A bayesian-driven feedforward neural network model for Kafka cluster latency forecasting
Abstract
Keywords
Full Text:
PDFReferences
Honcharenko, T., Khrolenko, V., Gorbatyuk, I., Liashchenko, M., Bodnar, N., & Sherif, N. H. Smart Integration of Information Technologies for City Digital Twins. In 2024 35th Conference of Open Innovations Association (FRUCT), IEEE, 2024, pp. 253-258. DOI: 10.23919/FRUCT61870.2024.10516358.
Raptis, T. P., & Passarella, A. A survey on networked data streaming with apache kafka. IEEE Access, 2023, vol. 11, pp. 85333-85350. DOI: 10.1109/ACCESS.2023.3303810.
Solovei, O., Honcharenko, T., & Fesan, A. Tekhnolohiyi upravlinnya velykymy danymy proyektiv misʹkoho budivnytstva [Technologies to manager big data of urban building projects]. Upravlinnya rozvytkom skladnykh system – Management of Development of Complex Systems, 2024, no. 60, pp. 121–128, DOI: 10.32347/2412-9933.2024.60.121-128. (In Ukrainian).
Vogel, A., Henning, S., Ertl, O., & Rabiser, R. A systematic mapping of performance in distributed stream processing systems. In 2023 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), IEEE, 2023, pp. 293-300. DOI: 10.1109/SEAA60479.2023.00052.
Metta, C., Fantozzi, M., Papini, A., Amato, G., Bergamaschi, M., Galfrè, S. G., Marchetti, A., Veglio, M., Parton, M., & Morandin, F. Increasing biases can be more efficient than increasing weights. In Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, pp. 2810-2819. DOI: 10.1109/WACV57701.2024.00279.
Hosamo, H. H., Nielsen, H. K., Kraniotis, D., Svennevig, P. R., & Svidt, K. Improving building occupant comfort through a digital twin approach: A Bayesian network model and predictive maintenance method. Energy and Buildings, 2023, vol. 288, article no. 112992. DOI: 10.1016/j.enbuild.2023.112992.
Bortolini, R., & Forcada, N. A probabilistic performance evaluation for buildings and constructed assets. Building Research & Information, 2020, vol. 48, iss. 8, pp. 838-855. DOI: 10.1080/09613218.2019.1704208.
Mousavi, M., Shen, X., Zhang, Z., Barati, K., & Li, B. IoT-Bayes fusion: Advancing real-time environmental safety risk monitoring in under-ground mining and construction. Reliability Engineering & System Safety, 2025, vol. 256, article no. 110760. DOI: 10.1016/j.ress.2024.110760.
Kafka Producer Configuration Reference for Confluent Platform. Available at: https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html. (accessed 12.01.2025).
Pacella, M., Papa, A., Papadia, G., & Fedeli, E. A Scalable Framework for Sensor Data Ingestion and Real-Time Processing in Cloud Manufacturing. Algorithms, 2025, vol. 18, iss. 1, article no. 22. DOI: 10.3390/a18010022.
Elshoubary, E. E., & Radwan, T. Studying the Efficiency of the Apache Kafka System Using the Reduction Method, and Its Effectiveness in Terms of Reliability Metrics Subject to a Copula Approach. Applied Sciences, 2024, vol. 14, iss. 15, article no. 6758. DOI: 10.3390/app14156758.
Sathupadi, K., Achar, S., Bhaskaran, S. V., Faruqui, N., & Uddin, J. BankNet: Real-Time Big Data Analytics for Secure Internet Banking. Big Data and Cognitive Computing, 2025, vol. 9, iss. 2, article no. 24. DOI: 10.3390/bdcc9020024.
Ezzeddine, M., Baude, F., Huet, F., & Laaziz, F. Latency Aware and Resource-Efficient Bin Pack Autoscaling for Distributed Event Queues: Parameters Impact and Setting. SN Computer Science, 2025, vol. 6, article no. 219. DOI: 10.1007/s42979-025-03740-9.
Harle, S. M. Advancements and challenges in the application of artificial intelligence in civil engineering: a comprehensive review. Asian Journal of Civil Engineering, 2024, vol. 25, iss. 1, pp.1061-1078. DOI: 10.1007/s42107-023-00760-9.
Moller, M. Efficient training of feed-forward neural networks. DAIMI Report Series, 1993, no. 464, article no. PB-464. pp. 136-173. DOI: 10.7146/dpb.v22i464.6937.
Narkhede, M. V., Bartakke, P. P., & Sutaone, M. S. A review on weight initialization strategies for neural networks. Artificial intelligence review, 2022, vol. 55, pp. 291-322. DOI: 10.1007/s10462-021-10033-z.
Ebid, S. E., El-Tantawy, S., Shawky, D., & Abdel-Malek, H. L. Correlation-based pruning algorithm with weight compensation for feedforward neural networks. Neural Computing and Applications, 2025, vol. 37, pp. 6351-6367. DOI: 10.1007/s00521-024-10932-6.
Kitson, N. K., Constantinou, A. C., Guo, Z., Liu, Y., & Chobtham, K. A survey of Bayesian Network structure learning. Artificial Intelligence Review, 2023, vol. 56, pp. 8721-8814. DOI: 10.1007/s10462-022-10351-w.
Lu, N. Y., Zhang, K., & Yuan, C. Improving causal discovery by optimal bayesian network learning. Proceedings of the AAAI Conference on artificial intelligence, 2021, vol. 35, iss. 10, pp. 8741-8748. DOI: 10.1609/aaai.v35i10.17059.
Tawakuli, A., & Engel, T. Make your data fair: A survey of data preprocessing techniques that address biases in data towards fair AI. Journal of Engineering Research, 2024. DOI: 10.1016/j.jer.2024.06.016.
Kharchenko, V., Fesenko, H., & Illiashenko, O. Quality models for artificial intelligence systems: characteristic-based approach, development and application. Sensors, 2022, vol. 22, iss. 13, article no. 4865. DOI: 10.3390/s22134865.
DOI: https://doi.org/10.32620/reks.2025.3.05
Refbacks
- There are currently no refbacks.
