The influence of a magnetic field on the electrical parameters of QFS-graphene Hall sensors

Роман Васильович Біляк, Наталія Степанівна Лях-Кагуй

Abstract


In this work, a comprehensive study of the field and magnetoresistive properties of Hall sensors based on quasi-free-standing (QFS) graphene was conducted to assess their stability and performance in strong magnetic fields. Graphene-based Hall sensors attract significant attention due to the unique electronic properties of the material, including high carrier mobility, two-dimensional structure, and quantum nature of conductivity, which enable record-high sensitivity and magnetoresistance. Special attention was given to QFS graphene, which is characterized by low defect density and minimal magnetoresistive effects, making it promising for the development of high-precision Hall sensors. For the experimental investigations, the Hall sensors were fabricated as thin-film structures with a uniform layer of QFS graphene. Measurements were carried out using a specialized setup with an electromagnet capable of generating a controlled magnetic field up to ±0.5 T, and precise signal registration was ensured by highly sensitive nanovoltmeters. The samples were rotated in the magnetic field in 5° increments to study the angular dependence of resistance and the Hall signal, and the results were normalized according to the theoretical functions cosθ and cos²θ to evaluate conformity with classical magnetoresistive behavior. The results showed that the Hall signal of QFS-graphene Hall sensors exhibits a clearly linear dependence on the magnetic field with high approximation accuracy (average error ≈ 0.09 %), indicating material homogeneity and stable electronic transport. The parasitic offset signal was found to depend on the magnetic field and exhibited primarily quadratic behavior, suggesting a magnetoresistive origin. This dependence is explained by the influence of magnetoresistive mechanisms on the resistive nature of the offset signal, particularly through geometric asymmetries, conductivity inhomogeneities, and contact resistances, which alter the current distribution in the sample under an external field. Analysis of the angular dependence of sheet resistance showed that, for most samples, the magnetoresistive effect did not follow the classical quadratic cos²θ dependence, while some sensors exhibited a harmonic, cosinusoidal dependence in good agreement with the theoretical cosθ function, corresponding to the orbital mechanism of magnetoresistance in graphene. For some samples, a negative magnetoresistive effect was observed, correlating with -cosθ, which aligns with literature data on the influence of defects and carrier localization on the sign of magnetoresistance. Additional factors, such as the simultaneous presence of electron and hole conduction and the influence of local electron and hole regions, may compensate contributions from different carriers, weakening the manifestation of magnetoresistance at low magnetic fields. The obtained results demonstrate that QFS-graphene Hall sensors combine high sensitivity, linear response, and minimal magnetoresistive effects, making them promising for applications in high-field measurement systems, magnetic diagnostics, and thermonuclear reactor control systems. This study allows for refinement of the design principles for Hall sensors in extreme magnetic field conditions, considering the influence of structural disorder and orbital effects on electronic transport in graphene.

Keywords


Hall sensors, graphene, magnetoresistance, magnetic fields, sheet resistance, spinning current method

References


Novoselov K. S. Electric Field Effect in Atomically Thin Carbon Films / K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov // Science. – 2004. – Vol. 306, № 5696. – P. 666–669.

Castro Neto A. H. The electronic properties of graphene / A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim // Rev. Mod. Phys. – 2009. – Vol. 81, № 1. – P. 109–162.

Wu X. Weak Antilocalization in Epitaxial Graphene: Evidence for Chiral Electrons / X. Wu, X. Li, Z. Song, C. Berger, W. A. De Heer // Phys. Rev. Lett. – 2007. – Vol. 98, № 13. – P. 136801–136805.

Tzalenchuk A. Towards a quantum resistance standard based on epitaxial graphene / A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syväjärvi, R. Yakimova, O. Kazakova, T. J. B. M. Janssen, V. Fal'ko, S. Kubatkin // Nature Nanotech. – 2010. – Vol. 5, № 3. – P. 186–189.

Xin N. Giant magnetoresistance of Dirac plasma in high-mobility graphene / N. Xin, J. Lourembam, P. Kumaravadivel, A. E. Kazantsev, Z. Wu, C. Mullan, J. Barrier, A. A. Geim, I. V. Grigorieva, A. Mishchenko, A. Principi, V. I. Fal'ko, L. A. Ponomarenko, A. K. Geim, A. I. Berdyugin // Nature. – 2023. – Vol. 616, № 7956. – P. 270–274. https://doi.org/10.48550/arXiv.2302.06863.

