Methodology of statistical synthesis and analysis methods for stochastic signal processing in multi-antenna radio direction finders

Eduard Tserne, Yevhen Holovynskyi, Olha Zhyla

Abstract


The subject of this study is the development of a statistical synthesis methodology and analysis methods for processing stochastic signals in multi-antenna radio direction finders. The aim of this study is to improve the accuracy, stability, and adaptability of these systems under changing operating conditions, especially for applications involving unmanned aerial vehicles. The objectives of the study are: 1) formulation of analytical models of signals and noise with specified statistical characteristics; 2) determination of the criteria for the maximum likelihood function for solving optimisation problems; 3) creation of a basis for estimating marginal errors of measuring the angular positions of radio sources emitting stochastic signals; 4) development of a structural diagram of a radio direction finding system based on the obtained algorithm; 5) simulation modelling of the direction finder. The methods for solving the tasks are statistical theories of radio engineering systems, simulation modelling and optimisation in the spectral domain to solve the problems of designing radio direction finders capable of processing stochastic signals. This approach allows for the integration of amplitude and phase measurements for multiple antennas, ensuring compatibility with UAV-specific constraints, such as size, weight, and aerodynamic characteristics. The following results were obtained: 1) theoretical foundations for optimising radio direction finders for stochastic signals, validated by simulation and analytical modelling; 2) algorithms and block diagrams for a prototype single-antenna non-scanning radio direction finder, demonstrating the proposed methodology; 3) experimental verification confirming the feasibility of the proposed methods. This work provides a way for further development of multi-antenna direction-finding technologies, offering scalable solutions for use in UAVs and allowing accurate estimation of signal parameters under conditions of uncertainty. Future directions include the extension of the methodology to dual-antenna systems, hybrid configurations, and spatially distributed multi-antenna systems.

Keywords


statistical optimization; stochastic signal processing; radio direction finders; multi-antenna reception

Full Text:

PDF

References


Zeng, L., & Li, C. Recent Advances in Intermodulation and Harmonic Radar Sensing and Tracking. Proceedings of the 2023 Asia-Pacific Microwave Conference, Taipei, Taiwan, IEEE, 2023, pp. 846-848. DOI: 10.1109/APMC57107.2023.10439965.

Pavlikov, V., Volosyuk, V., Zhyla, S., Van, H. N., & Van, K. N. A new method of multi-frequency active aperture synthesis for imaging of SAR blind zone under aerospace vehicle. Proceedings of the 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics, Lviv, Ukraine, IEEE, 2017, pp. 118-120. DOI: 10.1109/CADSM.2017.7916099.

Wu, J., Wen, F., & Shi, J. Direction Finding in Bistatic MIMO Radar With Direction-Dependent Mutual Coupling. IEEE Communications Letters, 2021, vol. 25, no. 7, pp. 2231-2234. DOI: 10.1109/LCOMM.2021.3072310.

Pavlikov, V., Zhyla, S., & Odokienko, O. Structural optimization of Dicke-type radiometer. Proceedings of the 2016 2nd International Young Scientists Forum on Applied Physics and Engineering, 2016, Kharkiv, Ukraine, IEEE, pp. 171–174. DOI:10.1109/YSF.2016.7753829.

Pavlikov, V., Zhyla, S., Odokienko, A., & Antonov, M. Radiometer with signal energies ratio. Proceedings of the IEEE Radar Methods and Systems Workshop, Kiev, Ukraine, IEEE, 2016, pp. 99-102. DOI: 10.1109/RMSW.2016.7778560.

Krzysztof, C., Rajchowski, P., & Sadowski, J. Wideband Radio Direction Finder Implemented in Software Defined Radio Technology. Applied Mechanics and Materials. Trans Tech Publications, 2016, vol. 817, pp. 348-355. DOI: 10.4028/www.scientific.net/amm.817.348.

