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DIGITAL TRANSFORMATION OF THE OCCUPATIONAL HEALTH AND SAFETY
MANAGEMENT SYSTEM IN CIVIL AVIATION THROUGH SYNERGETIC
INTEGRATION OF DIGITAL TWIN AND AI AGENTS’ TECHNOLOGIES

The subject of this study is the digital transformation of the occupational safety management system in civil
aviation. Owing to the country’s unique geopolitical position in the centre of Eurasia, the Republic of Kazakh-
stan’s rapid growth in cargo and passenger traffic is associated with increasing employee risks, making it crit-
ically necessary to review existing occupational safety management systems. Traditional approaches to occupa-
tional safety management, which often focus on reactive elimination of consequences, are insufficiently effective
in the context of the dynamic development of a high-tech industry, where every incident has serious economic,
reputational, and social repercussions. It is possible to improve occupational safety by applying advanced digital
technologies, in particular digital twin and Al agent technologies, which are capable of continuously accumu-
lating, processing, and transmitting vast amounts of data in real time through self-learning, creating a compre-
hensive picture of an aviation enterprise’s entire occupational safety management system’s functioning. This
study aims to justify the feasibility of modifying the occupational safety management system in civil aviation in
the Republic of Kazakhstan by integrating digital twin and Al agent technologies into key functional processes.
Results. The proposed algorithm for the developed Al agent, which is explicitly designed for integration into the
occupational safety management systems of aviation enterprises in Kazakhstan, is the key contribution of this
study. Its architecture, operating principles, and algorithms for interacting with big data received from digital
twins of various elements of the aviation system are described in detail, ranging from the condition of aircraft
and ground equipment to the personnel’s psychophysiological indicators and the working environment’s char-
acteristics. This algorithm enables the Al agent to detect anomalies and build predictive models, signalling po-
tential threats in advance. The results of the Al agent’s risk assessment in the civil aviation occupational safety
system have been visualised, demonstrating its high efficiency in identifying vulnerabilities, predicting critical
situations and forming informed, personalised recommendations for their prevention. The research results
demonstrate how proactive monitoring and analysis performed by an Al agent based on digital twin data can
significantly reduce the likelihood of injuries and occupational diseases. Conclusions. The proposed approach
to modifying the occupational safety management system at civil aviation enterprises is based on the synergistic
integration of digital twins and Al agents, whereby risk management shifts from reactive elimination to preven-
tive modelling and mitigation of potential threats. The creation of an occupational safety management system at
the country’s aviation enterprises, based on the use of digital twins and Al agents, will significantly increase the
competitiveness of civil aviation in the Republic of Kazakhstan on the world market, positioning it as a leader in
the application of high-tech solutions for ensuring occupational safety and sustainable development.

Keywords: civil aviation; hazardous working conditions; occupational safety; occupational safety management
system; injuries; occupational diseases; digital twin; Al agent; digital transformation.

of the Eurasian continent, Kazakhstan has the fundamen-
tal potential to consolidate its status as one of the leading
international transit aviation hubs at the intersection of
key air corridors linking the largest economic poles of

1. Introduction

1.1. Motivation

The development of civil aviation in the Republic
of Kazakhstan is a complex strategic imperative that goes
far beyond the sphere of transport. The country’s unique
geopolitical position and ambitious tasks to diversify the
national economy determine it. Situated at the epicentre

Europe and Asia [1].

Leveraging this geographic advantage is key to Ka-
zakhstan’s sustainable economic growth. Increasing
cargo and passenger transit volumes generate direct rev-
enues for the aviation industry and catalyse a multiplier
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effect in related economic sectors, such as logistics, tour-
ism, hospitality, services, and maintenance [2]. This con-
tributes to the national economy’s diversification, reduc-
ing its dependence on raw materials and attracting signif-
icant foreign investment, stimulating the creation of high-
tech jobs [3].

Along with the economic aspect, civil aviation de-
velopment has a critical geopolitical dimension.
Strengthening Kazakhstan’s transit potential facilitates
its integration into global transport systems, strengthens
the country’s role in international trade and economic re-
lations, and positions it as a strategically important part-
ner on the world stage. Developing a robust aviation in-
frastructure is vital for realising national interests and en-
hancing regional stability [4].

However, the growth of aviation activity, particu-
larly the increase in cargo and passenger traffic, is inevi-
tably associated with challenges that necessitate revising
existing approaches to industrial safety and labour pro-
tection management. The expansion of operational scale,
the intensification of work processes, and the complica-
tion of technical systems increase the number of work-
places with potentially hazardous conditions, thereby in-
creasing the likelihood of incidents and injuries [5]. In
the context of growing requirements for flight and ground
handling safety, traditional, often reactive methods of la-
bour protection management are becoming inadequate to
the challenges of modern times.

Integrating advanced digital technologies, particu-
larly digital twins (DT) and artificial intelligence (Al)
agents, into Kazakhstan's civil aviation occupational
safety management system is particularly relevant. Digi-
tal twins, virtual representations of physical objects and
processes, enable the continuous monitoring of equip-
ment, infrastructure, and even physiological parameters
of personnel in real time, thereby providing Al agents
with a constant flow of relevant information [6]. This of-
fers unprecedented opportunities for predictive analytics,
modelling potentially dangerous scenarios, and identify-
ing hidden risks before they materialise [7].

Al agents can process colossal amounts of data [8]
generated by digital twins and other sources, identify
complex correlations, and predict the likelihood of inci-
dents caused by technical malfunctions and human fac-
tors [9]. They can provide personalised recommendations
for preventing fatigue, optimising work schedules, and
adjusting personnel actions in critical situations [10].

Only the symbiosis of DT and Al agents will create
an adaptive, proactive, and intelligent ecosystem for oc-
cupational safety management in civil aviation, a key as-
pect for minimising risks, increasing operational effi-
ciency, and ensuring unconditional safety in Kazakh-
stan’s rapidly evolving civil aviation sector. It should be
recognised that this is not just a technological moderni-
sation but a strategic investment in the sustainable future

of the industry and national welfare.

1.2. State of the art

The current stage of digital transformation in high-
tech industries, such as civil aviation, is characterised by
the active development and convergence of advanced
paradigms. The concepts of DT and Al agents occupy a
central place among these [11]. The period from 2020 to
2025 was marked by significant progress in their meth-
odologies, architectures, and practical applications. It
demonstrated powerful synergistic potential, especially
in the proactive management of complex and critical sys-
tems, including occupational safety aspects.

Notably, the aerospace industry was one of the first
to examine the concept of CG, as evidenced by NASA
publications. NASA extended the physical model of the
vehicle to include digital components in response to the
explosion of the Apollo 13 oxygen tank. This “digital
twin” was the first of its kind, enabling continuous data
capture to simulate events [12]. However, it was not until
2010 that the paper “Project Roadmap for Modelling,
Simulation, Information Technology, and Processing for
the National Aeronautics and Space Administration” [13]
was published, which conceptualised aerospace CG as a
virtual replica that mirrored physical objects, processes
or systems.

Since 2020, DT research has shifted from concep-
tual justification to practical implementation, operation-
alisation, and optimisation issues. Modern definitions of
DTs emphasise their role as dynamic, multidimensional,
multi-physical, and multiscale virtual representations of
real-world entities, capable of continuous data synchro-
nisation, simulation, and predictive analysis to support
informed decision-making [14]. The emphasis is on de-
veloping intelligent digital twins that integrate advanced
analytics and artificial intelligence elements to enhance
their autonomy and predictive capabilities. DT architec-
tural models have evolved to include new layers, such as
an Al algorithm layer and a decision/control layer, allow-
ing DTs to reflect reality and actively influence it [15].
Research conducted from 2021 to 2023 is actively fo-
cused on creating ontological models to unify data and
enhance interoperability among various components of
the digital economy. Additionally, it involves developing
digital twins for entire systems and ecosystems, a step to-
wards implementing complex management tasks [16].
Key technology trends include advanced sensor networks
and Internet of Things devices, where the development
of 5G/6G wireless technologies and edge computing en-
able the faster and more reliable transmission of large
amounts of data in real time [17]. Augmented reality
(AR) and virtual reality (VR) are increasingly being used
to create immersive interaction interfaces with the digital
economy [18]. Blockchain technology is also being
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explored to ensure the integrity, security, and traceability
of data were transmitted to the digital economy [19]. In
civil aviation, recent studies have investigated the appli-
cation of digital twins for integrated flight safety man-
agement [20], identification of potential in-flight failures
[21], the optimisation of aircraft maintenance, repair, and
overhaul (MRO) processes [22], prevention of onboard
aircraft fires [23], airport operational safety management
[24], and the modeling and optimization of operational
workflows [25], which has led to the interpretation of the
concept of the “digital twin” from different methodolog-
ical perspectives (Fig. 1).
Multidisciplinary model
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physical object
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Fig. 1. The boundaries of the DT concept
in modern publications [13, 19]

Despite the rapid evolution of the “digital twin”
concept and its active implementation in various indus-
tries, including civil aviation, a single, generally accepted
interpretation of this concept has not yet been estab-
lished. This observation often raises questions; however,
from an academic perspective, such a situation is a nor-
mal and even expected consequence of the underlying
technologies’ dynamic development [26].

