Comparative analysis of the effectiveness of BPG, AGU, AVIF and HEIF compression methods for medical images corrupted by noise of two types
Abstract
Keywords
Full Text:
PDFReferences
Kim, M. E., Ramadass, K., Gao, C., Kanakaraj, P., Newlin, N., Rudravaram, G., Schilling, K. G., Dewey, B., Archer, D., Hohman, T. J., Li, Z., Bao, S., Landman, B. A., & Khairi, N. M. Scalable, reproducible, and cost-effective processing of large-scale medical imaging datasets. Imaging Informatics, San Diego, United States, 16–21 February 2025. SPIE, 2025. 23 p. DOI: 10.48550/ARXIV.2408.14611.
Sachenko, A., Yatskiv, V., Sieck, J., & Su, J. Image Transmission in WMSN Based on Residue Number System. International Journal of Computing, 2024, vol. 23, iss. 1, pp. 126–133. DOI: 10.47839/ijc.23.1.3444.
Yatskiv, V., Sachenko, A., Yatskiv, N., Bykovyy, P., & Segin, A. Compression and Transfer of Images in Wireless Sensor Networks Using the Transformation of Residue Number System. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Metz, France, 2019, pp. 1111–1114. DOI: 10.1109/IDAACS.2019.8924372.
Gopal, N., Kala, L., & Arun, L. Review on medical image compression. International Journal of Advanced Research in Science, Communication and Technology, 2023, pp. 54–64. DOI: 10.48175/ijarsct-12010.
Abduljaleel, I. Q., & Khaleel, A. H. Significant medical image compression techniques: a review. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2021, vol. 19, iss. 5, article no. 1612. DOI: 10.12928/telkomnika.v19i5.18767.
Singh, M., Kumar, S., Singh, S., & Shrivastava, M. Various image compression techniques: lossy and lossless. International Journal of Computer Applications, 2016, vol. 142, iss. 6, pp. 23–26. DOI: 10.5120/ijca2016909829.
Rojas-Hernández, R., Díaz-de-León Santiago, J. L., Barceló-Alonso, G., Bautista-López, J., Trujillo-Mora, V., & Salgado-Ramírez, J. C. Lossless medical image compression by using difference transform. Entropy, 2022, vol. 24, iss. 7, article no. 951. DOI: 10.3390/e24070951.
Kryvenko, L., Krylova, O., Lukin, V., & Kryvenko, S. Intelligent visually lossless compression of dental images. Advanced Optical Technologies, 2024, article no. 13. DOI: 10.3389/aot.2024.1306142.
Kumar, S. N., Haridhas, A. K., Lenin Fred, A., & Sebastin Varghese, P. Analysis of lossy and lossless compression algorithms for computed tomography medical images based on bat and simulated annealing optimization techniques. In: Computational Intelligence Methods for Super-Resolution in Image Processing Applications. Cham: Springer International Publishing, 2021, pp. 99–133. DOI: 10.1007/978-3-030-67921-7_6.
Elsayed, H. A., Majeed, Q. E., & Sherbiny, M. M. E. Non-decimated wavelet transform and vector quantization for lossy medical images compression. Journal of Computer Science, 2023, vol. 19, iss. 3, pp. 363–371. DOI: 10.3844/jcssp.2023.363.371.
Cavaro-Menard, C., Le Callet, P., Barba, D., & Tanguy, J.-Y. Quality assessment of lossy compressed medical images. In: Compression of Biomedical Images and Signals. London, UK: ISTE, 2008, pp. 101–128. DOI: 10.1002/9780470611159.ch5.
Sultana, Z., Nahar, L., Tasnim, F., Hossain, M. S. & Andersson, K. Lossy compression effect on color and texture based image retrieval performance. In: Intelligent Computing & Optimization. Cham: Springer International Publishing, 2022, pp. 1159–1167. DOI: 10.1007/978-3-031-19958-5_108.
Kumar, D. V. The contemporary significance of image compression standards in medical imaging. Futuristic Trends in Medical Sciences, vol. 3, book 10. Iterative International Publisher, Selfypage Developers Pvt Ltd., 2024, pp. 138–163. DOI: 10.58532/v3bfms10p4ch3.
European Society of Radiology (ESR). Usability of irreversible image compression in radiological imaging: a position paper. Insights into Imaging, 2011, vol. 2, no. 2, pp. 103-115. DOI: 10.1007/s13244-011-0071-x.
Prasath, V. B. S. Quantum noise removal in X-ray images with adaptive total variation regularization. Informatica, 2017, vol. 28, no. 3, pp. 505–515. DOI: 10.15388/informatica.2017.141.
Rodrigues, I., Sanches, J., & Bioucas-Dias, J. Denoising of medical images corrupted by Poisson noise. Proceedings of the 15th IEEE International Conference on Image Processing, 12–15 October 2008, San Diego, CA, USA. IEEE, 2008. DOI: 10.1109/ICIP.2008.4712115.
Badgainya, S., Sahu, P. P., & Awasthi, P. V. Image denoising for AWGN corrupted image using OWT and thresholding. International Journal of Trend in Scientific Research and Development, 2018, vol. 2, no. 6, pp. 220–226. DOI: 10.31142/ijtsrd18338.