Zhou B. Extraordinary magnetoresistance in high-quality graphene devices with daisy chains and Fermi-level pinning / B. Zhou, K. Watanabe, T. Taniguchi // Phys. Rev. Applied. – 2024. – Vol. 22, № 6. DOI: 10.1103/PhysRevApplied.22.064046.

Lukose R. Hybrid graphene-manganite thin film structure for magnetoresistive sensor application / R. Lukose, N. Žurauskienė, S. Balevicius, V. Stankevic, S. Keršulis, V. Plausinaitiene, R. Navickas // Nanotechnology. – 2019. – Vol. 30, № 35. https://doi.org/10.1088/1361-6528/ab201d.

Klitzing K. V. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance / K. V. Klitzing, G. Dorda, M. Pepper // Phys. Rev. Lett. – 1980. – Vol. 45, № 6. – P. 494–497.

Tsui D. C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit / D. C. Tsui, H. L. Stormer, A. C. Gossard // Phys. Rev. Lett. – 1982. – Vol. 48, № 22. – P. 1559–1562. https://doi.org/10.1103/PhysRevLett.48.1559.

Baibich M. N. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices / M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas // Phys. Rev. Lett. – 1988. – Vol. 61, № 21. – P. 2472–2475.

Binasch G. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange / G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn // Phys. Rev. B. – 1989. – Vol. 39, № 7. – P. 4828–4830.

Xu W. High sensitivity magnetic field sensing via a sandwich-type polydimethylsiloxane resonator / W. Xu, J. Rong, E. Xing, J. Li, T. Jia, J. Yue, D. Wang, J. Tang, J. Liu // Opt. Eng. – 2023. – Vol. 62, № 5. P. 12244.

Biel W. Development of a concept and basis for the DEMO diagnostic and control system / W. Biel, M. Ariola, I. Bolshakova, K. J. Brunner, M. Cecconello, I. Duran, Th. Franke, L. Giacomelli, L. Giannone, F. Janky, A. Krimmer, R. Luis, A. Malaquias, G. Marchiori, O. Marchuk, D. Mazon, A. Pironti, A. Quercia, N. Rispoli, S. E. Shawish, M. Siccinio, A. Silva, C. Sozzi, G. Tartaglione, T. Todd, W. Treutterer, H. Zohm // Fusion Engineering and Designed. – 2022. – Vol. 179. – P. 113122.

Strikha M. V. Physics Of Graphene: Status And Perspectives / M. V. Strikha // Sensor Electronics and Microsystem Technologies. – 2010. – Vol. 7, № 3. – P. 5 13.

Ciuk T. High-Temperature Thermal Stability of a Graphene Hall Effect Sensor on Defect-Engineered 4H-SiC(0001) / T. Ciuk, C. Nouvellon, F. Monteverde, B. Stańczyk, K. Przyborowska, D. Czołak, S. El-Ahmar // IEEE Electron Device Lett. – 2024. – Vol. 45, № 10. – P. 1957–1960. DOI: 10.1109/LED.2024.3436050.

Dauber J. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride / J. Dauber, A. A. Sagade, M. Oellers, K. Watanabe, T. Taniguchi, D. Neumaier, C. Stampfer // Applied Physics Letters. – 2015. – Vol. 106, no. 19. – P. 193501. https://doi.org/10.1063/1.4919897.

Shuryhin F. Investigation of graphene-metal contacts in Hall sensors based on QFS graphene / F. Shuryhin, R. Biliak, N. Liakh-Kaguy, Y. Kost, S. Sukhorebryi, T. Ciuk, S. El-Ahmar // Molecular Crystals and Liquid Crystals. – 2025. – P. 1–9.

Shuryhin F. M. Temperature Dependence of the Graphene Hall Sensor for Special Applications / F. M. Shuryhin, R. V. Biliak, N. S. Liakh-Kaguy, Y. Y. Kost, S. P. Sukhorebryi, T. Ciuk, S. El-Ahmar // Visnyk NTUU KPI. Seriia Radiotekhnika Radioaparatobuduvannia. – 2025. – Vol. 100. – С. 59–66.

Munter P. J. A. A low-offset spinning-current hall plate / P. J. A. Munter // Sensors and Actuators A: Physical. – 1990. – Т. 22, № 1–3. – P. 743–746.