Several factors explain the lack of a strict, universal
definition. First, the digital twin is an umbrella term en-
compassing many technologies, including the loT, Al,
machine learning (ML), cloud computing, augmented
and virtual reality (AR/VR), and big data analytics tech-
nologies. Each of these technologies is constantly evolv-
ing, expanding the functionality and applications of dig-
ital twins.

Second, the concept of a “digital twin” is adaptable
to the specific needs of various industries and tasks. For
example, a digital twin of a mechanical engineering prod-
uct will differ significantly in its structure and data set
from a digital twin of urban infrastructure or an occupa-
tional safety management system in aviation. This con-
textual variability prevents the creation of a comprehen-
sive formulation that is adequate for all cases.

Thus, the "under definition™ of the "digital twin"
concept is not a disadvantage but reflects its organic, liv-
ing, and constantly changing nature. This testifies to the
concept’s adaptability and potential for further transfor-
mation, allowing it to remain relevant and integrate new
scientific achievements and technological innovations as
they appear [27]. In particular, since 2022, breakthroughs
in machine learning, intense learning, and reinforcement
learning have significantly enhanced the digital transfor-
mation of Kazakhstan’s civil aviation [28]. Therefore,
digital twins, which use real-time or historical data input
for analysis, have acquired the ability to simulate various
scenarios and predict system behaviour, along with ma-
chine learning algorithms. The information obtained
through such modelling is convenient for posting on
dashboards, compiling reports, and visualising them,
which enables effective decision-making [29]. However,
the capabilities of the digital twin do not fully meet the
needs with the development of multi-agent systems,
which has become the basis for considering the feasibility
of synergistic integration of the digital twin and the Al
agent in civil aviation [30].

Modern Al agents strive for autonomy, adaptability,
explainability, and collaboration in complex and dy-
namic environments. Key areas of development include
learning agents, where reinforcement learning methods
are particularly relevant for creating agents that can make
optimal decisions under uncertainty [31]. In response to
the need for transparency in deep learning’s “black
boxes,” explainable Al methods are being actively devel-
oped, enabling Al agents to justify their recommenda-
tions and decisions [32]. Research focuses on developing
multi-agent systems, where multiple Al agents interact to
solve complex distributed problems, which is relevant for
safety management, where different aspects of safety can
be controlled by specialised agents [33]. Advances in
computer vision and natural language processing have
enabled Al agents to analyse unstructured data, such as
video feeds or text incident reports, to identify hidden
patterns and warning signs of danger [34]. The chal-
lenges include ensuring the reliability and safety of Al
systems, managing bias in data and algorithms, and de-
veloping ethical frameworks for autonomous agents [35].

Implementing digital twins and Al agents is now
recognised as crucial in developing intelligent control
systems for complex technical and socio-technical sys-
tems. From 2023 to 2025, this synergy has been the sub-
ject of intense research, particularly in the areas of indus-
trial safety and occupational health and safety manage-
ment. The digital twin is a rich source of relevant, con-
textualised data for Al agents, providing a virtual envi-
ronment for training and testing strategies without com-
promising real systems [36]. In turn, Al agents imbue the
digital twin with “intelligence,” allowing it to reflect, an-
alyse, predict, and actively manage its physical
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counterpart [37]. Current research actively explores how
this integration can transform occupational safety and
health management, for example, by simulating the air-
port work environment and analysing personnel data to
predict risks and suggest corrective actions [38]. This en-
ables the implementation of the proactive risk manage-
ment concept.

Thus, the recent literature review convincingly
demonstrates significant progress in digital twin and Al
agent technologies. Their synergistic integration is a
leading direction for creating intelligent, self-adaptive,
and explainable control systems, especially in critical ar-
eas such as civil aviation's occupational safety manage-
ment system. This integration presents opportunities for
developing a new safety paradigm centred on in-depth
predictive analysis, proactive intervention, and continu-
ous improvement, which are essential for enhancing op-
erational reliability and the industry’s sustainable devel-
opment.

1.3. Objectives and tasks

The study focuses on the occupational safety man-
agement system of civil aviation enterprises.

The study focuses on the synergistic integration of
an Al agent and digital twins within aviation enterprises’
occupational safety management system.

This study aims to substantiate the feasibility of im-
plementing a digital transformation of the occupational
safety management system in the civil aviation sector
through the synergistic integration of digital twin tech-
nologies and Al agents into the operational practices of
the country’s aviation enterprises, ensuring risk preven-
tion and an increased level of industrial safety.

The following tasks were formulated to achieve the
goal:

- to study the industry model of the occupational
safety management system in Kazakhstan’s civil avia-
tion;

- to develop an algorithm for constructing an Al
agent explicitly designed for integration into Kazakh-
stan’s occupational safety management system;

- to develop proposals for the synergistic implemen-
tation of digital twin technologies and Al agents in the
practice of aviation enterprises in the Republic of Ka-
zakhstan.

The article includes an introduction, a literature re-
view, a description of the research methods, the research
results, a discussion, and conclusions.

Section 1 describes the study’s relevance, purpose,
and objectives, as well as a critical analysis of scientific
sources and an overview of the problems associated with
the digital transformation of the occupational safety man-
agement system in civil aviation.

Section 2 describes the research design, methodol-
ogy, and tools used to achieve the stated research goal.

Section 3 is devoted to the development of an algo-
rithm for constructing an Al agent to manage Kazakh-
stan’s civil aviation’s occupational safety system.

Section 4 presents a discussion of the scientific re-
sults and their presentation in the form of a methodology;,
which highlights the study’s significance for practical ap-
plication.

Section 5 concludes the study with a summary of
the key findings and prospects for further research.

2. Materials and methods of research

This study’s methodology is based on an integrated
approach that combines the principles of system analysis,
deductive and inductive logic, and methods of mathemat-
ical modelling and predictive analytics. This approach
enables a comprehensive and in-depth examination of the
integration of innovative digital technologies into Ka-
zakhstan’s civil aviation occupational safety and health
management system, confirming the relevance of the pro-
posed solutions and assessing their potential effective-
ness. The initial stage of the study involved a critical re-
view of the current state of occupational safety and health
management systems in Kazakhstan’s civil aviation to
identify key problems. This was followed by the concep-
tual and design stages, during which an occupational
safety and health management model was developed us-
ing digital twins and Al agents. Simultaneously, an algo-
rithm for the Al agent’s functioning was developed, de-
tailing the data processing and analysis processes, ma-
chine learning methods for identifying hidden patterns,
risk forecasting mechanisms, and recommendation gen-
eration. The final stage of the methodology involved the
use of predictive analytics methods to quantify the poten-
tial risk reduction and improvement in occupational
safety indicators following the implementation of the Al
agent and the DT. The model is verified by comparing
the simulated results with empirical data to objectively
assess the effectiveness of the proposed approach.