Ziółkowski, C., & Kelner, J. M. Radio Bearing of Sources with Directional Antennas in Urban Environment. International Journal of Microwave and Wireless Technologies, 2018, vol. 10, iss. 7, pp. 759-771. DOI: 10.1017/S1759078718000648

Gil-Martínez, A., Poveda-García, M.,Cañete-Rebenaque, D., & Gómez-Tornero, J. L. Frequency-Scanned Monopulse Antenna for RSSI-Based Direction Finding of UHF RFID Tags. IEEE Antennas and Wireless Propagation Letters, 2022, vol. 21, no. 1, pp. 158-162. DOI: 10.1109/LAWP.2021.3122233.

Bi, J., Zhao, M., Zheng, G., Chen, Cao, H., Yao, G., Su, F., Wang, T., Li, W., & Zhang, G. Exploiting high-precision AoA estimation method using CSI from a single WiFi station. Signal Processing, 2025, vol. 228, p. 109750. DOI: 10.1016/j.sigpro.2024.109750.

Cook, H. A., Kahn, M. T. E., & Balyan, V. Radio Direction-Finding Techniques for an Unmanned Aerial Vehicle. Proceedings of the 2019 International Conference on Management, Education Technology and Economics, Fuzhou, China, 2020, pp. 1-10. DOI: 10.1007/978-981-15-2329-8_1.

Pavlikov, V., Volosyuk, V., Zhyla, S., & van Huu, N. Active Aperture Synthesis Radar for High Spatial Resolution Imaging. Proceedings of the 9th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odessa, Ukraine, IEEE, 2018, pp. 252-256. DOI: 10.1109/UWBUSIS.2018.8520021.

Pavlikov, V., Volosyuk, V., Zhyla, S., Van, H., & Van, K. N. UWB active aperture synthesis radar the operating principle and development of the radar block diagram. Proceedings of the IEEE Microwaves, Radar and Remote Sensing Symposium, Kiev, Ukraine, IEEE, 2017, pp. 27-30. DOI: 10.1109/MRRS.2017.8075018.

González-Coma, J. P., Nocelo López, R., Núñez-Ortuño, J. M., & Troncoso-Pastoriza, F. Beacon-Based Phased Array Antenna Calibration for Passive Radar. Remote Sening, 2025, vol. 17, iss.3, p. 490. DOI: 10.3390/rs17030490.

Ilčev, D. S. New Aspects of Progress in the Modernization of the Maritime Radio Direction Finders (RDF). Transactions on Maritime Science, 2021, vol. 10, no. 1, pp. 68-83. DOI: 10.7225/toms.v10.n01.005.

Pavlikov, V. V., Zhyla, S. S., van Kiem, N., & Odokienko, O. V. Optimal signal processing for radiometric imaging with multi-antenna & multi-band passive radars. Proceedings of the International Conference on Antenna Theory and Techniques, Kharkiv, Ukraine 2015, pp 1-3. DOI: 10.1109/ICATT.2015.7136821.

Zhyla, S., Tserne, E., Volkov, Y., Shevchuk, S., Gribsky, O., Vlasenko, D., Kosharskyi, V., & Kovalchuk D. Statistical Synthesis and Analysis of Functionally Deterministic Signal Processing Techniques for Multi-Antenna Direction Finder Operation. Computation, 2024, vol. 12, iss.9,pp. 170-191. DOI: 10.3390/computation12090170.

Volosyuk, V., & Zhyla, S. Statistical Theory of Optimal Functionally Deterministic Signals Processing in Multichannel Aerospace Imaging Radar Systems. Computation, 2022, vol. 10, iss. 12, pp. 213-233. DOI: 10.3390/computation10120213.

Markulić, N., Nguyen, J., Benites, J. L., Martens, E., & Craninckx, J. A 10GS/s Hierarchical Time-Interleaved ADC for RF-Sampling Applications. Proceedings of the 2024 IEEE Symposium on VLSI Technology and Circuits, Honolulu, USA, 2024, pp. 1–2. DOI: 10.1109/VLSITechnologyandCir46783.2024.10631521.

