GraphSAGE optimization for insurance risk assessment: balancing performance and efficiency
Abstract
Keywords
Full Text:
PDFReferences
Lutsenko, O., & Shcherbak, S. GNN Implementation Approaches in AWS Cloud for Risk Assessment in the Insurance Area. Journal of Lviv Polytechnic National University "Information Systems and Networks", 2024, vol. 16, pp. 251–272. DOI: 10.23939/sisn2024.16.251.
Aslam, U., Tang, H., Wu, G., Marjan, Sh., Hussain, A. Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence. International Journal of Intelligent Systems, 2023, vol. 2023. DOI: 10.1155/2023/8342104.
Hamilton, W. L., Ying, R., & Leskovec, J. Inductive Representation Learning on Large Graphs. 2018, arXiv. DOI: 10.48550/arXiv.1706.02216.
Rawat, S., Rawat, A., Kumar, D., & Sabitha, A. Application of machine learning and data visualization techniques for decision support in the insurance sector. International Journal of Information Management Data Insights, 2021, vol. 1, iss. 2, article no. 100012. DOI: 10.1016/j.jjimei.2021.100012.
Motie, S., & Raahemi, B. Financial fraud detection using graph neural networks: A systematic review. Expert Systems with Applications, 2024, vol. 240, article no. 122156. DOI: 10.1016/j.eswa.2023.122156.
Liu, B., Li I., Yao J., Chen Y., Huang G., & Wang, G. Unveiling the Potential of Graph Neural Networks in SME Credit Risk Assessment. 2024, arXiv. DOI: 10.48550/arXiv.2409.17909.
Naufal, N., Devila, S., & Lestari, D. Generalized linear model (GLM) to determine life insurance premiums, in. Proceedings of the 4th International Symposium on Current Progress in Mathematics and Sciences (ISCPMS2018), Depok, Indonesia, 2019, article no. 020036. DOI: 10.1063/1.5132463.
Zhang, J., Wang, H., & Zhu, M. Build a GNN-based real-time fraud detection solution using Amazon SageMaker, Amazon Neptune, and the Deep Graph Library. AWS Machine Learning Blog. 2022. Available at: https://aws.amazon.com/blogs/machine-learning/build-a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-library/ (accessed 12.10.2024).
Min, S. W., Wu, K., & Huang, S. PyTorch-Direct: Enabling GPU Centric Data Access for Very Large Graph Neural Network Training with Irregular Accesses. 2021, arXiv. DOI: 10.48550/arXiv.2101.07956.
Xie, X., He, W., Zhu, Y., & Xu, H. Performance Evaluation and Analysis of Deep Learning Frameworks, in Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition. AIPR 2022, Xiamen China: ACM, 2022, pp. 38-44. DOI: 10.1145/3573942.3573948.
Azevedo, B., Rocha, A.-M., Pereira, A. Hybrid approaches to optimization and machine learning methods: a systematic literature review, 2024. Machine Learning, vol. 113, pp. 4055—4097. DOI: 10.1007/s10994-023-06467-x.
Chitty-Venkata, K. T., Somani, A. K. Neural Architecture Search Survey: A Hardware Perspective. 2022. ACM Computing Surveys, vol. 55 (4), pp. 1 – 36. DOI: 10.1145/3524500
Zeng, H., Zhang, M., & Xia, Y. Decoupling the Depth and Scope of Graph Neural Networks. 2022, arXiv. DOI: 10.48550/arXiv.2201.07858.
Loukas, A. What graph neural networks cannot learn: depth vs width. 2020, arXiv. DOI: 10.48550/arXiv.1907.03199.
Meng, L., Ye, Z., & Yang Y. DeepMCGCN: Multi-channel Deep Graph Neural Networks, International Journal of Computational Intelligence Systems, 2024, vol. 17, iss. 1, article no. 41. DOI: 10.1007/s44196-024-00432-9.
Arroyo, Á., Gravina, A., & Gutteridge, B. On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning. 2025, arXiv. DOI: 10.48550/arXiv.2502.10818.