The methodology chosen by the authors ensures the
scientific rigour and validity of all stages of the study,
from conceptualisation to the assessment of the practical
potential of innovative solutions in the field of labour
protection. The following materials were used for this
study: data from the Bureau of National Statistics of the
Agency for Strategic Planning and Reforms of the Re-
public of Kazakhstan; the regulatory framework of the
international (in particular, ICAO, ITF regulations, etc.)
and national levels (in particular, legislative and regula-
tory acts of the Republic of Kazakhstan in the field of
civil aviation), airline reports, etc.
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3. Results

The choice of the occupational safety management
system in civil aviation of the Republic of Kazakhstan as
the object of study is because the passenger and cargo
transportation market by air transport in Kazakhstan is
the most stable and fastest-growing in the Central Asian
region. According to the Bureau of National Statistics of
the Agency for Strategic Planning and Reforms of the
Republic of Kazakhstan, in January-December 2023, the
air transport of the republic transported 13.3 million pas-
sengers, which is 20.7% higher than in January-Decem-
ber 2022. Accordingly, the passenger turnover indicator
also increased. According to the 2023 results, the amount
was 25.9 billion p/km, which was 28.8% higher than the
previous year [39].

Volume of services provided to passengers at Air-
ports have also increased by almost a quarter. Their sig-
nificant growth is observed in Almaty and Astana, where
record figures were recorded in 2023: 9 million (+34%)
and 7 million (+26%) passengers served. The volume of
cargo handled at airports has also increased. At the be-
ginning of the year, this figure has totalled 130,000 tons,
which is 16% higher than that in 2022 [40].

However, despite the rapid development in civil
aviation, the industry still faces some bottlenecks, partic-
ularly in terms of hazardous working conditions. Accord-
ing to the Bureau of National Statistics of the Agency for
Strategic Planning and Reforms of the Republic of Ka-
zakhstan, the number of air transport personnel employed
in hazardous working conditions during 2008-2024 ex-
hibits complex and ambiguous dynamics (Table 1).

Table 1

Number of air transport workers employed in harmful
and hazardous working conditions during 2008-2024, people [41]

Average number Of these, those employed in harmful
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2008 | 2838,8 | 55495 | 23,7 | 69,5 4939 | 2111 | 1041 -- 2115 665 175 245
2009 | 2758,7 | 5313,3 | 21,3 | 68,0 4912 | 1767 890 - 1795 333 124 157
2010 | 3401,18 | 6517,2 | 29,2 | 94,0 5116 751 999 - 1614 772 156 115
2011 | 4111,48 | 7859,1 | 29,4 | 89,1 5701 | 2289 | 2575 - 2052 | 1899 98 188
2012 | 4558,72 | 87958 | 19,6 | 54,9 5796 | 2233 | 3198 98 1809 | 1744 106 36
2013 | 4992,97 | 9704,6 | 24,0 | 63,2 6203 | 2596 | 3479 | 1492 710 681 8 10
2014 | 5447,71 | 10588,9 | 19,6 | 49,2 6733 | 2633 | 3570 | 1633 590 673 8 4
2015 | 5924,9 | 111386 | 17,0 | 42,44 | 6756 | 2756 | 3399 | 2052 712 723 31 74
2016 | 6006,12 | 11073,0 | 18,1 | 42,99 | 7054 | 2965 | 3011 | 3043 | 1355 871 38 -
2017 | 7352,17 | 14384,2 | 22,4 | 53,33 | 7138 | 3148 | 3393 | 3745 | 1476 989 47 95
2018 | 7858,53 | 16176,7 | 29,1 | 55,67 | 7385 | 3040 | 3081 | 3373 | 2451 | 1379 59 -
2019 | 8614,79 | 16940,3 | 25,1 | 54,2 8011 | 3791 | 3657 | 3945 | 3835 | 2871 51 70
2020 | 5489,71 | 83350 | 24,2 | 56,2 7480 | 3461 | 2909 | 4646 | 2144 | 2080 31 98
2021 | 9434,05 | 148157 | 34,0 | 81,68 | 7748 | 3207 | 2634 | 4285 | 2169 | 2136 34 98
2022 | 10993,6 | 20109,3 | 24,5 | 54,44 | 8557 | 3589 | 3371 | 4723 | 3454 | 1978 33 93
2023 | 13347,2 | 23382,3 | 24,1 | 54,37 | 10346 | 4737 | 2265 | 4397 | 4086 | 1762 534 37
2024 | 14483,3 | 254389 | 23,8 | 63,8 | 11463 | 4981 | 2374 | 4684 | 4112 | 1686 276 56
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Despite the significant growth of the industries, key
performance indicators, such as passenger transportation
and passenger turnover, and an increase in the average
headcount, there are noticeable changes in the structure
and number of employees exposed to harmful production
factors. In 2008, 2,111 people were employed in danger-
ous working conditions. In subsequent years, this figure
underwent decreases (for example, to 751 people in
2010) and significantly increased, reaching a peak of
3,791 people in 2019, before the COVID-19 pandemic.
Interestingly, after a decline in 2020-2021, the number of
such workers increased again by 2022 to 3,589 people.

The dynamics of the number of workers employed
in conditions that do not meet sanitary and hygienic re-
quirements are fascinating. If the data for 2008-2011 are
missing or not detailed, then since 2012, there has been a
significant number of such workers, reaching a maximum
of 4,723 people in 2022. This highlights the ongoing sig-
nificance of issues related to the working environment’s
adverse effects. An analysis of specific harmful factors
revealed that the number of workers exposed to increased
noise, vibration, dust, and gas pollution fluctuated but re-
mained significant throughout the study.

Thus, the labour protection indicators of civil avia-
tion personnel in Kazakhstan are characterised by the
data provided in Table 2.

Analysis of the presented statistical data on occupa-
tional safety indicators for civil aviation personnel in Ka-
zakhstan for 2008-2022 (Table 2) revealed significant
trends and fluctuations in in industrial safety dynamics.

The study of occupational safety indicators in Kazakh-
stan’s civil aviation sector from 2008 to 2022 reveals a
complex and evolving picture. Approximately until
2014, the early period shows a positive trend towards a
decrease in the absolute number of injured workers and
the injury frequency rate (TIFR). This can be interpreted
as the implementation or strengthening of basic measures
to ensure occupational safety and increase personnel
awareness.

However, subsequent years, especially 2020 and
2021, are characterised by a noticeable increase in casu-
alties and a corresponding increase in TIFR. This surge,
which is potentially related to workload dynamics,
changes in operations, or even global factors such as the
COVID-19 pandemic, highlights the OSH system’s vul-
nerability to external influences and internal reorganisa-
tions. Importantly, the fatal injury frequency rate (FIFR)
remained relatively low even during these periods, indi-
cating that the most critical risks are still under control.

The most notable year is 2022, which shows signif-
icant and dramatic improvements in most key metrics.
The sharp reduction in the number of casualties and the
TIFR and Lost Time Injury Rate (LTIFR) to the lowest
values for the entire study period indicates the effective-
ness of targeted measures in improving working condi-
tions and preventing incidents. This result may be at-
tributed to a review of safety protocols, increased train-
ing, or the introduction of new technologies. At the same
time, the LTISR, which reflects the duration of incapac-
ity, increased in 2022. Further analysis is required to

Table 2

Occupational safety indicators for civil aviation personnel in the Republic of Kazakhstan from 2008 to 2024 [41]

Number Loss of working time, days

oo | iy |y Heaviness Lost Time

Years o o | Frequency | Frequency including due coeff|C|e_nt Total Injury Injury

S o Total . traumatis Rate Rate

Total | 5 = Rate Rate to accidents (LTISR) (LTIFR)

(LTI S g (TIFR) (FIFR)

2008 333 13 67,4225 2,632112 5749 5749 17,2642 3,9053 38,5403
2009 306 19 62,2964 3,868078 4142 4123 13,4738 4,6235 35,6101
2010 266 25 51,9937 4,88663 7150 7150 26,8797 1,9343 33,2645
2011 286 25 50,1666 4,385196 6184 6184 21,6223 2,3201 28,6764
2012 277 18 47,7915 3,10559 6683 6683 24,1263 1,9808 27,3188
2013 275 31 44,3333 4,997582 5110 5110 18,5818 2,3858 25,3420
2014 274 12 40,6951 1,782266 5757 5757 21,0109 1,9368 23,2623
2015 281 21 41,5927 3,108348 5164 5164 18,3772 2,2632 23,7753
2016 287 16 40,6861 2,268217 5618 5618 19,5749 2,0784 23,2571
2017 303 20 42,4489 2,801905 5535 1479 18,2673 2,3242 24,2648

2018 318 22 43,0603 2,979012 5948 5453 17,1478 2,5111 24,614
2019 312 17 38,9465 2,122082 6788 6386 20,4679 1,9028 22,2627
2020 455 17 60,8289 2,272727 4756 4360 9,58241 6,3479 25,5621
2021 472 17 60,9189 2,194115 5853 5731 12,1419 5,0172 18,2635
2022 127 8 14,8417 0,934907 4933 4843 38,1338 0,3891 8,48385
2023 161 17 24,8125 1,632816 9389 5970 34,2321 3,3261 12,3728
2024 175 17 23,954 1,273580 11200 7278 30,2783 3,1181 12,1126
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understand analysis is required to understand whether
this is due to changes, such as injuries, or to the registra-
tion methodological features.