Moreira, M. B., Lapuyade, H., Rivet, F., & Deval, Y. A Wide-Band High-Speed Sample and Hold in 0.35µm CMOS Technology. Proceedings of the 2023 IEEE 14th Latin America Symposium on Circuits and Systems, Quito, Ecuador, 2023, pp. 1–4. DOI: 10.1109/LASCAS56464.2023.10108219.

Dusari, N. R., & Rawat, M. Efficient Implementation of Direction of Arrival Using RFSoC Platform. Proceedings of the 2023 IEEE Microwaves, Antennas, and Propagation Conference, Ahmedabad, India, 2023, pp. 1–6. DOI: 10.1109/MAPCON58678.2023.10464165.

Shahul, H. V., & Chinni, G. P. Design and Realization of RFSoC FPGA-Based Multi-Channel Data Acquisition & Digital Beam Former System. Proceedings of the 2024 IEEE Space, Aerospace and Defence Conference, Bangalore, India, 2024, pp. 182–185. DOI: 10.1109/SPACE63117.2024.10667814

Analog Devices. AD9084 Datasheet and Product Info. Available at: https://www.analog.com/en/products/ad9084.html (accessed 25 Febuary 2025).

Zhenjia, C., & Zhang, Y. Cooperative Energy Detection Algorithm Based on Background Noise and Direction Finding Error. AEU - International Journal of Electronics and Communications, 2018, vol. 95, pp. 326–341. DOI: 10.1016/j.aeue.2018.08.029.

Zhou, L., Ye, K., & Zhang, X. Two-Dimensional Direction Finding for L-Shaped Coprime Array via Minimization of the Ratio of the Nuclear Norm and the Frobenius Norm, Remote Sensing, 2024, vol. 16, iss. 18, p. 3543. DOI: 10.3390/rs16183543.

Wu, Q., Ding, G., Wang, D. J., & Yao, Y. -D. Spatial-Temporal Opportunity Detection for Spectrum-Heterogeneous Cognitive Radio Networks: Two-Dimensional Sensing. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 2, pp. 516-526. DOI: 10.1109/TWC.2012.122212.111638.

Riabukha, V., Semeniaka, A., Katiushyn, Y., & Atamanskiy, D. Selection of Number of Compensatory Channels and Placement of Receivers with Non-Identical Frequency Response at Phased-Array Radar under Gaussian Noise Jamming. Radioelectronics and Communications Systems, 2022, vol. 65, pp. 1–10. DOI: 10.3103/S0735272722010010.

Riabukha, V., Semeniaka, A., & Katiushyn Y. Analysis of protection efficiency of phased-array radars against the Gaussian noise jamming. Telecommunications and Radio Engineering, 2021, vol. 80, iss. 2, pp. 1-6. DOI: 10.1615/TelecomRadEng.2021036556.

Holland, R. L. The statistical theory of radio direction finding. Technical Memorandum AccNr ADA104156. USA, US Defense Technical Information Center Publ., 1981. 47 p.

Voitko, V. V., Ilnyckij, A. I., Iliashov, O. А., Steiskal, A. В., & Мarchenko, А. О. Statistical Estimates of the Accuracy of Mono-Pulse Direction Finding of Sources of Radioemission by Dual-Channel Phase Devices. Visnyk NTUU "KPI". Seriya Radiotekhnika, Radioaparatobuduvannya – Bulletin of NTUU KPI. Series Radiotechnique, Radioapparatus Building, 2020, no. 81, pp. 30–37. DOI: 10.20535/RADAP.2020.81.30-37.

Fabirovskyy, S., Storozh, V., & Solomko A. Research and development of a high-precision direction finder for radio emission sources detecting. Information and Communication Technologies, Electronic Engineering, 2023, vol. 3, no. 2, pp. 158–169. DOI: 10.23939/ictee2023.02.158.

Henault, S., Antar, Y., Rajan, S., Inkol, R., & Wang, S. Impact of mutual coupling on wideband adcock direction finders. Proceedings of the Canadian Conference on Electrical and Computer Engineering, Niagara Falls, ON, Canada, IEEE, 2008, pp. 1327-1332. DOI: 10.1109/CCECE.2008.4564755.

