Development of a Data Fusion method using Extended Kalman Filter for Collaborative Robots
Abstract
Keywords
Full Text:
PDFReferences
Nevliudov, I., Yevsieiev, V., Maksymova, S., Gopejenko, V., & Kosenko, V. (2025). Development of mathematical support for adaptive control for the intelligent gripper of the collaborative robot manipulator. Advanced Information Systems, 9(3), 57-65. https://doi.org/10.20998/2522-9052.2025.3.07.
Chouridis, I., Mansour, G., Papageorgiou, V., Mansour, M. T., & Tsagaris, A. (2025). Four-Dimensional Path Planning Methodology for Collaborative Robots Application in Industry 5.0. Robotics, 14(4), 48. https://doi.org/10.3390/robotics14040048.
Xia, G., Ghrairi, Z., Heuermann, A., & Thoben, K. D. (2025). Enhancing sustainability of human-robot collaboration in industry 5.0: Context-and interaction-aware human motion prediction for proactive robot control. Journal of Manufacturing Systems, 82, 376-388. https://doi.org/10.1016/j.jmsy.2025.06.022.
Cohen, Y., Biton, A., & Shoval, S. (2025). Fusion of Computer Vision and AI in Collaborative Robotics: A Review and Future Prospects. Applied Sciences, 15(14), 7905. https://doi.org/10.3390/app15147905.
Masalskyi, V., Dzedzickis, A., Korobiichuk, I., & Bučinskas, V. (2025). Hybrid mode sensor fusion for accurate robot positioning. Sensors, 25(10), 3008. https://doi.org/10.3390/s25103008.
Yevsieiev, V., Maksymova, S., Gurin, D., & Alkhalaileh, A. (2024). Data Fusion Research for Collaborative Robots-Manipulators within Industry 5.0. ACUMEN: International journal of multidisciplinary research, 1(4), 125-137. Retrieved from https://inlibrary.uz/index.php/aijmr/article/view/63482.
Yevsieiv V. Using the Dempster-Shafer theory in Data Fusion solutions for collaborative robotic manipulators within Industry 5.0 / V. Yevsieiv // Manufacturing & Mechatronic Systems 2024 : Proceedings of VIII st International Conference, October 25-26, 2024. - Kharkiv, 2024. - P. 99-101. https://openarchive.nure.ua/handle/document/28949.
Chen, W., Jing, Y., Zhao, S., Yan, L., Liu, Q., & He, Z. (2025). A Distributed Collaborative Navigation Strategy Based on Adaptive Extended Kalman Filter Integrated Positioning and Model Predictive Control for Global Navigation Satellite System/Inertial Navigation System Dual-Robot. Remote Sensing, 17(4), 721. https://doi.org/10.3390/rs17040721.
Keshvarparast, A., Battini, D., Battaia, O., & Pirayesh, A. (2024). Collaborative robots in manufacturing and assembly systems: literature review and future research agenda. Journal of Intelligent Manufacturing, 35(5), 2065-2118. https://doi.org/10.1007/s10845-023-02137-w.
Rahman, M. M., Khatun, F., Jahan, I., Devnath, R., & Bhuiyan, M. A. A. (2024). Cobotics: the evolving roles and prospects of next‐generation collaborative robots in Industry 5.0. Journal of Robotics, 2024(1), 2918089. https://doi.org/10.1155/2024/2918089.
Guerra-Zubiaga, D. A., Aksu, M., Richards, G., & Kuts, V. (2025). Integrating Digital Twin Software Solutions with Collaborative Industrial Systems: A Comprehensive Review for Operational Efficiency. Applied Sciences, 15(13), 7049. https://doi.org/10.3390/app15137049.
Urrea, C., & Kern, J. (2025). Recent Advances and Challenges in Industrial Robotics: A Systematic Review of Technological Trends and Emerging Applications. Processes, 13(3), 832. https://doi.org/10.3390/pr13030832.
Soudani, M. L., Nissabouri, S., Ech-Chhibat, M. E. H., Haidoury, M., & Elhirch, I. (2025, May). Industrial Robots and Collaborative Robots: A Comparative Study. In 2025 5th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-10). IEEE. https://doi.org/10.1109/IRASET64571.2025.11008132.
Attar, H., Abu-Jassar, A. T., Yevsieiev, V., Lyashenko, V., Nevliudov, I., & Luhach, A. K. (2022). Zoomorphic mobile robot development for vertical movement based on the geometrical family caterpillar. Computational intelligence and neuroscience, 2022(1), 3046116. https://doi.org/10.1155/2022/3046116.
Nevlyudov, I. Sh., Yevsyeyev, V. V., & Gurin, D. V. (2025). Model development of dynamic representation a model description parameters for the environment of a collaborative robot manipulator within the industry 5.0 framework. Sistemi upravlinnya, navigaciyi ta zv’yazku. Zbirnik naukovih prac, 1(79), 42-48. https://doi.org/10.26906/SUNZ.2025.1.42-48
Chen, B., Tong, X., Wan, J., Wang, L., Duan, X., Wang, Z., & Xia, X. (2025). Knowledge sharing-enabled low-code program for collaborative robots in mix-model assembly. Journal of Industrial Information Integration, 45, 100824. https://doi.org/10.1016/j.jii.2025.100824.
Liu, C., Wang, T., Li, Z., Li, S., & Tian, P. (2025). A Novel Loosely Coupled Collaborative Localization Method Utilizing Integrated IMU-Aided Cameras for Multiple Autonomous Robots. Sensors, 25(10), 3086. https://doi.org/10.3390/s25103086.
Joon, A., Kowalczyk, W., & Herman, P. (2025). Control of Multiple Mobile Robots Based on Data Fusion from Proprioceptive and Actuated Exteroceptive Onboard Sensors. Electronics, 14(4), 776. https://doi.org/10.3390/electronics14040776.