Thus, the data on civil aviation in Kazakhstan indi-
cate a progressive development of the occupational
safety system, culminating in significant improvements
in 2022. However, the identified periodic instability of
indicators highlights the need for continuous monitoring,
in-depth analysis of the causes of deviations, and adapta-
tion of safety strategies to maintain sustainable positive
dynamics and minimise risks to personnel. This is possi-
ble with the synergistic integration of a digital twin of the
aviation personnel occupational safety management sys-
tem and an Al monitoring agent at the aviation enter-
prises of Kazakhstan, the construction and implementa-
tion of which is a multi-stage, high-tech process that re-
quires an integrated approach and integration of various

data sources.

Data collection and aggregation
Modeling module
Al-agent-monitoring

Visualization /

;)| Feedbacle

Fig. 2. Architecture and functionality of the synergetic
integration of a personnel safety management system’s
digital twin and an Al monitoring agent
at Kazakhstan’s aviation enterprises

The initial stage involves collecting and aggregat-
ing data from relevant sources, including aircraft specifi-
cations, ground equipment, safety systems, repairs, wear,
and failures. In parallel, data on the working environment
(microclimate, noise, vibration, lighting, and the pres-
ence of harmful substances) and detailed personnel infor-
mation, including qualifications, length of service, work
schedules, medical examinations, training, and biometric
data to assess fatigue levels, are collected. The integra-
tion of statistical data on all types of incidents, including
minor injuries, as well as the results of their investiga-
tions, alongside current occupational safety regulations,
which serve as a reference basis for comparison, is of sig-
nificant importance. These data create a detailed virtual
model covering individual workstations and airfield com-
plexes. Modern CAD systems, BIM modelling, and 3D
scanning are used to accurately reproduce physical ob-
jects and model processes, considering their dynamics.

Integration with the physical world through an ex-
tensive sensor network, including sensors of various

parameters, video surveillance systems, wearable devices
for monitoring the state of personnel, access control, and
equipment telemetry systems, providing a continuous
flow of data in real-time, is the key stage that transforms
a static model into a dynamic digital twin. To process and
visualise this colossal amount of information, a special-
ised software platform is created that is capable of cen-
tralised data storage (Data Lake/Warehouse), processing
in real time using streaming technologies, as well as in-
teractive visualisation through 2D/3D models, dash-
boards and risk maps, while providing modularity for
connecting analytical tools, including Al agents.

Implementing such a digital twin will fundamen-
tally transform traditional approaches to occupational
safety management, moving them to a qualitatively new
level of proactivity and predictability. The system will
provide continuous monitoring and real-time diagnostics,
enabling operators and labour protection specialists to re-
spond immediately to any deviations from the specified
safety parameters. Data aggregated by the digital twin
will become a source for predictive analytics and risk
forecasting by Al agents.

Using machine learning algorithms, Al agents can
identify hidden patterns and correlations and predict the
likelihood of accidents, occupational diseases, or tech-
nical failures based on multi-factor analysis (e.g., person-
nel fatigue, equipment wear and tear, and weather condi-
tions). Since the virtual environment of the digital twin
serves as an ideal testing ground for the Al agent to sim-
ulate various scenarios, including emergencies, without
risk to real personnel and equipment, it enables testing
new safety protocols, optimising work processes, and as-
sessing ergonomics. In addition, the digital twin, supple-
mented with an Al agent, will provide personalised risk
management and training, offering customised rest pro-
grams, additional training or medical examinations based
on the analysis of each employee’s unique data, as well
as allowing realistic simulations to practice actions in
dangerous situations.

The digital twin and the Al agent, working in sym-
biosis, can provide unprecedented transparency and au-
tomated control over compliance with occupational
safety regulations, simplifying audits, and demonstrating
compliance with the highest international safety stand-
ards.

Thus, implementing a DT in Kazakhstan’s civil avi-
ation occupational safety management system is not only
a technological breakthrough but also a strategic invest-
ment in the safety of industry personnel.

An algorithm for constructing an Al agent to predict
labour safety risks in Kazakhstan's civil aviation was de-
veloped to substantiate this hypothesis. Three main ma-
chine learning algorithms were selected for their con-
struction: XGBoost, Random Forest, and Logistic Re-
gression.
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Each of these algorithms performs a specific func-
tion in the overall model:

- XGBoost (extreme Gradient Boosting) is a gradi-
ent-boosting algorithm that effectively works with tabu-
lar data and accounts for nonlinear relationships between
variables. It is used to classify risks, that is, to predict the
probability of an incident based on input parameters.
Main parameters: input data (X) — NoiseLevel, Stress-
Level, WorkingHours, AccidentsLastYear, Equipmen-
tAge, Fatiguelndex; target variable (y): 1 — if the risk of
an incident is high, 0 — if the risk of an incident is low.
The algorithm constructs a sequence of decision trees,
each of which optimises the errors of the previous one.
The initial value is the probability (P(y=1)) compared
with the threshold to determine the class (high or low
risk). The XGBoost algorithm optimises the loss function
by boosting (1):

L($) = XL 10, ) + i, (R, @

where - loss function (example - log loss), Q(f,) - Model
complexity penalty;

- Random Forest is an ensemble algorithm that
builds multiple decision trees and combines their results
to reduce errors. The main goal of this model is to deter-
mine the importance of the factors that most influence the
probability of an incident. Main parameters: input data
(X) - the same as for XGBoost. The method creates mul-
tiple decision trees using random subsets of data and fea-
tures, evaluating how each variable reduces the model's
error. Random Forest uses an ensemble of decision trees

2):
f() = 2 2L, he(), )

where h.(x) — forecast of the tree, T — number of trees;

- Logistic Regression is a simple algorithm that uses
alogistic function to model the probability of a target var-
iable depending on input parameters. Main parameters:
input data (X) - the same as for XGBoost; target variable
(y). Logistic Regression calculates the risk probability
using a logistic function:

1
Py =1[x) = oo Gor By @)

where B, - free term, B; - weight coefficient for the i var-
iable, and x;.

The combination of these algorithms enables us to
accurately predict risks and gain a deeper understanding
of the relationships between parameters. XGBoost is re-
sponsible for forecast accuracy, Random Forest helps
determine the importance of variables, and Logistic Re-
gression provides transparency in the relationships. As

part of the study, a program code was developed to im-
plement machine learning models for assessing labour
safety risks at the airport. The software was created in
Python using the scikit-learn, XGBoost, Pandas, Mat-
plotlib, and Seaborn libraries. The code provides data
loading, pre-processing, model training, evaluation of
their effectiveness, and visualisation of the results
(Fig. 3).

The training set containing the main factors affect-
ing occupational safety risks was used to test the models:
NoiseLevel (noise level), StressLevel (stress level),
WorkingHours  (working hours per day), Acci-
dentsLastYear (number of incidents over the past year),
EquipmentAge (age of equipment in years), Fatigue-
Index (fatigue index).

The graph (Fig. 4) displays the Receiver Operating
Characteristic (ROC) curve for the XGBoost model, il-
lustrating its ability to distinguish between classes (low-
risk and high-risk). High risk", and the vertical axis (True
Positive Rate) shows the proportion of correctly classi-
fied objects as "high risk." The grey dotted line corre-
sponds to the area under the curve (AUC = 0.5) of the
random guessing model, while the blue line represents
the XGBoost model’s performance.

