Crowd counting in intelligent video surveillance systems
Abstract
Keywords
Full Text:
PDFReferences
Deng, L., Zhou, Q., Wang, S., Górriz, J.M. & Zhang, Y. Deep learning in crowd counting: A survey. CAAI Transactions on Intelligence Technology, 2024, vol. 9, no. 5, pp.1043–1077. DOI: 10.1049/cit2.12241.
Patwal, A., Diwakar, M., Tripathi, V. & Singh, P. Crowd counting analysis using deep learning: A critical review. Procedia Computer Science, 2023, vol. 218, pp. 2448–2458. DOI: 10.1016/j.procs.2023.01.220.
Alhawsawi, A.N., Khan, S.D. & Ur Rehman, F. Crowd counting in diverse environments using a deep routing mechanism informed by crowd density levels. Information, 2024, vol. 15, no. 5, article no. 275. DOI: 10.3390/info15050275.
Khan, M.A., Menouar, H., Hamila, R. & Abu-Dayya, A. Crowd counting at the edge using weighted knowledge distillation. Scientific Reports, 2025, vol. 15, article no. 11932. DOI: 10.1038/s41598-025-90750-5.
Mansouri, W., Alohali, M.A., Alqahtani, H., Alruwais, N., Alshammeri, M. & Mahmud, A. Deep CNN-based enhanced crowd density monitoring for intelligent urban planning on smart cities. Scientific Reports, 2025, vol. 15, article no. 5759. DOI: 10.1038/s41598-025-90430-4.
Zeng, X., Wang, H., Guo, Q. & Wu, Y. Correlation-attention guided regression network for efficient crowd counting. Journal of Visual Communication and Image Representation, 2024, vol. 99, article no. 104078. DOI: 10.1016/j.jvcir.2024.104078.
Cai, Y. & Zhang, D. A weakly supervised crowd counting method via combining CNN and Transformer. Electronics, 2024, vol. 13, no. 24, article no. 5053. DOI: 10.3390/electronics13245053.
Lien, C.-C. & Wu, P.-C. A crowded object counting system with self-attention mechanism. Sensors, 2024, vol. 24, no. 20, article no. 6612. DOI: 10.3390/s24206612.
Alhawsawi, A.N., Khan, S.D. & Rehman, F.U. Enhanced YOLOv8-based model with context enrichment module for crowd counting in complex drone imagery. Remote Sensing, 2024, vol. 16, no. 22, article no. 4175. DOI: 10.3390/rs16224175.
Yaseen, M. What is YOLOv8: An in-depth exploration of the internal features of the next-generation object detector. arXiv, 2024, Aug. Available at: https://doi.org/10.48550/arXiv.2408.15857 (Accessed: 1 March 2025).
Zhao, Z., Ma, P., Jia, M., Wang, X. & Hei, X. A dilated CNN for cross-layers of contextual information in congested crowd counting. Sensors, 2024, vol. 24, no. 6, article no. 1816. DOI: 10.3390/s24061816.
Tomar, A., Nijhawan, R. & Koundal, D. EDCCN: A benchmark encoder–decoder framework for accurate crowd counting. Neurocomputing, 2025, vol. 640, article no. 130304. DOI: 10.1016/j.neucom.2025.130304.
Li, Y.-C., Jia, R.-S., Hu, Y.-X. & Sun, H.-M. A weakly-supervised crowd density estimation method based on two-stage linear feature calibration. IEEE/CAA Journal of Automatica Sinica, 2024, vol. 11, no. 4, pp. 965–981. DOI: 10.1109/JAS.2023.123960.
Zhou, J., Zhang, J. & Gui, Y. Crowd counting in domain generalization based on multi-scale attention and hierarchy level enhancement. Scientific Reports, 2025, vol. 15, article no. 155. DOI: 10.1038/s41598-024-83725-5.
Cao, R., Yu, J., Liu, Z. & Liang, Q. Towards real-world monitoring: An improved point prediction method for crowd counting based on contrastive learning. PLoS ONE, 2025, vol. 20, no. 7, article no. e0327397. DOI: 10.1371/journal.pone.0327397.
Xu, M., Ge, Z., Jiang, X., Cui, G., Lv, P., Zhou, B. & Xu, C. Depth information guided crowd counting for complex crowd scenes. arXiv, 2018, Mar. Available at: https://arxiv.org/abs/1803.02256 (Accessed: 1 March 2025).
Willmott, C.J. & Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 2005, vol. 30, no. 1, pp. 79–82. DOI: 10.3354/cr030079.
Sindagi, V.A. & Patel, V.M. Generating high-quality crowd density maps using contextual pyramid CNNs. Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, IEEE, 2017, pp.1861–1870. DOI: 10.1109/ICCV.2017.206.
Gouiaa, R., Akhloufi, M.A. & Shahbazi, M. Advances in convolution neural networks based crowd counting and density estimation. Big Data and Cognitive Computing, 2021, vol. 5, no. 4, article no. 50. DOI: 10.3390/bdcc5040050.
Shen, Z., Xu, Y., Ni, B., Wang, M., Hu, J. & Yang, X. Crowd counting via adversarial cross-scale consistency pursuit. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. IEEE, pp. 5245–5254. DOI: 10.1109/CVPR.2018.00550.
Liu, F., Shen, C., Lin, G. & Reid, I. Learning depth from single monocular images using deep convolutional neural fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, vol. 38, no. 10, pp. 2024–2039. DOI: 10.1109/TPAMI.2015.2505283.
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015. pp. 1–14. DOI: 10.48550/arXiv.1409.1556.
Li, Y., Zhang, X. & Chen, D. CSR-Net: Dilated convolutional neural networks for understanding the highly congested scenes. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. IEEE, pp. 1091–1100. DOI: 10.1109/CVPR.2018.00120.
Chen, L., Gao, X., Chao, F., Chang, X., Lin, C.M., Gao, X., Lin, S., Zhang, H. & Lin, J. The effectiveness of a simplified model structure for crowd counting. arXiv, 2024. Available at: https://arxiv.org/abs/2404.07847. (Accessed: 1 March 2025).
Zhang, Y., Zhou, D., Chen, S., Gao, S. & Ma, Y. Single‑image crowd counting via multi-column convolutional neural network. In: 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. IEEE, pp. 589–597. DOI: 10.1109/CVPR.2016.70.
Liu, J., Gao, C., Meng, D. & Hauptmann, A.G. DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197–5206. DOI: 10.1109/CVPR.2018.00545.
Zhang, C., Li, H., Wang, X. & Yang, X. Cross-Scene Crowd Counting via Deep Convolutional Neural Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 07–12 June 2015, IEEE, pp. 833–841. DOI: 10.1109/CVPR.2015.7298684.
Sam, D.B., Sajjan, N.N. & Babu, R.V. Divide and Grow: Capturing Huge Diversity in Crowd Images with Incrementally Growing CNN. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018, IEEE, pp. 3618–3626. DOI: 10.1109/CVPR.2018.00381.
Idrees, H., Saleemi, I., Seibert, C. & Shah, M. Multi-source multi-scale counting in extremely dense crowd images. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013. IEEE, pp. 2547–2554. DOI: 10.1109/CVPR.2013.329.
Loy, C.C., Gong, S. & Xiang, T. Mall dataset: A sparse indoor crowd counting and profiling dataset collected from webcam images. Available at: https://personal.ie.cuhk.edu.hk/~ccloy/downloads_mall_dataset.html (accessed: 1 March 2025).
DOI: https://doi.org/10.32620/reks.2025.2.08
Refbacks
- There are currently no refbacks.