A model of ensuring LLM cybersecurity
Abstract
Keywords
Full Text:
PDFReferences
Clusmann, J., Kolbinger, F. R., Muti, H. S., Carrero, Z. I., Eckardt, J.-N., Laleh, N. G., Löffler, C. M. L., Schwarzkopf, S.-C., Unger, M., Veldhuizen, G. P., Wagner, S. J., & Kather, J. N. The future landscape of large language models in medicine. Communications medicine, 2023, vol. 3, no. 1, article no. 141. DOI: 10.1038/s43856-023-00370-1.
Nejjar, M., Zacharias, L., Stiehle, F., & Weber, I. LLMs for science: Usage for code generation and data analysis. Journal of Software: Evolution and Process, 2025, vol. 37, no. 1. DOI: 10.1002/smr.2723.
Wang, S., Xu, T., Li, H., Zhang, C., Liang, J., Tang, J., Yu, P. S., & Wen, Q. Large Language Models for Education: A Survey and Outlook. arXiv preprint arXiv:2403.18105, 2024. DOI: 10.48550/arXiv.2403.18105.
Li, Y., Zhao, H., Jiang, H., Pan, Y., Liu, Z., Wu, Z., Shu, P., Tian, J., Yang, T., Xu, S., Lyu, Y., Blenk, P., Pence, J., Rupram, J., Banu, E., Liu, N., Wang, L., Song, W., Zhai, X., Song, K., Zhu, D., Li, B., Wang, X., & Liu, T. Large Language Models for Manufacturing. arXiv preprint arXiv:2410.21418, 2024. DOI: 10.48550/arXiv.2410.21418.
Samma, H., & El-Ferik, S. UAV Visual Path Planning Using Large Language Models. Transportation Research Procedia, 2025, vol. 84, pp. 339-345. DOI: 10.1016/j.trpro.2025.03.081.
Hannig, L., Bush, A., Aksoy, M., Becker, S. & Ontrup, G. Campus AI vs Commercial AI: A Late-Breaking Study on How LLM As-A-Service Customizations Shape Trust and Usage Patterns. arXiv preprint arXiv:2505.10490, 2025. DOI: 10.48550/arXiv.2505.10490.
Kharchenko, V., Fesenko, H., & Illiashenko, O. Quality Models for Artificial Intelligence Systems: Characteristic-Based Approach, Development and Application. Sensors, 2022, vol. 22, no. 13, article no. 4865. DOI: 10.3390/s22134865.
Neretin, O., & Kharchenko, V. Zabezpechennya kiberbezpeky system shtuchnoho intelektu: analiz vrazlyvostey, atak i kontrzakhodiv [Ensurance of artificial intelligence systems cyber security: analysis of vulnerabilities, attacks and countermeasures]. Journal of Lviv Polytechnic National University. Information Systems and Networks, 2022, vol. 12, pp. 7-22. DOI: 10.23939/sisn2022.12.007. (In Ukrainian).
Wang, Y., Li, H., Han, X., Nakov, P., & Baldwin, T. Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs. arXiv preprint arXiv:2308.13387, 2023. DOI: 10.48550/arXiv.2308.13387.
Derner, E., Batistič, K., Zahálka, J., & Babuška, R. A Security Risk Taxonomy for Prompt-Based Interaction With Large Language Models. IEEE Access, 2024, vol. 12, pp. 126176-126187. DOI: 10.1109/ACCESS.2024.3450388.
Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang, P.-S., Mellor, J., Glaese, A., Cheng, M., Balle, B., Kasirzadeh, A., Biles, C., Brown, S., Kenton, Z., Hawkins, W., Stepleton, T., Birhane, A., Hendricks, L. A., Rimell, L., Isaac, W., Haas, J., Legassick, S., Irving, G., & Gabriel, I. Taxonomy of Risks posed by Language Models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT '22), 2022, pp. 214–229. DOI: 10.1145/3531146.3533088.
Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., & Zhang, Y. A survey on large language model (LLM) security and privacy: The Good, The Bad, and The Ugly. High-Confidence Computing, 2024, vol. 4, iss. 2. DOI: 10.1016/j.hcc.2024.100211.
Cui, Т., Wang, Y., Fu, C., Xiao, Y., Li, S., Deng, X., Liu, Y., Zhang, Q., Qiu, Z., Li, P., Tan, Z., Xiong, J., Kong, X., Wen, Z., Xu, K., & Li, Q. Risk Taxonomy, Mitigation, and Assessment Benchmarks of Large Language Model Systems. arXiv preprint arXiv:2401.05778, 2024. DOI: 10.48550/arXiv.2401.05778.