The area under the curve (AUC) is 0.86, indicating
the model’s high performance. AUC = 0.86 indicates that
the model has an 86% probability of correctly ranking a
high-risk object higher than a low-risk object. The
XGBoost model, with an AUC of 0.86, is well-suited for
tasks that require effective identification of risky objects.
For example, such a model can identify high-risk workers
who require immediate intervention or additional occu-
pational safety measures.

Figure 5 illustrates the significance of input features
(factors) as determined by the Random Forest model. The
importance values reflect how much each feature affects
the accuracy of risk classification. The impact is esti-
mated based on the change in the model error metric after
the values of a particular variable are permuted.

The most crucial feature of the model is Acci-
dentsLastYear, with an importance of approximately
0.30 (30%). This suggests that the number of incidents
over the past year is a key factor in predicting risk.

Noise Level: The noise level has the second most
crucial impact (approximately 0.22). Fatigue Index: The
Fatigue Index is the third most important factor (approx-
imately 0.18). High levels of fatigue can lead to de-
creased attention and physical performance, which in-
creases the risk of amputation.

The stress level also plays a significant role (ap-
proximately 0.15). This confirms that workers’ psycho-
logical state is a crucial factor in risk assessment.

Equipment Age: The equipment age is less critical
(approximately 0.08) but still affects the results.
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From google. colab import drive
drive.mount('/content/drive/')

import pandas as pd

, humpy as np

, matplotlib.pyplot as plt
, import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LogisticRegression

from xgboost import XGBClassifier

from sklearn.metrics import classification_report,

roc_curve, auc, confusion_matrix

data = pd.read_csv('/content/drive/MyDrive/Colab

Notebooks/data/occupational_risk_data_2024.csv')

data = data.drop(columns=['RiskLevel'])

X = data
y = data['RiskLevel']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
xgb_model = XGBClassifier(random_state=42)
xgb_model.fit(X_train_scaled, y_train)
xgb_preds = xgb_model.predict(X_test_scaled)
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train)

rf_preds = rf_model.predict(X_test)

Ir_model = LogisticRegression(random_state=42)
Ir_model.fit(X_train_scaled, y_train)

Ir_preds = Ir_model.predict(X_test_scaled)

xgb_report =
put_dict=True)

classification_report(y_test,

xgb_preds,

out-

rf_report = classification_report(y_test, rf_preds, output_dict=True)
Ir_report = classification_report(y_test, Ir_preds, output_dict=True)

xgb_fpr,  xgb_tpr,

= roc_curve(y_test,

dict_proba(X_test_scaled)[:,1])
xgb_auc = auc(xgb_fpr, xgb_tpr)

plt.figure()

plt.plot(xgb_fpr, xgb_tpr, label=f'’XGBoost (AUC

color='blue')

plt.plot([0,1], [0,1], linestyle="--', color='gray')

xgb_model.pre-

{xgb_auc:.2f})",

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curve for XGBoost')

plt.legend(loc="lower right')

plt.show()

plt.figure(figsize=(5,5))

cm = confusion_matrix(y_test, xgb_preds)

sns.heatmap(cm, annot=True, fmt="d', cmap="'Blues', xticklabels=['Low
Risk','High Risk'], yticklabels=['Low Risk','High Risk'])
plt.title('Confusion Matrix for XGBoost')

plt.ylabel('Actual’)

plt.xlabel('Predicted')

plt.show()
rf_importance = pd.DataFrame({'Feature': X.columns, 'Importance"
rf_model.feature_importances_})

rf_importance = rf_importance.sort_values(by='Importance', ascend-
ing=False)
plt.figure(figsize=(8,6))
sns.barplot(x="Importance', y='Feature', data=rf_importance, pal-
ette="viridis')

plt.title('Feature Importance (Random Forest)')
plt.xlabel('Importance')

plt.ylabel('Feature')

plt.show()

xgb_probs = xgb_model.predict_proba(X_test_scaled)[:,1]
sns.kdeplot(xgb_probs[y_test == 0], label="Low Risk", shade=True,
color="blue")

sns.kdeplot(xgb_probs[y_test == 1], label="High Risk", shade=True,
color="red")

plt.title("Predicted Probabilities Density (XGBoost)")
plt.xlabel("Predicted High Risk Probability")

plt.legend()

plt.show()

sns.pairplot(data, hue="RiskLevel", diag_kind="kde", palette="husl")
plt.suptitle("Paired Dependences of Factors and Risk Levels", y=1.02)
plt.show()

print("XGBoost Evaluation")

print(classification_report(y_test, xgb_preds))

print("Random Forest Evaluation")

print(classification_report(y_test, rf_preds))

print("Logistic Regression Evaluation")
print(classification_report(y_test, Ir_preds))

Fig. 3. Implementation of a digital twin of the airport occupational safety risk assessment software
based on machine learning algorithms in Python
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Fig. 4. ROC (Receiver Operating Characteristic)
curve for the XGBoost model
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Working Hours: Working hours are the least signif-
icant factor in this model (less than 0.05).

This suggests that working hours alone are not a pri-
mary risk indicator without considering other factors.
The factor importance plot demonstrates that the Random
Forest model successfully identifies the key variables in-
fluencing risks and monitoring incidents to prevent their

recurrence.

The graph (Fig. 6) illustrates the even dependencies
between the factors (Noise Level, Stress Level, Working
Hours, Accidents Last Year, Equipment Age, and Fatigue
Index) and the target variable (Risk Level). This is a scat-
ter plot matrix combined with the distribution graph fac-
tor.

Paired Dependences of Factors and Risk Levels
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The graph allows the assessment of the relationships be-
tween the variables and their impact on the risk level.

The distribution shows that high noise levels
(NoiseLevel) are more often associated with high risk
(RiskLevel = 1). This confirms the significance of this
factor in the model. In combination with other factors,
such as Fatiguelndex or StressLevel, NoiseLevel can in-
tensify risks.

High stress levels are also correlated with high risk.
Low-risk workers have significantly lower stress levels
than high-risk workers.

The graphs show that working hours (Working-
Hours) have a weaker correlation with the risk level. This
factor is less significant. The distribution for both risk
levels is similar, confirming low dependence.

A strong correlation was found between the number
of incidents (AccidentsLastYear) and high risk. Low-risk
employees have significantly fewer incidents. When Fa-
tiguelndex or NoiseLevel is combined, the number of in-
cidents is the dominant factor. Older equipment (Equip-
mentAge) is associated with higher risk, but this relation-
ship is less pronounced than other factors. When com-
bined with AccidentsLastYear, this factor can amplify
risk but is less influential. High Fatigue Index values are
significantly correlated with high risk of cardiovascular
disease. Low-risk employees usually have lower fatigue.

The XGBoost, Random Forest, and Logistic Re-
gression models were evaluated based on the following
key metrics: precision, recall, F1-score, and overall accu-
racy. The results show a significant difference in perfor-
mance between the nonlinear models (XGBoost and Ran-
dom Forest) and the linear model (Logistic Regression)
(Table 3).

Table 3
Performance evaluation of XGBoost, Random Forest
and Logistic Regression models

XGBoost Evaluation
precision recall fl-score | support
0.92 0.81 0.86 270
1 0.93 0.97 0.95 730
Random Forest Evaluation
precision recall fl-score | support
0.92 0.81 0.86 270
1 0.93 0.97 0.95 730
Logistic Regression Evaluation
precision recall fl-score | support
0.67 0.59 0.63 270
1 0.86 0.89 0.87 730

The XGBoost model demonstrated high perfor-
mance with an overall accuracy of 93%. It achieved a
precision of 0.92 for the “low-risk” class and 0.93 for the

“high-risk” class. The recall of the model was 0.81 for
“low risk” and 0.97 for “high risk,” indicating the
model’s ability to correctly classify most objects, espe-
cially high-risk ones. The F1-score, which balances pre-
cision and recall, was 0.86 for “low risk” and 0.95 for
“high risk.” These results indicate the strong ability of the
model to classify both risky and safe cases.

The Random Forest model showed results similar to
those of XGBoost. The overall accuracy was 93%, the
precision for both classes was 0.92 and 0.93, and the re-
call was 0.81 and 0.97 for “low” and “high risk,” respec-
tively. The Fl-score values are identical to those of
XGBoost, indicating the comparative performance of
these two models. Given the similarity of the results, both
models can be used depending on the computing re-
sources and training time.

