A method for improving the robustness of neural network model for aerial image matching
Abstract
Keywords
Full Text:
PDFReferences
ISIK, M. Comprehensive empirical evaluation of feature extractors in computer vision. PeerJ Computer Science, 2024, vol. 10, article no. e2415. DOI: 10.7717/peerj-cs.2415.
Verykokou, S., & Ioannidis, C. Image Matching: A Comprehensive Overview of Conventional and Learning-Based Methods. Encyclopedia, 2025, vol. 5, iss. 1, article no. 4. DOI: 10.3390/encyclopedia5010004.
Xu, S., Chen, S., Xu, R., Wang, C., Lu, P., & Guo, L. Local feature matching using deep learning: A survey. Information Fusion, 2024, vol. 107, article no. 102344. DOI: 10.1016/j.inffus.2024.102344.
Bonilla, S., Di Vece, C., Daher, R., Ju, X., Stoyanov, D., Vasconcelos, F., & Bano, S. Mismatched: Evaluating the Limits of Image Matching Approaches and Benchmarks (Version 2). arXiv, 2024. DOI: 10.48550/ARXIV.2408.16445.
Zhang, X., Xiao, F., Zheng, M., & Xie, Z. UAV image matching from handcrafted to deep local features. European Journal of Remote Sensing, 2024, vol. 57, iss. 1. DOI: 10.1080/22797254.2024.2307619.
Khurshid, M., Shahzad, M., Khattak, H. A., Malik, M. I., & Fraz, M. M. Vision-Based 3-D Localization of UAV Using Deep Image Matching. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, vol. 17, pp. 12020–12030. DOI: 10.1109/jstars.2024.3422310.
Kim, Y., Back, S., Song, D., & Lee, B.-Y. Aerial Map-Based Navigation by Ground Object Pattern Matching. Drones, 2024, vol. 8, iss. 8, article no. 375. DOI: 10.3390/drones8080375.
Śledziowski, J., Terefenko, P., Giza, A., Forczmański, P., Łysko, A., Maćków, W., Stępień, G., Tomczak, A., & Kurylczyk, A. Application of Unmanned Aerial Vehicles and Image Processing Techniques in Monitoring Underwater Coastal Protection Measures. Remote Sensing, 2022, vol. 14, iss. 3, article no. 458. DOI: 10.3390/rs14030458.
Zhang, X., He, Z., Ma, Z., Wang, Z., Wang, L. LLFE: A Novel Learning Local Features Extraction for UAV Navigation Based on Infrared Aerial Image and Satellite Reference Image Matching. Remote Sensing, 2021, vol. 13, iss. 22, article no. 4618. DOI: 10.3390/rs13224618.
Koch, T., Zhuo, X., Reinartz, P., & Fraundorfer, F. A new paradigm for matching UAV- and aerial images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, vol. III–3, pp. 83–90. DOI: 10.5194/isprs-annals-iii-3-83-2016.
Bian, X., He, Z., Gong, Z., & Ren, K. An optimized feature extraction algorithm based on SuperPoint. In C. Zuo (Ed.), AOPC 2022: AI in Optics and Photonics, 2023. 9 p. SPIE. DOI: 10.1117/12.2651943.
Petrakis, G. A SuperPoint neural network implementation for accurate feature extraction in unstructured environments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, vol. XLVIII-1/W2-2023, pp. 1215–1222. DOI: 10.5194/isprs-archives-xlviii-1-w2-2023-1215-2023.
Revaud, J., Weinzaepfel, P., De Souza, C., Pion, N., Csurka, G., Cabon, Y., & Humenberger, M. R2D2: Repeatable and reliable detector and descriptor (Version 2). arXiv, 2019. DOI: 10.48550/ARXIV.1906.06195.
Wang, T., Lin, X., Zhang, P. Enhancing astronomical image stitching with XFeat: A deep learning approach. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), 2024, pp. 708–712. IEEE. DOI: 10.1109/icicml63543.2024.10958013.
Li, W. SuperGlue-based deep learning method for image matching from multiple viewpoints. Proceedings of the 2023 8th International Conference on Mathematics and Artificial Intelligence, 2023, pp. 53–58. ACM. DOI: 10.1145/3594300.3594310.
Lindenberger, P., Sarlin, P.-E., & Pollefeys, M. LightGlue: Local feature matching at light speed. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023. IEEE. DOI: 10.1109/iccv51070.2023.01616.
Hoshi, S., Ito, K., & Aoki, T. Accurate and robust image correspondence for structure-from-motion and its application to multi-view stereo. 2022 IEEE International Conference on Image Processing (ICIP), 2022, pp. 2626–2630. IEEE. DOI: 10.1109/icip46576.2022.9897304.
Kumbhar, M. F. Image denoising using autoencoders. In Artificial Intelligence and Knowledge Processing, 2023, pp. 137–144. CRC Press. DOI: 10.1201/9781003328414-13.
Moskalenko, V., Kharchenko, V., Moskalenko, A., & Kuzikov, B. Resilience and resilient systems of artificial intelligence: Taxonomy, models and methods. Algorithms, 2023, vol. 16, iss. 3, article no. 165. DOI: 10.3390/a16030165.
Pogorzelski, T. P. Aerial Image Matching Benchmark Dataset [Dataset]. IEEE DataPort, 2025. DOI: 10.21227/JD5S-AY89.
Sarlin, P.-E., DeTone, D., Malisiewicz, T., Rabinovich, A. SuperGlue: Learning feature matching with graph neural networks (Version 2). arXiv, 2019. DOI: 10.48550/ARXIV.1911.11763.
Bai, T., Luo, J., Zhao, J., Wen, B., & Wang, Q. Recent Advances in Adversarial Training for Adversarial Robustness. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-21), 2021, pp. 4312–4321. DOI: 10.24963/ijcai.2021/591.
Athalye, A., Carlini, N., & Wagner, D. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples. arXiv, 2018. DOI: 10.48550/ARXIV.1802.00420.
Qiu, P., Wang, Q., Wang, D., Lyu, Y., Lu, Z., & Qu, G. Mitigating Adversarial Attacks for Deep Neural Networks by Input Deformation and Augmentation. 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020, pp. 157–162. DOI: 10.1109/ASP-DAC47756.2020.9045107.
Zhang, B., Tondi, B., Lv, X., Barni, M. Challenging the Adversarial Robustness of DNNs Based on Error-Correcting Output Codes. Security and Communication Networks, 2020, vol. 2020, pp. 1–11. DOI: 10.1155/2020/8882494.
Maurício, J., Domingues, I., & Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review. Applied Sciences, 2023, vol. 13, iss. 9, article no. 5521. DOI: 10.3390/app13095521.
Assran, M., Caron, M., Misra, I., Bojanowski, P., Bordes, F., Vincent, P., Joulin, A., Rabbat, M., & Ballas, N. Masked Siamese Networks for Label-Efficient Learning. Lecture Notes in Computer Science, Springer Nature Switzerland, 2022, pp. 456–473. DOI: 10.1007/978-3-031-19821-2_26.
DOI: https://doi.org/10.32620/reks.2025.3.12
Refbacks
- There are currently no refbacks.
