “excess” over the first 30 days
after 24 February 2022 as follows:

A= zt = t§1+30(yt — yff),
and the corresponding relative effect as

2=ty — 98
Zt — t§1+30§,€f

This  interruption-anchored  comparison s
consistent with ITS logic. It estimates deviations from the
extrapolated pre-trend at the point of a population-level
shock while remaining fully data-driven. Each Polish
series fits six times with different random initializations.
We report mean performance across runs and use the run-
to-run standard deviation to convey training variability.
This repeated-fit practice stabilizes estimates in non-
convex neural optimization.Forecast accuracy is
evaluated on held-out data using mean absolute

6 =100 x
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percentage error (MAPE). This setup is distinguished by
strict pre-intervention training to preserve temporal
causality, one-step-ahead counterfactual generation
anchored at the intervention date, and repeated model fits
to report optimization variability.

4. Results

The LSTM model trained on Poland’s pre-invasion
series captured the marked weekly seasonality and the
broader downward trend from late January to March
2022. Visual inspection of the post-intervention forecasts
against held-out observations shows close alignment for
both outcomes, with a modest positive bias (model >
observed) during the 30-day test window’s middle. This
observation is consistent with the rapidly changing

Omicron conditions observed in March 2022, when BA.2
was taking over the WHO European Region. The WHO
case/death  series and definitions follow the
organization’s dashboard specifications.

Figure 3 shows the experimental results for
Poland’s daily cases: model counterfactual vs. observed.
The forecasted “after-shock” trajectory closely tracks the
ohserved counts and reproduces the weekly cycle. Small,
transient over-predictions appear in the second and third
weeks after 24 February 2022.

Figure 4 shows the experimental results for the
daily deaths in Poland: model counterfactual vs.
observed. As with cases, the forecast mimics the
observed pattern with minor positive bias during mid-
window dates.
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Quantitatively, the forecast error increased from the
validation (“before”) to the post-intervention (“after”)
window, which is expected when projecting across an
abrupt regime change. The averages across six
independent trainings correspond to absolute percentage
error and are summarized in Table 1.

Table 1.
Experimental results (MAPE)
Run Outcome Validation | Test (after)
(before)

Run 1 Death 7.48 16.32
Cases 5.81 13.67

Run 2 Death 11.09 21.89
Cases 6.32 14.09

Run 3 Death 8.04 16.59
Cases 5.60 15.58

Run 4 Death 2.60 9.54
Cases 5.04 13.42

Run 5 Death 2.77 10.29
Cases 6.46 13.01

Run 6 Death 3.39 13.10
Cases 6.41 16.57

Average Death 5.90 14.62
Cases 5.94 14.39

These results indicate that a purely data-driven
counterfactual trained on Poland’s pre-invasion
trajectory reproduces the near-term post-invasion
dynamics with good fidelity at daily resolution. At the
same time, the increase in the absolute percentage error
after 24 February 2022 reflects the added unpredictability
during the transition period from BA.1 to BA.2.

5. Discussion

Our analysis indicates that Poland’s national
COVID-19 trajectory during the first 30 days after the
Russian full-scale invasion of Ukraine remained close to
a counterfactual learned from pre-invasion data, with
only modest, transient over-prediction.
Epidemiologically, this pattern suggests that an
exceptional migration shock did not translate into a large,
immediate discontinuity in daily national incidence
during a phase of rapid Omicron sublineage turnover and
high background transmission.

Variant dynamics are the first and most proximate
explanation. Independent genetic-epidemiology work
from Poland documented the transition from Delta to
Omicron and the sequential rise of BA.1, BA.2, and later
BA.5 in early-mid 2022, with regional heterogeneity in
timing [30]. Such turnover shifts short-run baselines and
reduces the transportability of pre-shock patterns,
precisely when our model shows a small, mid-window
positive bias. When the incidence is already high and

changes quickly because of subvariant replacement,
additional introductions or mixing shocks need not create
visible step changes at the national scale, even if they
affect risk in specific localities.

The migration context further supports a diffuse
national signal. Demographic and border-statistics
syntheses estimate >8.8 million crossings into Poland
from Ukraine and >7 million returns from Poland to
Ukraine in 2022, with sustained onward mobility across
the EU in subsequent months. Women and children
dominated these flows and were widely distributed
across Polish regions and EU destinations, which dilutes
any single-place, single-time effect on transmission at the
national level [31]. As of mid-2025 (27 per 1,000
residents), Eurostat reports around 1.0 million people
under temporary protection in Poland, underscoring the
magnitude and persistence of displacement while also
showing its dispersion [32].