The linear Logistic Regression model performed
much worse than XGBoost and Random Forest. The
overall accuracy was only 81%, which was 12% lower
than that of the nonlinear models. The model accuracy
for “low risk” was 0.67, and for “high risk” was 0.86. The
recall was 0.59 for “low risk” and 0.89 for “high risk.”
This indicates that the model has significant difficulty in
identifying low-risk cases. The F1-score confirms this
trend: 0.63 for “low risk” versus 0.87 for “high risk.”
Thus, Logistic Regression is less effective than the non-
linear models.

The results indicate that XGBoost and Random For-
est models are the most suitable for classifying hazardous
work risk. They effectively identify both classes and pro-
vide high accuracy, recall, and F1-scores. Although de-
livering a certain level of performance, Logistic Regres-
sion is inferior to nonlinear models, especially for tasks
with nonlinear dependencies between features.

Building an Al agent involves several interrelated
steps, each of which is vital for creating an effective and
accurate model. These steps are implemented sequen-
tially, providing a systematic approach to working with
data and modelling.

The first stage is data collection and preprocessing.
This stage involves collecting data from different
sources, cleaning them, eliminating missing values, and
normalising or scaling features to ensure the correct op-
eration of the algorithms. This is a fundamental step be-
cause data quality has a significant impact on the model’s
effectiveness.

The next step is feature selection and engineering,
where the most significant variables are identified and
new features are created to enhance the model perfor-
mance.

Subsequently, the data are divided into training and
test samples. This is necessary to evaluate the perfor-
mance of the models: the training sample is used to create
the model, and the test sample is used to check its perfor-
mance on new data.
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The main stage is model training. Algorithms such
as XGBoost, Random Forest, and Logistic Regression
are used. Each model is configured and trained based on
the training sample, after which its performance is eval-
uated using test data.

After training the models, they are evaluated using
key metrics such as Precision, Recall, F1-score, and AUC
(area under the ROC curve). This allows you to deter-
mine which model is best suited for the task.

Next, the importance of features is analysed to de-
termine which factors most significantly influence the
forecasts of the model. This makes the models more in-
terpretable, enabling the use of results to inform practical
decisions. Based on the obtained data, graphs, tables, and
other visualisations are created to understand how the
model works and draw conclusions about its practical ap-
plication.

Moreover, the final stage should involve the crea-
tion of an occupational health and safety management
system that can independently learn, automatically up-
date, and adapt, thereby increasing future forecast accu-
racy. Thus, implementing a digital twin of the occupa-
tional safety management, combined with an Al monitor-
ing agent, represents the next logical step in the evolution
of the occupational safety system in Kazakhstan’s civil
aviation, opening up new opportunities for creating a safe
and efficient working environment.

4. Discussion

The developed methodology for constructing an Al
agent for occupational health and safety management
systems in civil aviation demonstrates several significant
differences between traditional and modern approaches,
providing increased efficiency and adaptability in a dy-
namic and high-risk environment. The proposed architec-
ture’s fundamental superiority lies in its ability to deeply
integrate semantic data, proactively forecast risks that
consider the human factor, and achieve a high degree of
automation in the decision-making process.

Unlike simple reflex or model-oriented agents,
which are often limited to reacting to predefined patterns
or using static models of the world [43], the risk model’s
methodology focuses on the dynamic construction and
continuous adaptation. This is achieved through special-
ised machine learning algorithms that process multi-
modal data from the digital twin in real-time (e.qg., equip-
ment telemetry, personnel biometrics) and identify hid-
den, non-linear correlations that form potential threats.
This approach enables the Al agent to react to symptoms
and predict their occurrence, thereby identifying vulner-
abilities in complex interactions among technical sys-
tems, human factors, and external conditions.

The developed methodology for building an Al
agent for occupational health and safety management

systems in Kazakhstan’s civil aviation stands out from
similar approaches due to its focus on the practical im-
plementation of predictive risk analytics based on robust
machine learning models. Unlike conceptual architec-
tures or systems that require highly specialised environ-
ments, the proposed approach focuses on creating a func-
tional tool that can be directly integrated into an airline’s
real operational processes.

The key difference is the modular and scalable soft-
ware implementation written in Python using proven and
widely used libraries, such as scikit-learn, XGBoost, pan-
das, matplotlib, and seaborn. This ensures that the solu-
tion has a high degree of reproducibility, modifiability,
and compatibility with existing data centres and IT infra-
structures. While many scientific developments of Al
agents [44] rely on specific or proprietary frameworks,
our proposed methodology emphasises open and flexible
tools, simplifying implementation and subsequent sup-
port in a real production environment.

Building an Al agent involves successive stages of
the machine learning lifecycle, from raw data loading and
preprocessing to training, evaluating model performance,
and visualising the results. This ensures the transparency
and controllability of each stage of agent intelligence for-
mation, which is critical for a field with high-reliability
requirements, such as civil aviation. In contrast to deep
learning “black boxes” [45], where interpreting decisions
can be difficult, this approach utilises models from scikit-
learn. XGBoost allows various Explainable Al (XAl)
methods to be applied, enabling the understanding of fac-
tors influencing risk assessment, which increases user
trust and facilitates informed management decisions in
labour protection.

In addition, the developed Al agent is not limited to
a single forecasting model [46] but utilises an ensemble
of different classification algorithms, including
XGBoost, Random Forest Classifier, and Logistic Re-
gression. This multi-model approach increases the ro-
bustness and reliability of risk forecasts by compensating
for the potential shortcomings of individual algorithms
and considering different aspects of the data. For exam-
ple, Logistic Regression can provide more interpretable
linear dependencies. Simultaneously, XGBoost and Ran-
dom Forest can identify complex, nonlinear patterns and
feature interactions, which are critical for comprehensive
risk assessment in a complex occupational health and
safety system. The ability to compare the performance of
these models allows the most effective one to be selected
for a particular dataset or even to use a combination of
them (bagging/boosting) to improve accuracy.

The introduction of analysis elements such as fea-
ture importance visualisation (for Random Forest and
XGBoost) and the construction of confusion matrices, as
well as probability density plots of predicted classes, dis-
tinguishes this method from many deep learning “black
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boxes,” particularly [47]. In the highly regulated and re-
sponsible field of civil aviation, obtaining a forecast and
understanding the factors on which it is based are crucial.
Feature importance analysis enables occupational safety
system professionals to identify key risk determinants
(e.g., specific types of work, environmental conditions,
and personnel qualifications), allowing them to develop
targeted and justified preventive measures [48]. Confu-
sion matrices, in turn, help estimate specific types of clas-
sification errors (false positives and false negatives),
which is critical for calibrating the decision threshold
based on the error cost.

Thus, the developed methodology, embodied in the
presented program code, does not simply offer a theoret-
ical concept of an Al agent but provides a practical, trans-
parent, and scalable tool for predictive analytics of occu-
pational safety risks, which can become a key element in
the formation of a proactive safety culture in civil avia-
tion.

5. Conclusions

In the course of the conducted study of the digital
transformation of the occupational safety management
system in the civil aviation of the Republic of Kazakh-
stan, a general positive trend towards a decrease in inci-
dents was established, including periods without fatal in-
cidents, which indicates significant achievements in the
formation of a safety culture and the effectiveness of the
applied preventive measures. Nevertheless, the identified
oscillations in statistical series and the episodic growth of
some indicators emphasise the need to introduce more
advanced, proactive, and adaptive risk management
mechanisms to ensure the industry’s sustainable develop-
ment in an increasingly complex operating environment.

In response to the aforementioned challenges, this
study developed and scientifically substantiated an orig-
inal methodology for constructing an Al agent that oper-
ates in symbiosis with a digital twin system during in-
traoperative procedures. The proposed agent architec-
ture, which is embodied in software code that uses high-
performance machine learning libraries (such as scikit-
learn, XGBoost, and pandas), marks a paradigmatic shift
towards predictive occupational safety management. The
developed methodology’s key distinguishing features are
its exceptional practical applicability and a high degree
of readiness for operational implementation. This is
achieved through a modular software architecture and re-
liance on widely tested, open-source software, which
guarantees unprecedented scalability, configuration flex-
ibility, and seamless integration with existing aviation in-
formation and management systems.