Zhu, B., Mu, N., Jiao, J. & Wagner, D. Generative AI security: challenges and countermeasures. arXiv preprint arXiv:2402.12617, 2024. DOI: 10.48550/arXiv.2402.12617.
OWASP Top 10 for LLM Applications 2025. Available at: https://genai.owasp.org/llm-top-10/. (accessed 3.05.2025).
Babeshko, I., Illiashenko, O., Kharchenko, V., & Leontiev, K. Towards Trustworthy Safety Assessment by Providing Expert and Tool-Based XMECA Techniques. Mathematics, 2022, vol. 10, no. 13, p. 2297. DOI: 10.3390/math10132297.
Klondike, G. Threat Modeling LLM Applications. Available at: https://aivillage.org/large%20language%20models/2023/06/06/threat-modeling-llm. (accessed 3.05.2025).
Li, А., Zhou, Y., Raghuram, V. C., Goldstein, T., & Goldblum, M. Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks. arXiv preprint arXiv:2502.08586, 2025. DOI: 10.48550/arXiv.2502.08586.
Wang, N., Walter, K., Gao, Y., & Abuadbba, A. Large Language Model Adversarial Landscape Through the Lens of Attack Objectives. arXiv preprint arXiv:2502.02960, 2025. DOI: 10.48550/arXiv.2502.02960.
Rehberger, J. Trust No AI: Prompt Injection Along The CIA Security Triad. arXiv preprint arXiv:2412.06090, 2024. DOI: 10.48550/arXiv.2412.06090.
Singh, A., & Gupta, B. B. Distributed Denial-of-Service (DDoS) Attacks and Defense Mechanisms in Various Web-Enabled Computing Platforms: Issues, Challenges, and Future Research Directions. International Journal on Semantic Web and Information Systems (IJSWIS), 2022, vol. 18, no. 1, pp. 1-43. DOI: 10.4018/IJSWIS.297143.
Lysenko, S., Bobrovnikova, K., Kharchenko, V., & Savenko, O. IoT Multi-Vector Cyberattack Detection Based on Machine Learning Algorithms: Traffic Features Analysis, Experiments, and Efficiency. Algorithms, 2022, vol. 15, no. 7, article no. 239. DOI: 10.3390/a15070239.
Hicks, M. T., Humphries, J., & Slater, J. ChatGPT is bullshit. Ethics and Information Technology, 2024, vol. 26, no. 2, pp. 1-10. DOI: 10.1007/s10676-024-09775-5.
Shah, C., Bender, E. M. Situating Search. In Proceedings of the 2022 Conference on Human Information Interaction and Retrieval, 2022, pp. 221-232. DOI: 10.1145/3498366.3505816.
Chollet, F. Deep Learning with Python, Second Edition. 2nd ed. Manning Publ., 2021. 504 p.
Das, B. C., Amini, M. H., & Wu, Y. Security and Privacy Challenges of Large Language Models: A Survey. ACM Computing Surveys, 2025, vol. 57, no. 6, pp. 1-39. DOI: 10.1145/3712001.
Du, H., Liu, S., & Cao, Y. Can Differentially Private Fine-tuning LLMs Protect Against Privacy Attacks? arXiv preprint arXiv:2504.21036, 2025. DOI: 10.48550/arXiv.2504.21036.
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022. DOI: 10.48550/arXiv.2203.02155.
Mao, Y., He, J., & Chen, C. From Prompts to Templates: A Systematic Prompt Template Analysis for Real-world LLMapps. arXiv preprint arXiv:2504.02052, 2025. DOI: 10.48550/arXiv.2504.02052.
Perez, F., & Ribeiro, I. Ignore Previous Prompt: Attack Techniques For Language Models. arXiv preprint arXiv:2211.09527, 2022. DOI: 10.48550/arXiv.2211.09527.
Greshake, K., Abdelnabi, S., Mishra, S., Endres, C., Holz, T., & Fritz, M. Not what you've signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection. In Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security, 2023, pp. 79-90. DOI: 10.1145/3605764.3623985.
Wei, A., Haghtalab, N., & Steinhardt, J. Jailbroken: How Does LLM Safety Training Fail? arXiv preprint arXiv:2307.02483, 2023. DOI: 10.48550/arXiv.2307.02483.