Health system responses likely moderated the short-
run transmission consequences. From 24 February 2022,
Poland granted people fleeing the war broad access to
publicly financed care. It enabled vaccination under
national and EU temporary protection frameworks,
lowering barriers to primary care and immunization [33].
However, migrant health research across Europe
demonstrates that structural and informational barriers
persist: a recent systematic review shows that migrants
and forcibly displaced people experienced higher
infection and worse outcomes than host populations even
in later stages of the pandemic [15]. Pan-European
surveys of Ukrainian refugees identified difficulties in
navigating services and maintaining continuity of care
[34]. These realities imply pockets of elevated risk, even
if national aggregates remain stable. Polish hospital data
independently recorded a sharp post-invasion rise in the
number of admissions of Ukrainian patients (from 2 to 22
per day), with the case-mix shifting towards women and
children [35]. This demonstrates a systemic impact that
would not necessarily manifest as abrupt changes in the
national incidence of COVID-19.

These strands suggest a coherent interpretation of
the study’s results. Poland’s epidemic signal largely
reflected variant-driven baselines at the national level
and over a short horizon. Simultaneously, the migration
shock was temporally extended, spatially diffused, and
partially offset by rapid access to services. None of this
negates the likelihood of local effects or equity gaps. On
the contrary, elevated vulnerability among displaced
populations and documented barriers to access argue for
continued targeted vaccination, culturally adapted
communication, and low-barrier primary care in
reception and settlement areas.

Several limitations frame the inference and point to
the next steps. First, univariate national time series
cannot absorb exogenous covariates; thus, deviations
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from counterfactuals are descriptive rather than causal.
Second, national aggregation can mask spatial
heterogeneity. Third, routine surveillance often lacks
standardized migrant identifiers, which hinders linkage
and timely attribution. Recent Polish and European
initiatives to integrate border-guard, population,
education, and insurance registers into an integrated
register of refugees illustrate a feasible path to close these
gaps and enable public health analytics that are
migration-aware.

Policy implications directly follow. Public health
monitoring should extend beyond national aggregates to
subnational, migration-aware dashboards that combine
epidemiologic indicators with high-resolution mobility
and settlement data, program data on vaccination and
primary care among beneficiaries of temporary
protection, and standardized refugee identifiers with
strong privacy safeguards. Maintaining broad access to
care under temporary protection provisions and investing
in tailored uptake strategies remain essential to mitigate
concentrated risks that national-level models may not
detect.

6. Conclusions

This study used the Polish national time series to
estimate a counterfactual COVID-19 trajectory around
the full-scale Russian invasion of Ukraine. Over the first
30 days after the shock, the observed incidence closely
tracked forecasts learned on pre-invasion dynamics. Any
deviations were modest and transient. Interpreted in con-
text, this pattern is consistent with a period of rapid Omi-
cron sublineage turnover, with BA.2 having a docu-
mented growth advantage over BA.1, which shifts short-
run baselines and can mute the national-level signal of an
external shock.

Methodologically, the study operationalizes an ITS-
compatible, pre-shock-trained LSTM counterfactual
with transparent deviation metrics. Practically, it pro-
vides a reproducible framework to guide early post-shock
surveillance and reinforces the need for the already out-
lined subnational, migration-aware monitoring steps.

This study provides a Poland-specific, data-driven
counterfactual for the immediate post-invasion month,
isolating short-run effects under real-world Omicron con-
ditions while avoiding cross-country pooling. Framing
the migration shock against contemporaneous variant dy-
namics and policy context adds a disciplined interpreta-
tion.

Despite the largest displacement in Europe since
WWII, with Poland hosting around 994,000 temporary
protection beneficiaries by July 2025, national aggre-
gates did not exhibit a sharp discontinuity. This suggests
that the short-term impacts were spatially diffuse and

partly absorbed by the rapid access measures. This un-
derscores the need to target services and communication
to local settings with a higher arrival concentration.

This work contributes to a reproducible counterfac-
tual forecasting pipeline for non-stationary univariate se-
ries anchored at a known intervention. The method trains
a stacked LSTM only on pre-intervention data, uses a
temporally ordered train/validation/test split consistent
with interrupted time series guidance, and forms the post-
intervention counterfactual via one-step-ahead forecasts.
Repeated fits summarize neural optimization variability,
and deviations are reported as explicit absolute and rela-
tive effects over a fixed 30-day horizon.

Applied to Poland’s COVID-19 time series, the
pipeline achieves low validation error and coherent post-
intervention tracking. It is an efficient tool for crisis-
aware nowcasting with transparent effect quantification.
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NEPEMIIIEHHS HACEJEHHS, 3YMOBJIEHE BIHHOIO, TA COVID-19 Y TOJIBIIII:
MOAEJIOBAHHSA 13 3BACTOCYBAHHAM MOJEJII LSTM