Thus, the scientific novelty of the study lies in the
substantiation and development of an innovative multi-
modal approach to the digital transformation of the

occupational safety management system in civil aviation,
based on the synergistic integration of an Al agent with
digital twins for the analysis of complex data and the pro-
active prevention of occupational risks.

A multimodal approach to predictive risk analytics,
based on an ensemble combination of various classifica-
tion algorithms, ensures enhanced forecast realism and
accuracy. This approach enables the effective identifica-
tion of complex, nonlinear relationships and hidden pat-
terns in digital twins’ multimodal data, which are often
inaccessible to traditional expert systems or univariate
statistical models. Special attention is given in the devel-
oped methodology to ensure the interpretability and ex-
plainability of the Al agent’s decisions. This is achieved
through the application of feature importance analysis
and detailed representations of error matrices, which is
critical for fostering trust among end-users, occupational
safety specialists and managerial staff, providing not only
highly accurate recommendations but also a deep under-
standing of their logical justification. This is a fundamen-
tal requirement for making informed and effective man-
agement decisions in the highly responsible and strictly
regulated civil aviation industry.

Thus, the results of this study convincingly support
the hypothesis that the strategic symbiosis of digital twins
and the developed Al agent possesses transformative po-
tential capable of radically changing the paradigm of oc-
cupational safety management. This integrative system
enables a transition from traditional reactive incident
management to proactive risk modelling, timely identifi-
cation, and mitigation of potential threats, thereby estab-
lishing a fundamentally new, intelligent, preventive, and
adaptive safety culture. The outcome of implementing
this system will be a significant improvement in opera-
tional reliability, optimisation of economic performance,
and strengthening of the Republic of Kazakhstan’s global
aviation competitiveness.

Further scientific research will focus on developing
an Al agent for occupational safety management admin-
istration in Kazakhstan’s civil aviation sector.

Contribution of authors: conceptualisation, meth-
odology — Kayrat Koshekov, Baurzhan Bakirov; for-
mulation of tasks, analysis — Nataliia Levchenko; devel-
opment of model, software, verification — Kayrat Ko-
shekov, Abay Koshekov, Baurzhan Bakirov; analysis
of results - Natalia Levchenko, Kazbek Aldamzharov;
visualisation — Abay Koshekov, Rustam Togambayev;
writing — original draft preparation — Kayrat Koshekov,
Baurzhan Bakirov; writing — review and editing — Kay-
rat Koshekov, Abay Koshekov.
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no. AP19680080 «Development of a training complex
with a system of engineering support for the technical op-
eration of military and special aviation transport equip-
menty.

The overwhelming majority of training programs
for aviation devices, systems, and units currently used in
the Republic of Kazakhstan are outdated. Ordering train-
ing stands that meet modern requirements is as expensive
as a real aircraft unit, instrument, or system. Using three-
dimensional models and virtual reality technologies will
enable the creation of virtual training benches that meet
modern requirements for training aviation technical per-
sonnel, replicating them with minimal costs, solely using
virtual reality equipment.

According to the conducted analyses, the most ap-
propriate software life cycle model was chosen. It was an
iterative incremental model of creating a training appli-
cation for full-time, part-time, and distance education
students on the aviation module “Aerodynamics, Design,
and Systems.” This model is considered the fundamental
basis of modern software development approaches. A
certain duality characterises the model:

- this model is considered iterative from the per-
spective of the application life cycle because it implies
repeated repetition of the same stages;

- from the point of view of application development
(adding proper functionality to it), the model is consid-
ered incremental.

The relevance and importance of the proposed sci-
entific solutions provides a significant economic effect
because it is 100% safe for students, replaces training in
practice, no airport pass is required, no risk of possible
damage to the aircraft or injuries during training, organi-
sation of practices with an unlimited number and without
significant costs, taking into account expensive resources
and time, the possibility of stopping the simulation to dis-
cuss the problem with the trainee, simulation of any
weather conditions and surface conditions, simulation of
risky situations. In the context of online learning imple-
mentation, organising virtual internships, practical, and
laboratory classes to ensure the practical competencies of
future specialists becomes a significant project.

Due to the importance of the project for the aviation
of Kazakhstan, the project aimed to develop, test, and im-
plement the technology of designing digital simulators
with engineering support system for the technical opera-
tion of military and special aviation transport equipment
based on 3D-modelling and virtual reality to ensure high-
quality theoretical and practical training following the re-
quirements of international standards and recommended
practices of ICAO, EASA, and IATA.

Several scientific and practical tasks were solved to
achieve the set goal. First, design technologies were de-
veloped based on methods and algorithms for transform-

ing design documentation into the likeness of real ob-
jects. Databases of 3D models of photorealistic quality
instrument panels and control elements for military and
special aviation transport equipment, along with their
textures, have been created. Structuring and storing files
according to the criteria of optimising the speed of access
to information for further design of digital simulators.
This project was executed by Kayrat KOSHEKOV,
Abay KOSHEKOV and Baurzhan BAKIROV.

Second, a hardware-software complex of digital
simulators for the maintenance and operation of military
and special aviation transport equipment was designed:
an anti-blanketing machine, slurry machine, ambulatory
lift, autotrap, container transloader, belt transloader, bag-
gage tractor, driver tractor, driverless tractor, and ar-
moured vehicles. The project’s executors are Rustam
TOGAMBAYEV, Abay KOSHEKOV and Baurzhan
BAKIROV.

Third, a simulator complex with an engineering
support system was developed for the technical operation
of military and special aircraft transport equipment. Cre-
ated client-server logic for the application, allowing the
control of several connected clients from one server.
Rustam TOGAMBAYEV, Kazbek
ALDAMZHAROQV and Natalilia LEVCHENKO are
the executors in this area.

Fourth, a Commercialisation Centre was estab-
lished by organising training and issuing certificates and
a licence to operate special equipment at the aerodrome,
according to the requirements of international standards
and recommended practices of ICAO, EASA and IATA.
Kayrat KOSHEKOV, Nataliia LEVCHENKO and
Abay KOSHEKOV were involved in developing tech-
nical documentation and organisational issues related to
the opening of the Centre.

Fifth, developing an intelligent system to assess
trainees’ practical competencies is an essential project el-
ement. The results of research in this direction are pre-
sented in this article. The executors are Rustam
TOGAMBAYEV, Kayrat KOSHEKOV, Nataliia
LEVCHENKO and Abay KOSHEKOV.

Approbation of the results of experimental research
on the project in the conditions of JSC ‘Almaty Interna-
tional Airport” allows us to assert that the following
problematic issues of the organisation of educational and
production processes are successfully solved: high level
of correspondence of real objects and processes in virtual
training, simultaneous multi-user scenarios for coordi-
nated training of the team, individual responsibility for
the actions performed in the training process, reducing
the influence of the human factor on the training process.
A standard for training personnel in the air transport in-
dustry and an innovative approach based on interactive
training methods are being developed.
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Based on advanced information and communication
technologies, the authors of the project have developed
and implemented at JSC ‘Aircraft Repair Plant No. 405’
a management system, which allows, thanks to the devel-
oped simulators, not only to create interactive scenarios
based on virtual reality technologies to ensure deep im-
mersion in the studied material but also to conduct the
educational process with complete administration and
data analysis. The software is implemented on the Moo-
dle platform, which provides a high level of security and
flexibility to customise the process of publishing training
and studying materials based on the time spent learning
the material to fix correct and incorrect actions. Also ad-
vantageous is the ability to integrate popular services:
Zoom, Google Meet, Big Blue Button, and Google Cal-
endar. Baurzhan BAKIROV and Kazbek
ALDAMZHAROV developed the structure and model
of the management system and educational platform soft-
ware.