Siska, C., & Sankaran, A. AttentionDefense: Leveraging System Prompt Attention for Explainable Defense Against Novel Jailbreaks. arXiv preprint arXiv:2504.12321, 2025. DOI: 10.48550/arXiv.2504.12321.
Lin, L., Mu, H., Zhai, Z., Wang, M., Wang, Y., Wang, R., Gao, J., Zhang, Y., Che, W., Baldwin, T., Han, X., & Li, H. Against The Achilles' Heel: A Survey on Red Teaming for Generative Models. Journal of Artificial Intelligence Research, 2025, vol. 82, pp. 687-775. DOI: 10.1613/jair.1.17654.
Illiashenko, O., Kharchenko, V., Babeshko, I., Fesenko, H., & Di Giandomenico, F. Security-Informed Safety Analysis of Autonomous Transport Systems Considering AI-Powered Cyberattacks and Protection. Entropy, 2023, vol. 25, no. 8, article no. 1123. DOI: 10.3390/e25081123.
Vulnerability Metrics. Available at: https://nvd.nist.gov/vuln-metrics/cvss. (accessed 3.05.2025).
Bitton, R., Maman, N., Singh, I., Momiyama, S., Elovici, Y., & Shabtai, A. Evaluating the Cybersecurity Risk of Real-world, Machine Learning Production Systems. ACM Computing Surveys, 2023, vol. 55, no. 9, pp. 1-36. DOI: 10.1145/3559104.
Zemlianko, H., & Kharchenko, V. IMECA-analiz kiberbezpeky system bahatofunktsionalnykh flotiv BPLA pry kombinovanykh atakakh: bazovi modeli ta vybir kontrzakhodiv [IMECA analysis of cybersecurity for multi-functional UAV fleets under combined attacks: basic models and countermeasure choice]. Measuring and computing devices in technological processes, 2023, no. 4, pp. 225-233. DOI: 10.31891/2219-9365-2023-76-30. (In Ukrainian).
Zemlianko, H., & Kharchenko, V. Cybersecurity risk analysis of multifunctional UAV fleet systems: a conceptual model and IMECA-based technique. Radioelectronic and Computer Systems, 2023, vol. 0, no. 4, pp. 152-170. DOI: 10.32620/reks.2023.4.11.
Syed, N., Anwar, A., Baig, Z., & Zeadally, S. Artificial Intelligence as a Service (AIaaS) for Cloud, Fog and the Edge: State-of-the-Art Practices. ACM Computing Surveys, 2025, vol. 57, no. 8. DOI: 10.1145/3712016.
Javaid, S., Fahim, H., He, B. & Saeed, N. Large language models for UAVs: Current state and pathways to the future. IEEE Open Journal of Vehicular Technology, 2024, vol. 5, pp. 1166-1192. DOI: 10.1109/OJVT.2024.3446799.
Chao, P., Debenedetti, E., Robey, A., Andriushchenko, M., Croce, F., Sehwag, V., Dobriban, E., Flammarion, N., Pappas, G. J., Tramer, F. & Hassani, H. Jailbreakbench: An open robustness benchmark for jailbreaking large language models. arXiv preprint arXiv:2404.01318, 2024. DOI: 10.48550/arXiv.2404.01318.
Laktionov, O., Shefer, O., Laktionova, I., Halai, V., & Podorozhniak, A. Implementation of unsupervised learning models for analyzing the state's security level. Advanced Information Systems, 2024, vol. 8, no. 3, pp. 85-91. DOI: 10.20998/2522-9052.2024.3.10.
Rajakumareswaran, V., Raguvaran, S., Chandrasekar, V., Rajkumar, S., & Arun, V. DeepFake detection using transfer learning-based Xception model. Advanced Information Systems, 2024, vol. 8, no. 2, pp. 89-98. DOI: 10.20998/2522-9052.2024.2.10.
Yang, Z., Zhang, Y., Zeng, J., Yang, Y., Jia, Y., Song, H., Lv, T., Sun, Q., & An, J. AI-Driven Safety and Security for UAVs: From Machine Learning to Large Language Models. Drones, 2025, vol. 9, no. 6, article no. 392. DOI: 10.3390/drones9060392.
Sezgin, A. Scenario-Driven Evaluation of Autonomous Agents: Integrating Large Language Model for UAV Mission Reliability. Drones, 2025, vol. 9, no. 3, article no. 213. DOI: 10.3390/drones9030213.
DOI: https://doi.org/10.32620/reks.2025.2.13
Refbacks
- There are currently no refbacks.