M. B. Bymxkeeuu, €. C. Mensaiinos, A. C. Jlyuis, b. b. Kpaiecokuit, /. I. Yymauenko

[NoBHOMacmITAOHE BTOPTHEHHS pocii B YKpaiHy CIpHYMHIIO HAHOiNbIe ¥ HaWIIBHIIIE ITepEeMIlIeHHsS Hace-
neHHst B €Bpomi Bij waciB [pyroi cBitoBoi BifiHu. Haif6inemmi noroku npuitHsuia Ionema. [IBunke nmepemimenHs
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Moxe BrutmBaty Ha nonmpenast COVID-19 i cTBoproBaTi HaBaHTa)KeHHS HA CHCTEMH TECTYBaHHS, 3BITHOCTI Ta Bak-
nuHAIil. MeTa: mepeBipuTH, M TOB’A3aHi IOTOKH HACEIEHHS 3 KOPOTKOCTPOKOBHMH BiJXWJICHHSIMH HAIllOHAJIBHOL
3axsoptoBaHocti Ha COVID-19 y ITonpmi Big KOHTpGhaKTUIHOI TPaeKTOpii, MOOYI0BaHOI HA JOBOEHHUX TPEHAX.
Ipeamer pocimkenHs: HarioHabHI moaeHHI AaHi [Tompmii mozno Bunagkie COVID-19 i cmepreit. [lani orpumaHo
3 mam6opais BOO3. OxorureHHst mounHaeThest 3 TpaBHs 2020 poKy Ta 30cepe/pKyeTbest Ha nofisix 24 mororo 2022
poky 3 ropuzoHToM Y 30 nHiB micns BToprueHHs. MeTomau: Oyio miniopano oqHoBUMIpHY crekoBaHy LSTM Ha ymo-
BOEHHUX JIaHUX 1 BUKOHAHO IMMOKPOKOBE (Ha OJIMH KPOK yIepe) MPOrHo3yBaHHs Juis repimx 30 THiB micnust 24 TF0Toro
2022 poky. Apxitekrypa mepexi: LSTM(128) - LSTM(64) - Dense(25) - Dense(1) i3 miniitnum Buxogom. Illkana
Yacy noJijiena Ha HaB4aHHA (10 24 ciuns 2022 poky), Bamigamito (24 ciyns - 23 mrororo 2022 poky) Ta TeCTYBaHHS
(24 nrororo - +30 nuiB). Koxxen psin (Bunaaxu, cMepTi) HAaBUSHO IIICTh Pa3iB 13 pi3HUMH BUIIAJKOBUMH iHiIliamizari-
ssMu. TOYHICTP OLliHEHA 32 CEPEHBOI0 A0COMIOTHOIO BiqHOCHOIO ToxnOkoo (MAPE). Binxunenns Bix KoHTpgaxkTH-
YHOI TpaeKTopii 0OLiHEHO K aOCOMIOTHI Ta BiTHOCHI MOKa3HUKH 3a 30-neHHui nepioa. PesyasraTn: criocrepexy-
BaHI I0JICHHI 3HAYEHHSI B1JIIOBIIaMN KOHTPHAKTUIHIN TPaeKTOPii MPOTATrOM IMEPIIOro MICSLs Micis BTOPTHEHHS, i3
JIMIIE TOMIPHUM, KOPOTKOYaCHUM IepeolliHIoBaHHAM y cepeanHi BikHa. Cepenniii MAPE 3pic i3 5,94% no 14,39%
Jutst BUnaaKiB i 3 5,90% no 14,62% mist cmepTeit Mixk niepiofgaMu Bastianii Ta TeCTyBaHHS, 1110 BifoOpakae OlIbITy
KOpPOTKOCTPOKOBY HEBH3HAUEHICTB, alle 0€3 BUpa3HOro 3JlaMy Ha HallloHATbHOMY piBHI. BUCHOBOK: y iepiiuii Micsiib
micnst 24 mrororo 2022 poky HanioHanbHi yacoBi psan COVID-19 y Ionbii He AeMOHCTPYBaIH MIOMITHOTO BiJXH-
JIeHHS BiJi KOHTP(AKTUYHOI TpaeKkTopii, momnpu Oe3mpeneneHTHHH Mirpariinui Tuck. HaykoBa HoBHM3HA: 1ocCii-
JDKEHHSI, HACKUTBKH HaM BiZIOMO, € MEPIIOI0 30cepe/KEeHOI0 Ha [0l KOpOTKOCTPOKOBOKO KOHTP(AKTHYHOIO OIIiH-
KOIO IIIOKY BiJl BTOPTHEHH:I, TOOYI0BaHOIO Ha IaHUX B YMOBaX peajibHOro JoMiHyBaHHs Omicron. 3acTOCOBaHO MPoO-
cry i npo3opy LSTM, HaBueHy juIlle Ha JOBOEHHHUX HalliOHAJbHUX JaHUX. BUKOHaHO KillbKa He3aJEeXHUX IPOTrOHIB
JUIsl BpaxyBaHHsI BapiaOelbHOCTI HaBYaHHs. BiAXMIEHHs KUTBKICHO OI[IHEHO 3a YITKMMHU a0COJIOTHHMH Ta BiJIHOC-
HHMHU TTOKa3HUKAMH.

Karouoi ciioBa: emizeMiuHa MOJEINb; CIiASMIYHINA MTPOIEC; MOCTIOBAHHS €ITieMil; MOICTIOBaHHS; TJIHOOKE
HaBuanus; LSTM; Biiina.
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