Deep information-extreme machine learning for autonomous UAV based on decursive data structure for semantic segmentation of digital image of a region
Abstract
Keywords
Full Text:
PDFReferences
Matese, A., & Di Gennaro, S.F. Practical applications of a multisensor UAV platform based on multispectral, thermal & RGB high resolution images in precision viticulture. Agriculture (Switzerland), 2018, vol. 8, iss. 6, article no. 116. DOI: 10.3390/agriculture8070116.
Mavridou, E., Vrochidou, E., Papakostas, G.A., Pachidis, T., & Kaburlasos, V. G. Machine vision systems in precision agriculture for crop farming. Journal of Imaging, 2019, vol. 5, iss. 12, article no. 89. DOI: 10.3390/jimaging5120089.
Kliushnikov, I. M., Fesenko, H. V., & Kharchenko, V. S. Using automated battery replacement stations for the persistent operation of uav-enabled wireless networks during NPP post-accident monitoring. Radioelectronic and Computer Systems, 2019, vol. 92, iss. 1, pp. 29–36. DOI: 10.32620/reks.2019.4.03.
Ott, T., & Lautenschlager, U. Object detection and segmentation for ecology and evolution. Methods in Ecology and Evolution, 2022, vol. 13, iss. 3, pp. 603–610. DOI: 10.1111/2041-210X.13787.
Fischer, F. J., Jackson, T., Vincent, G., & Jucker, T. Robust characterisation of forest structure from airborne laser scanning—A systematic assessment and sample workflow for ecologists. Ecology and Evolution, 2024, vol. 15, iss. 10, pp. 1873–1888. DOI: 10.1111/2041-210X.14416.
Moskalenko, V. V., & Korobov, A. G. Information-extreme algorithm of the system for recognition of objects on the terrain with optimization parameter feature extractor. Radio Electronics, Computer Science, Control, 2017, vol. 2, pp. 38–45. DOI: 10.15588/1607-3274-2017-2-7.
Al-lQubaydhi, N., Alenezi, A., Alanazi, T., Senyor, A., Alanezi, N., Alotaibi, B., Alotaibi, M., Razaque, A., & Hariri, S. Deep learning for unmanned aerial vehicles detection: A review. Computer Science Review, 2024, vol. 51, article no. 100614. DOI: 10.1016/j.cosrev.2023.100614.
Konert, A., & Balcerzak, T. Military autonomous drones (UAVs) – from fantasy to reality. Legal and ethical implications. Transportation Research Procedia, 2021, vol. 59, pp. 292–299. DOI: 10.1016/j.trpro.2021.11.121.
Neupane, B., Horanont, T., & Aryal, J. Deep learning-based semantic segmentation of urban features in satellite images: A review and meta-analysis. Remote Sensing, 2021, vol. 13, iss. 4, article no. 808. DOI: 10.3390/rs13040808.
Xia, T., Yang, J., & Chen, L. Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning. Automation in Construction, 2022, vol. 133, article no. 103992. DOI: 10.1016/j.autcon.2021.103992.
Litvin, V., & Peleshchak, R. Directions of using technologies of machine learning in the military sphere. Artificial Intelligence, 2022, vol. 93, iss. 1, pp. 161–164. DOI: 10.15407/jai2022.01.161.
Watt, J., Borhani, R., & Katsaggelos, A.K. Machine learning refined: Foundations, algorithms, and applications. Cambridge, England, Cambridge University Press Publ., 2016. DOI: 10.1017/CBO9781316402276.
Hu, G., Yin, C., Wan, M., Zhang, Y., & Fang, Y. Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier. Biosystems Engineering, 2020, vol. 194, pp. 138–151. DOI: 10.1016/j.biosystemseng.2020.03.021.
Khan, A., Sohail, A., Zahoora, U., & Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 2020, vol. 53, pp. 5455–5516. DOI: 10.1007/s10462-020-09825-6.
Barbedo, G. A., Koenigkan, L. V., Santos, T. T., & Santos, P. M. A study on the detection of cattle in UAV images using deep learning. Sensors (Switzerland), 2019, vol. 19, pp. 1–14. DOI: 10.3390/s19245436.
Alotaibi, T., Jambi, K., Khemakhem, M., Eassa, F., & Bourennani, F. Deep learning-based autonomous navigation of 5G drones in unknown and dynamic environments. Drones, 2025, vol. 9, iss. 4, article no. 249. DOI: 10.3390/drones9040249.
Gálvez-Gutiérrez, A. I., Afonso, F., & Martínez-Heredia, J. M. On the usage of deep learning techniques for unmanned aerial vehicle-based citrus crop health assessment. Remote Sensing, 2025, vol. 17, iss. 13, article no. 2253. DOI: 10.3390/rs17132253.
Khudov, H., Makoveichuk, O., Khizhnyak, I., Varvarov, V., & Zots, F. Experimental studies of the image segmentation method quality from unmanned aerial vehicles based on the ant colony optimization algorithm under the influence of additive Gaussian noise. Advanced Information Systems, 2025, vol. 9, iss. 3, pp. 14–21. DOI: 10.20998/2522-9052.2025.3.02.
Dovbysh, A. S., Budnyk, M. M., Piatachenko, V. Y., & Myronenko, M. I. Information-extreme machine learning of on-board vehicle recognition system. Cybernetics and Systems Analysis, 2020, vol. 56, iss. 4, pp. 534–543. DOI: 10.1007/s10559-020-00269-y.
Dovbysh, A. S., Piatachenko, V. Y., Myro¬nenko, M. I., Suprunenko, M. K., & Simonovskiy, J.V. Hierarchical information-extreme machine learning of hand prosthesis control system based on decursive data structure. Journal of Engineering Sciences, 2024, vol. 11, iss. 2, pp. E1–E8. DOI: 10.21272/jes.2024.11(2).e1.
Naumenko, I., Myronenko, M., & Savchenko, T. Information-extreme machine training of on-board recognition system with optimization of RGB-component digital images. Radioelectronic and Computer Systems, 2021, no. 4(98), pp. 59–70. DOI: 10.32620/reks.2021.4.05.
Naumenko, I. V., & Kovalevskyi, S. O. Iierarkhichne informatsiino-ekstremalne mashynne navchannia BPLA dlia semantychnoi sehmentatsii tsyfrovoho zobrazhennia rehionu za dekursyvnoiu strukturou danykh [Hierarchical information-extreme machine learning of UAVs for semantic segmentation of a digital image of a region based on a decursive data structure]. Bulletin of National Technical University "KhPI". Series: System Analysis, Control and Information Technologies, 2025, no. 1(13), pp. 66–76. DOI: 10.20998/2079–0023.2025.01.10 (in Ukrainian).
DOI: https://doi.org/10.32620/reks.2025.3.09
Refbacks
- There are currently no refbacks.