In addition, due to the project implementation, a
new concept of methodological support for the mainte-
nance and operation of military and special aviation
transport equipment was proposed, with modelling of
standard and abnormal situations during operation for
practical training. Each type of equipment includes four
types of content: lectures with textual content, video ma-
terials, test control tasks, and simulator-based practical
exercises. Approbation of the methodological support
and software of the educational process management sys-
tem in the conditions of JSC “Aircraft Repair Plant No.
405” showed many advantages for application: high
speed of loading of educational material when using the
web version is much higher, guaranteed correct display
of content, fast and unlimited creation of copies of mate-
rials in the conditions of complex production process.
Rustam TOGAMBAYEV, Baurzhan BAKIROV,
Nataliia LEVCHENKO and Kazbek
ALDAMZHAROV were engaged in experimental re-
search and development of the concept and implementa-
tion of methodological support.

The project is significant at the international level
in the modernisation of education and development of in-
formation and telecommunication technologies, aircraft
engineering, intellectual technologies, digital signal and
image processing.

This project’s implementation contributes to the de-
velopment of innovative directions in aviation science,
such as the application of artificial intelligence in
knowledge assessment and the use of technical vision,
machine learning, Deep Learning, Data Science and Big
Data.
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IIA®POBA TPAHC®OPMAIIISI CACTEMHU YITPABJITHHS OXOPOHOXO ITPAIII
B IMBLJILHINM ABIAIII IIJISIXOM CUHEPTETUYHOI IHTEI PALITT
TEXHO.JIOI'TI IIM®POBUX IBOMHUKIB TA III-ATEHTIB

b. M. bakupos, K. T. Kowexkos, A. K. Kowmekos, H. M. JIesuenxo,
K. b. Anoamocapos, P. K. Tocambace

IIpenmeTom mocaimkenHs € nuppora TpaHchopMarlisi CHCTEMH YIIPABIIIHHSI OXOPOHOKO Mpalli B IIUBUIBHIH aBi-
amii. CTpiMKe HapoIIyBaHHs OOCATIB BaHTa)O- Ta MAacaXMPOroToky B PecryOmini Kazaxcran, 3ymoBieHe yHiKaib-
HHM TeOMOTiTHYHUM TMOI0KEHHAM KpaiHu B LeHTpi €Bpasii, OB's3aHe 31 3pOCTAIOYNME PU3UKAMHE JJIs TIPAI[i BHUKIB,
10 POOUTH TEPErIsT ICHYIOUMX CUCTEM VIIPABIIHHSA OXOPOHOIO Mpalli KpUTHYHO HeoOXimqHuM. TpaauiifiHi miaxoam
LIOJI0 YIIPABJIiHHS OXOPOHOIO Mpalli, YaCTO Opi€HTOBaHI Ha PEaKTHBHE YCYHEHHsS HACHiJIKiB, IEMOHCTPYIOTH CBOIO
HEJIOCTaTHIO e(DEKTUBHICTh B YMOBaX ITHHAMIYHOTO PO3BUTKY BUCOKOTEXHOJIOTIYHOI ray3i, 16 KOXKEH iHIMACHT Tsl-
THE 3a cO0O0 CEepilo3HI SKOHOMIYHI, PemyTalliifHi Ta CoIliayibHi HacHiaku. [liABUIUTH piBeHh BUPOOHUYOI OE3MEKH
MOXIIUBO 32 YMOBH 3aCTOCYBaHHS IEPEIOBUX LU(PPOBUX TEXHONIOTIH, 30KpeMa, TEXHOJIOT1H H(POBHUX JABIWHHKIB 1
[II-areHTiB, 3MATHUX 3aBISIKK CAMOHABYAHHIO, O€3TePEPBHO aKyMYITFOBATH, 0OpOOJISITH 1 MepeaBaTh BETHUYE3HI Ma-
CHBU JJAHUX B PEaJIbHOMY 4aci, CTBOPIOIOYH KOMIUIEKCHY KapTUHY (DYHKIIOHYBaHHS BCi€i CUCTEMH YIpaBIiHHSA 0XO-
POHOIO Tpalli aBiamignpueMcTBa. MeToro 10CIilzKeHHs € O0TPYHTYBaHHA JOLIIBHOCTI MoauGikanii cCHCTEMH YIIpaB-
JIHHSI OXOPOHOIO TIpalli B IMBLUIBHIN aBiawii PecriyOniku Kazaxcran 3aBIsiku CHHEPreTUYHOI iHTerpallii TeXHOIOTii
dpoBux ABiiHUKIB Ta I1I-arenTiB y kito4oBi GyHkIioHaNBHI poliecy. Pe3yabTaTn. KiirouoBuM BHECKOM 1aHOTO
JIOCTTi[UKEHHS € 3aIlPOTMIOHOBAHM anroput™ po3pobiieroro III-arenTa, CIpoOeKTOBAHOTO CHEIiadbHO s iHTerparil
B CHCTEMY YIIPaBJIiHHS OXOpPOHOI mpall aBianmignpuemcts Kazaxcrany. [letanbHO onmucyeTbesi HOro apxiTekTypa,
NPUHIMIN (YHKIIIOHYBaHHS Ta aJlTOPUTMH B3a€MOJIIT 3 BETMKUMU JTAHUMH, 110 HAJIXOIATh BiJ U(POBUX JIBIHHUKIB
PI3HUX €JIEMEHTIB aBialiiHOT CHCTEMH: BiJl CTaHy MOBITPSHHUX CYJEH 1 Ha3eMHOro 00JIaIHAHHS 10 CUX0Qi3ionoriu-
HUX [TOKa3HUKIB IEPCOHAIY Ta 0COOIUBOCTElN poboyoro cepenopuina. Leit anropurm nossosse 11-arenTy He TiTbKU
BUSIBJISATH aHOMAJIIT, aJie i OyayBaTH NPEIUKTUBHI MOJIENi, 3aBYaCHO CUTHAII3YIOUH PO MOTEHIIiHHI 3arpo3u. Bizya-
JII30BaHO pe3yabTaTH mnpoBeaeHoro llI-areHTomM po3paxyHKy pH3HKIB Y CHCTEMi OXOPOHH Mpal NpaliiBHUKIB IHBi-
JIBHOT aBiallii, 1110 IEMOHCTPYIOTh HOro BUCOKY €(DEKTUBHICTh y BUSIBIICHHI BPA3JIMBOCTEH, IPOrHO3YBAHHI KPUTHYHHUX
curyaliil i popMyBaHHI OOIPYHTOBAHHMX, IIEPCOHANII30BAHUX PEKOMEHAAIIi 111010 iX 3amobiranHs. Pe3ynbraTtu moc-
JIJDKEHB CB1IYaTh, SIK IPOAKTUBHUI MOHITOPHHT 1 aHai3, 10 BUKOHYeThCs [111-arenToM Ha 0CHOBI AaHuX 1(POBOro
JBIffHUKA, MOX€ ICTOTHO 3HU3UTU HMOBIPHICTh CUTYalliii, TOB'SI3aHUX 3 TPABMAaTH3MOM Ta MPOQECiitHUMH 3aXBOPIO-
BaHHSAMHU. BHCHOBKH. 3ampornoHoBaHuil miaxia 1o Moaudikaiii cucTreMu yIpaBiIiHHS OXOPOHOIO Tpalli Ha MiJnpu-
€MCTBaX LUBIIBHOI aBiallii 0a3yeThCs HA CHHEpreTHYHil iHTerpaiii mudpoux aBiiHuUKIB 1 [1II-areHTis, npu sikomy
YIPaBIIiHHSA PU3UKaMU IEPEXOAUTH BiJl PEAKTUBHOTO YCYHEHHS JI0 MOINEPeIKYBaJbHOIO MOJIEIIOBAHHS Ta HiBENIO-
BaHHS MOTEHILIHHUX 3arpo3. CTBOPEHHS! CUCTEMH YIpaBIIiHHSI OXOPOHOIO TIpalli Ha aBiaIiANpUEMCTBAX KpaiHu, 3a-
cHoBaHoi Ha 3actocyBanHi [[/] i lIII-arenra, cyTT€BO MiABHIIMTH KOHKYPEHTOCIIPOMOXKHICTh HUBLIBHOI aBiarii Pec-
nyomiku Kazaxcran Ha CBITOBOMY PUHKY, MO3HIIIOHYIOUH 11 SIK JIiZiepa B 3aCTOCYBaHHI BUCOKOTEXHOJIOTIYHUX PillIeHb
JUTs 3a0e3nedeH s Oe3MeKH Ipalli Ta CTaJloro PO3BUTKY.
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