Nevliudov I. Features of Using Data Fusion With Extended Kalman Filter in Industry 5.0 Concepts / I. Nevliudov, V. Yevsieiev, Elgun Jabrayilzade // International Scientific Conference “Intellectual Resource of Today: Scientific Tasks, Development and Questions”, collection of scientific papers with materials of the V International Scientific Conference, August 29, 2025. — Vinnytsia : LLC “UKRLOGOS Group, 2025. — P. 195-199. - DOI : https://doi.org/10.62731/mcnd-29.08.2025.
Yevsieiev V. Using Multi-Agent Systems in the Management of Collaborative Robots / V. Yevsieiev // Computer-integrated technologies, automation and robotics 2025 : Thesises of Reports of II st All-Ukrainian Conference, May 16-17, 2025. - Kharkiv, 2025. - P. 13-17. https://openarchive.nure.ua/handle/document/30230.
Hesar, H. D., & Hesar, A. D. (2025). Adaptive dual augmented extended Kalman filtering of ECG signals. Measurement, 239, 115457. https://doi.org/10.1016/j.measurement.2024.115457.
Youm, D., Oh, H., Choi, S., Kim, H., Jeon, S., & Hwangbo, J. (2025, May). Legged robot state estimation with invariant extended kalman filter using neural measurement network. In 2025 IEEE International Conference on Robotics and Automation (ICRA) (pp. 670-676). IEEE. https://doi.org/10.1109/ICRA55743.2025.11127971.
Hasan, H. S., Kamil, F., & Khudhair, M. R. (2025). Optimization of improved extended Kalman filter for mobile robot Navigation. environment, 15(19), 20. https://doi.org/10.55214/25768484.v9i5.7370.
Sundaram, G., Bose, S., Kandasamy, V. K., & Thandiyappan, B. (2025). Robust and Reliable State Estimation for a Five-Axis Robot Using Adaptive Unscented Kalman Filtering. Engineering Proceedings, 95(1), 1. https://doi.org/10.3390/engproc2025095001.
Meng, W., Wu, T., Yin, H., & Zhang, F. (2025). NuRF: Nudging the Particle Filter in Radiance Fields for Robot Visual Localization. IEEE Transactions on Cognitive and Developmental Systems. https://doi.org/10.1109/TCDS.2025.3553261.
He, P., Zhao, Y., Tan, M., & Liao, B. (2025, February). Path optimization model of manipulator based on dh parameter method and genetic algorithm. In Journal of Physics: Conference Series (Vol. 2964, No. 1, p. 012018). IOP Publishing. https://doi.org/10.1088/1742-6596/2964/1/012018.
Niu, Q., Zhao, J., Liang, L., Xing, J., Li, H., & Wang, Z. (2025). A general framework for the analytical inverse kinematics solution of industrial robots. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 239(12), 4499-4511. https://doi.org/10.1177/09544062251318236.
Gündoğan, N., & Doğan, C. (2025). Inverse Kinematic Analysis of a 5DOF Gantry Type Welding Robot. Türk Doğa ve Fen Dergisi, 14(2), 195-203. https://doi.org/10.46810/tdfd.1633814.
Kadhim, M. N., Al-Shammary, D., Mahdi, A. M., & Ibaida, A. (2025). Feature selection based on Mahalanobis distance for early Parkinson disease classification. Computer Methods and Programs in Biomedicine Update, 7, 100177. https://doi.org/10.1016/j.cmpbup.2025.100177.
Fan, B., Zhang, L., Cai, S., Du, M., Liu, T., Li, Q., & Shull, P. (2025). Influence of Sampling Rate on Wearable IMU Orientation Estimation Accuracy for Human Movement Analysis. Sensors, 25(7), 1976. https://doi.org/10.3390/s25071976.
Mohd Yusoff, Z., Ismail, N., & Ahmad Sabri, N. A. S. (2025). Formulation of K-nearest neighbor model by varying the distance metrics of mahalanobis, correlation and cosine in discriminating different grades of Aquilaria oil. Journal of Essential Oil Bearing Plants, 28(2), 427-440. https://doi.org/10.1080/0972060X.2025.2469677.
Lee, J., & Kang, J. (2025). Extended Kalman Filter-Based Visual Odometry in Dynamic Environments Using Modified 1-Point RANSAC. Biomimetics. https://doi.org/10.3390/biomimetics10100710.
De Leon, E., Riensche, A., Bevans, B. D., Billings, C., Siddique, Z., & Liu, Y. (2025). A Review of Modeling, Simulation, and Process Qualification of Additively Manufactured Metal Components via the Laser Powder Bed Fusion Method. Journal of Manufacturing and Materials Processing, 9(1), 22. https://doi.org/10.3390/jmmp9010022.
Zheng, Y., Yang, H., Jiang, G., Hu, S., Tao, T., & Mei, X. (2025). Data-mechanism fusion modeling and compensation for the spindle thermal error of machining center based on digital twin. Measurement, 250, 117152. https://doi.org/10.1016/j.measurement.2025.117152.
Biswas, B., Mishra, S., & Balamurugan, S. (2025). Data Analytics and Collaborative Robots in Smart Territory: Research Methodology, Applications, and Open Challenges. Intelligent Robots and Cobots: Industry 5.0 Applications, 291-316. https://doi.org/10.1002/9781394198252.ch14.
Shi, S., Peng, Q., Liu, T., Dai, Y., & Meng, J. (2025). Online estimation of inertia-supporting sustaining power boundary of lithium-ion battery energy storage systems based on model-data fusion method. Applied Energy, 393, 126064. https://doi.org/10.1016/j.apenergy.2025.126064.
Refbacks
- There are currently no refbacks.