Purwanto, K. N. J., Yahya, A., Khamis, N. H., Nor, N. M., Shaari M. R., & Sidek, A. R. M. Development of Radio Direction Finder using 6 Log Periodic Dipole Array Antennas. Proceedings of the 5th International Conference on Information Technology, Computer, and Electrical Engineering, Semarang, Indonesia, 2018, pp. 157–160. DOI: 10.1109/ICITACEE.2018.8576965.

Polikarovskykh, O., & Hula, I. Implementing the Search Algorithm of the Correlation Interferometer Direction Finder through the GNU Radio Software Platform. Security of Infocommunication Systems and Internet of Things, 2023, vol. 1, no. 2, article no. 2006. DOI: 10.31861/sisiot2023.2.02006.

Quanhua, L. , Zhang, K., Zheng, Z., &Liang, Z. Applying auxiliary arrays for mainlobe blanking to counter mainlobe repeater jamming. Signal Processing, 2024, vol. 225, article no. 109599. DOI: 10.1016/j.sigpro.2024.109599.

Atamanskiy, D. V. Noise emissions sources direction-finding in the process of their background air threats detection in radars with phased antenna array. Radioelectronics and Communications Systems, 2017, vol 60, pp. 303–311. DOI: 10.3103/S0735272717070032.

Sharma, U., & Agrawa, M. High-resolution direction-finding algorithm using Qth−order cumulants tensor: Q−TMUSIC. Digital Signal Processing, 2024, vol. 155, article no. 104735. DOI: 10.1016/j.dsp.2024.104735.

Kim, S. -A., Chung, H., & Kim, Y. -H. Direction Finding Method for Fast Beam Alignment in Wireless Communication Systems. Proceedings of the 2023 14th International Conference on Information and Communication Technology Convergence, Jeju Island, Korea, IEEE, 2023, pp. 1133-1136. DOI: 10.1109/ICTC58733.2023.10393492

Volosyuk, V., Pavlikov, V., & Zhyla, S. Phenomenological Description of the Electromagnetic Field and Coherent Images in Radio Engineering and Optical Systems. Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory, Kyiv, Ukraine, IEEE, 2018, pp. 302–305. DOI: 10.1109/MMET.2018.8460321.

Volosyuk, V. K., & Kravchenko, V. F. Statisticheskaya teoriya radiotekhnicheskikh sistem distantsionnogo zondirovaniya i radiolokatsii [Statistical Theory of Radio-Engineering Systems of Remote Sensing and Radar]. Moscow, Fizmatlit Publ., 2008. 704 p. (In Russian )

Volosyuk, V. K., Gulyaev, Yu. V., Kravchenko, V. F., Kutuza, B. G., Pavlikov, V. V., & Pustovoit, V. I. Modern methods for optimal spatio-temporal signal processing in active, passive, and combined active-passive radio-engineering systems. Journal of Communications Technology and Electronics, 2014, vol. 59, pp. 97–118. DOI: 10.1134/S1064226914020090.

Lie, J. P., Blu, T., & See, C. M. S. Single Antenna Power Measurements Based Direction Finding. IEEE Transactions on Signal Processing, 2010, vol.58, no. 11, pp. 5682-5692. DOI: 10.1109/TSP.2010.2065227.

Lu, Z., Tian, H., & Dong, Y. A Highly Selective and Compact SAW Filter With Cascaded DMSs. Proceedings of the 2024 IEEE MTT-S International Wireless Symposium, Beijing, China, 2024, pp. 1–3. DOI: 10.1109/IWS61525.2024.10713780.

Analog Devices. AD9363 Datasheet and Product Info. Available at: https://www.analog.com/en/products/ad9363.html (accessed 20 March 2025).




DOI: https://doi.org/10.32620/reks.2025.2.11

Refbacks

  • There are currently no refbacks.