Using a hybrid attention mechanism as a method to improve the efficiency of network intrusion detection systems
Abstract
Keywords
Full Text:
PDFReferences
Brauwers, G., & Frasincar, F. A general survey on attention mechanisms in deep learning. IEEE Transactions on Knowledge and Data Engineering, 2022, vol. 35, no. 4, pp. 3279-3298. DOI: 10.1109/TKDE.2021.3126456.
Niu, Z., Zhong, G., & Yu, H. A review on the attention mechanism of deep learning. Neurocomputing, 2021, vol. 452, pp. 48–62. DOI: 10.1016/j.neucom.2021.03.091.
Dai, W., Li, X., Ji, W., & He, S. Network Intrusion Detection Method Based on CNN-BiLSTM-Attention Model. IEEE Access, vol. 12, pp. 53099-53111, 2024. DOI: 10.1109/ACCESS.2024.3384528.
Yang, Y., Tu, S., Hashim Ali, R., Alasmary, H., Waqas, M., & Nouman Amjad, M. Intrusion detection based on bidirectional long short-term memory with attention mechanism. Computers, Materials & Continua, 2023, vol. 74, iss. 1, pp.801–815. DOI: 10.32604/cmc.2023.031907.
Wang, J., Chen, N., Yu, J., Jin, Y., & Li, Y. An efficient intrusion detection model combined bidirectional gated recurrent units with attention mechanism. 7th International Conference on Behavioural and Social Computing (BESC), Bournemouth, United Kingdom, 2020, pp. 1-6. DOI: 10.1109/BESC51023.2020.9348310.
Yuan, S., Ren, K., Zhang, C., Shi, Y., & Huang, Z. CANET: A hierarchical CNN-Attention model for network intrusion detection. Computer Communications, 2023, vol. 205, pp 170-181. DOI: 10.1016/j.comcom.2023.04.018.
Liu, X., & Liu, J. Malicious traffic detection combined deep neural network with hierarchical attention mechanism. Scientific Reports, 2021, vol. 11, iss. 1. DOI: 10.1038/s41598-021-91805-z.
Chavan, P., Hanumanthappa, H., Satish, E. G., Sunil, M., Supreeth, S., Rohith, S., & Ramaprasad, H. C. Enhanced Hybrid Intrusion Detection System with Attention Mechanism using Deep Learning. SN COMPUT. SCI., 2024, vol. 5. DOI: 10.1007/s42979-024-02852-y.
Yang, K., Wang, J., & Li, M. An improved intrusion detection method for IIoT using attention mechanisms, BiGRU, and Inception CNN. Sci Rep, 2024, vol. 14, no. 19339. DOI: 10.1038/s41598-024-70094-2.
Alshehri, M. S., Saidani, O., Alrayes, F. S., Abbasi, S. F., & Ahmad, J. A Self-Attention-Based Deep Convolutional Neural Networks for IIoT Networks Intrusion Detection. IEEE Access, 2024, vol. 12, pp. 45762-45772. DOI: 10.1109/ACCESS.2024.3380816.
Gupta, N., Malladi, R., Naganjaneyulu, S., & Balhara, S. Optimized Attention Induced Multi Head Convolutional Neural Network for Intrusion Detection Systems in Vehicular Ad Hoc. IEEE Transactions on Intelligent Transportation Systems, 2025, pp. 1-10. DOI: 10.1109/TITS.2025.3561545.
Nikitenko, A., & Bashkov, Y. Construction of a network intrusion detection system based on a convolutional neural network and a bidirectional gated recurrent unit with attention mechanism. Eastern-European Journal of Enterprise Technologies, 2024, vol. 3, pp.6–15. DOI: 10.15587/1729-4061.2024.305685.
Correia, A. D. S., & Colombini, E. L. Attention, please! A survey of neural attention models in deep learning. arXiv preprint, 2021. DOI: 10.48550/arXiv.2103.16775.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. Attention is all you need. arXiv preprint, 2023. DOI: 10.48550/ariv.1706.03762.
Yang, S., Wu, P., & Guo, H. DualNet: Locate then detect effective payload with deep attention network. arXiv preprint, 2020. DOI: 10.48550/arXiv.2010.12171.
Bahdanau, D., Cho, K., & Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv preprint, 2016. DOI: 10.48550/arXiv.1409.0473.
Luong, M. T., Pham, H., & Manning, C. D. Effective approaches to attention-based neural machine translation. arXiv preprint, 2015. DOI: 10.48550/arXiv.1508.04025.
Britz, D., Goldie, A., Luong, M. T., & Le, Q. Massive exploration of neural machine translation architectures. arXiv preprint, 2017. DOI: 10.48550/arXiv.1703.03906.
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., & Bengio, Y. Show, attend and tell: Neural image caption generation with visual attention. arXiv preprint, 2016. DOI: 10.48550/arXiv.1502.03044.
University of New Brunswick, 2023. NSL-KDD dataset. Available at: https://www.unb.ca/cic/datasets/nsl.html. (accessed 12.10.2024).
UNSW, 2023. The UNSW-NB15 Dataset. Available at: https://research.unsw.edu.au/projects/unsw-nb15-dataset (accessed 12.10.2024).
Cao, B., Li, C., Song, Y., & Fan, X. Network intrusion detection technology based on convolutional neural network and BiGRU. Computational Intelligence and Neuroscience, 2022, vol. 2022. DOI: 10.1155/2022/1942847.
DOI: https://doi.org/10.32620/reks.2025.3.13
Refbacks
- There are currently no refbacks.