Hu J. Room‐Temperature Colossal Magnetoresistance in Terraced Single‐Layer Graphene / J. Hu, J. Gou, M. Yang, G. J. Omar, J. Tan, S. Zeng, Y. Liu, K. Han, Z. Lim, Z. Huang, A. T. S. Wee, A. Ariando // Advanced Materials. – 2020. – Vol. 32, № 37. – P. 2002201. https://doi.org/10.1002/adma.202002201.

Zhou B. Extraordinary magnetoresistance in encapsulated monolayer graphene devices / B. Zhou, K. Watanabe, T. Taniguchi, E. A. Henriksen // Appl. Phys. Lett. – 2020. – Vol. 116, № 5. – P. 053102. https://doi.org/10.1063/1.5142021.

Chuang C. Linear magnetoresistance in monolayer epitaxial graphene grown on SiC / C. Chuang, Y. Yang, R. E. Elmquist, C.-T. Liang // Materials Lett. – 2016. – Vol. 174. – P. 118–121.

Chuang C. Magnetoresistance of Ultralow-Hole-Density Monolayer Epitaxial Graphene Grown on SiC / C. Chuang, C.-W. Liu, Y. Yang, W.-R. Syong, C. T. Liang, R. Elmquist // Materials. – 2019. – Vol. 12, № 17. – P. 2696.

Sevak Singh R. Addendum: “Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene” [Appl. Phys. Lett. 101, 183105 (2012)] / R. Sevak Singh, X. Wang, W. Chen, Ariando, A. T. S. Wee // Appl. Phys. Lett. – 2013. – Vol. 103, № 4. – P. 049902. DOI: https://doi.org/10.1063/1.4816727.

Han W. Spintronics Handbook: Spin Transport and Magnetism, Second Edition / Wei Han, Ronald Kawakami – Boca Raton : Taylor & Francis, CRC Press, 2019. – 43 p.

Sahoo K. R. Room-temperature ferromagnetic wide bandgap semiconducting fluorinated Graphene-hBN vertical heterostructures / K. R. Sahoo, R. Sharma, S. Bawari, S. Vivek, P. K. Rastogi, S. S. Nair, S. L. Grage, T. N. Narayanan // Materials Today Physics. – 2021. – Vol. 21. – P. 100547. 10.1016/j.mtphys.2021.100547

Wang Z. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect / Z. Wang, C. Tang, R. Sachs, Y. Barlas, J. Shi // Phys. Rev. Lett. – 2015. – Vol. 114, № 1. – С. 016603.

Huang S. Giant magnetoresistance induced by spin-dependent orbital coupling in Fe3GeTe2/graphene heterostructures / S. Huang, L. Zhu, Y. Zhao, K. Watanabe, T. Taniguchi, J. Xiao, L. Wang, J. Mei, H. Huang, F. Zhang, M. Wang, D. Fu, R. Zhang // Nat Commun. – 2025. – Vol. 16, № 1. – P. 2866.

Žurauskienė N. Hybrid manganite-graphene sensor for magnetic field magnitude and direction measurement / N. Žurauskienė, V. Stankevič, S. Keršulis, V. Vertelis, M. Koliada, V. Rudokas, M. Skapas, M. Vagner, V. Plaušinaitienė, A. Guobienė, Š. Meškinis // Sci Rep. – 2025. – Vol. 15, № 1. – P. 9100.

Zhou Y.-B. From positive to negative magnetoresistance in graphene with increasing disorder / Y.-B. Zhou, B.-H. Han, Z.-M. Liao, H.-C. Wu, D.-P. Yu // Appl. Phys. Lett. – 2011. – Vol. 98, № 22. – P. 222502.

Iwasaki T. Room-temperature negative magnetoresistance of helium-ion-irradiated defective graphene in the strong Anderson localization regime / T. Iwasaki, S. Nakamura, O. G. Agbonlahor, M. Muruganathan, M. Akabori, Y. Morita, S. Moriyama, S. Ogawa, Y. Wakayama, H. Mizuta, S. Nakaharai // Carbon. – 2021. – Vol. 175. – P. 87–92.

Martin J. Observation of electron–hole puddles in graphene using a scanning single-electron transistor / J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, A. Yacoby // Nature Phys. – 2008. – Vol. 4, № 2. – P. 144–148.


Refbacks

  • There are currently no refbacks.