Shu, J. Xi, B., Li, Y., & Wu, F. Understanding Dropout for Graph Neural Networks, in Companion Proceedings of the Web Conference 2022. WWW 22: The ACM Web Conference 2022, Virtual Event, Lyon France: ACM, 2022, pp. 1128–1138. DOI: 10.1145/3487553.3524725.
van Laarhoven, Tw. L2 Regularization versus Batch and Weight Normalization. 2017, arXiv. DOI: 10.48550/arXiv.1706.05350.
Liu, H., Fu, Q., & Du, L. Learning Rate Perturbation: A Generic Plugin of Learning Rate Schedule towards Flatter Local Minima. 2022, arXiv. DOI: 10.48550/arXiv.2208.11873.
Afaq, S., & Rao, S. Significance of Epochs on Training a Neural Network. International Journal of Scientific & Technology Research, 2020, vol. 9, pp. 485-488.
Hussein, B. M., & Shareef, S. M. An Empirical Study on the Correlation between Early Stopping Patience and Epochs in Deep Learning. ITM Web of Conferences, 2024, vol. 64, article no. 01003. DOI: 10.1051/itmconf/20246401003.
Zhang, J., He, T., & Sra, S. Why gradient clipping accelerates training: A theoretical justification for adaptivity. 2020, arXiv. DOI: 10.48550/arXiv.1905.11881.
Dickson, M., Bosman, A., & Malan, K. Hybridised loss functions for improved neural network generalization. Pan-African Artificial Intelligence and Smart Systems. 2022, pp. 169-181. DOI: 10.1007/978-3-030-93314-2_11.
Liu, C., Yu, S., & Yu, M. Adaptive Smooth L1 Loss: A Better Way to Regress Scene Texts with Extreme Aspect Ratios. 2021 IEEE Symposium on Computers and Communications (ISCC), 2021, Athens, Greece: IEEE, pp. 1–7. DOI: 10.1109/ISCC53001.2021.9631466.
Hodson, T. O., Over, T. M. & Foks, S. S. Mean Squared Error, Deconstructed. Journal of Advances in Modeling Earth Systems, 2021, vol. 13, iss. 12, article no. e2021MS002681. DOI: 10.1029/2021MS002681.
Qi, J., Du, J., & Siniscalchi, S. M. On Mean Absolute Error for Deep Neural Network Based Vector-to-Vector Regression. IEEE Signal Processing Letters, 2020, vol. 27, pp. 1485–1489. DOI: 10.1109/LSP.2020.3016837.
Terven, J., & Cordova-Esparza, D.-M. A comprehensive survey of loss functions and metrics in deep learning. Artificial Intelligence Review, 2025, vol. 58, iss. 7, article no. 195. DOI: 10.1007/s10462-025-11198-7.
Li, X., Wang, W., Wu, L., & Chen, Sh. Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. 2020, arXiv. DOI: 10.48550/arXiv.2006.04388.
Ferrentino, R. & Vota, L. The Risk in the Insurance Field: A Generalized Analysis. Journal of Mathematical Finance, 2020, vol. 10, iss. 01, pp. 200–221. DOI: 10.4236/jmf.2020.101013.
Yao, K.-L. & Li, W.-J. Asymmetric Learning for Graph Neural Network based Link Prediction, ACM Transactions on Knowledge Discovery from Data, 2024, vol. 18, iss. 5, pp. 1–18. DOI: 10.1145/3640347.
Parashar, S., Olson, B., & Khurana, S. Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights. 2025, arXiv. DOI: 10.48550/arXiv.2502.12521.
Bai, Y., Chen, M., & Zhou, P. How Important is the Train-Validation Split in Meta-Learning? 2021, arXiv. DOI: 10.48550/arXiv.2010.05843.
Wu, J., Sun, J., Sun, H., & Sun, G. Performance Analysis of Graph Neural Network Frameworks, in 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Stony Brook, NY, USA: IEEE, 2021, pp. 118-127. DOI: 10.1109/ISPASS51385.2021.00029.
DOI: https://doi.org/10.32620/reks.2025.3.14
Refbacks
- There are currently no refbacks.