Kryvenko, S., & Lukin, V. Peculiarities of noisy image lossy compression. Herald of Khmelnytskyi National University. Technical Sciences, 2024, no. 333(2), pp. 278–283. DOI: 10.31891/2307-5732-2024-333-2-44.
Al-Shaykh, O. K., & Mersereau, R. M. Lossy compression of noisy images. IEEE Transactions on Image Processing, 1998, vol. 7, no. 12, pp. 1641–1652. DOI: 10.1109/83.730376.
Cheng, K. L., Xie, Y., & Chen, Q. Optimizing Image Compression via Joint Learning with Denoising. Lecture Notes in Computer Science, vol. 13679. Cham: Springer, 2022, pp. 56–73. DOI: 10.1007/978-3-031-19800-7_4.
Kovalenko, B., Lukin, V., Kryvenko, S., Naumenko, V., & Vozel, B. BPG-based automatic lossy compression of noisy images with the prediction of an optimal operation existence and its parameters. Applied Sciences, 2022, vol. 12, no. 15, article 7555. DOI: 10.3390/app12157555.
Kovalenko, B., Lukin, V., & Vozel, B. BPG-based lossy compression of three-channel noisy images with prediction of optimal operation existence and its parameters. Remote Sensing, 2023, vol. 15, no. 6, article 1669. DOI: 10.3390/rs15061669.
Bai, Y., Liu, X., Wang, K., Ji, X., Wu, X., & Gao, W. Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image Compression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, vol. 46, no. 5, pp. 3577–3594. DOI: 10.1109/TPAMI.2023.3348486.
Makarichev, V., Lukin, V., & Brysina, I. Progressive DCT-based coder and its comparison to atomic function-based image lossy compression. Proceedings of the 16th IEEE International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 22–26 February 2022, Lviv-Slavske, Ukraine. IEEE, 2022. DOI: 10.1109/TCSET55632.2022.9766871.
Abramova, V., Kryvenko, S., Abramov, S., Makarichev, V., & Lukin, V. A fast procedure for image lossy compression by ADCTC using prediction of distortions’ MSE. In: Integrated Computer Technologies in Mechanical Engineering – 2022. Cham: Springer Nature Switzerland, 2023, pp. 625–635. DOI: 10.1007/978-3-031-36201-9_52.
Mansuri, I., & Bhatt, M. Image encryption and compression using discrete wavelet transform and adaptive thresholding. International Journal of Computer Science and Engineering, 2016, vol. 3, no. 11, pp. 48–54. DOI: 10.14445/23488387/IJCSE-V3I11P110.
Shahnaz, R., Walkup, J. F., & Krile, T. F. Image compression in signal-dependent noise. Applied Optics, 1999, vol. 38, no. 26, article no. 5560. DOI: 10.1364/AO.38.005560.
Kovalenko, B., Lukin, V., Kryvenko, S., Naumenko, V., & Vozel, B. BPG-based automatic lossy compression of noisy images with the prediction of an optimal operation existence and its parameters. Applied Sciences, 2022, vol. 12, iss. 15, article no. 7555. DOI: 10.3390/app12157555.
Wang, Z., Bovik, A. C., & Sheikh, H. R. Structural similarity based image quality assessment. In: Digital Video Image Quality and Perceptual Coding. CRC Press, 2017, pp. 225–242. DOI: 10.1201/9781420027822-7.
Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, 18–23 June 2018, pp. 586–595. DOI: 10.1109/CVPR.2018.00068.
Rudnichenko, N., Vychuzhanin, V., Vychuzhanin, A., Bercov, Y., Levchenko, A., & Otradskya, T. Adaptive Digital Image Compression. In: Digital Economy, Business Analytics, and Big Data Analytics Applications. Studies in Computational Intelligence, vol. 1010. Cham: Springer, 2022, pp. 45–53. DOI: 10.1007/978-3-031-05258-3_5.
Bellard, F. BPG image format. Available at: https://bellard.org/bpg/ (accessed 30 March 2025).
Ponomarenko, N. AGU image coder. Available at: https://www.ponomarenko.info/agu.htm (accessed 30 March 2025).
Awxkee. AVIF-Coder: Custom AVIF encoder for research and development. Available at: https://github.com/awxkee/avif-coder (accessed 30 March 2025).
Azzari, L., Borges, L. R., & Foi, A. Modeling and estimation of signal-dependent and correlated noise. In: Denoising of Photographic Images and Video. Cham: Springer International Publishing, 2018, pp. 1–36. DOI: 10.1007/978-3-319-96029-6_1.
Chen, M.-J., & Bovik, A. C. Fast structural similarity index algorithm. 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, PA, USA, 18–23 March 2005, vol. 2, pp. ii–998. DOI: 10.1109/ICASSP.2005.1449869.
Statistics Online. Lesson 28: Inferences for Two Population Means. Available at: https://online.stat.psu.edu/stat414/lesson/28/28.2 (accessed 19 March 2025)
Ponomarenko, N., Silvestri, F., Egiazarian, K., Carli, M., Astola, J., & Lukin, V. On between-coefficient contrast masking of DCT basis functions. Proceedings of the Third International Workshop on Video Processing and Quality Metrics, 2007, article 4.
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, vol. 13, no. 4, pp. 600–612. DOI: 10.1109/TIP.2003.819861.
DOI: https://doi.org/10.32620/reks.2025.2.09
Refbacks
- There are currently no refbacks.