Enhanced fire hazard detection in solar power plants: an integrated UAV, AI, and SCADA-based approach

Andrii Lysyi, Anatoliy Sachenko, Pavlo Radiuk, Mykola Lysyi, Oleksandr Melnychenko, Oleksii Ishchuk, Oleg Savenko

Abstract


The Subject of this research is the development of an intelligent, integrated system for the early detection and causal analysis of fire hazards in large-scale solar power plants (SPPs). It addresses the critical shortcomings of conventional monitoring methods, which often lack the necessary integration, speed, and diagnostic depth to reliably prevent catastrophic failures resulting from photovoltaic (PV) module defects. The goal of this study is to design, develop, and validate a comprehensive, multi-modal framework that fully automates the monitoring workflow, from data acquisition to actionable decision-making. The proposed system aims to significantly enhance plant safety by providing reliable, cause-differentiated alerts, which in turn optimizes maintenance strategies, minimizes downtime, and improves the overall economic viability of solar energy infrastructure. The Methods employed involve a synergistic architecture that combines an Unmanned Aerial Vehicle (UAV) equipped with high-resolution RGB and radiometric infrared cameras for rapid imaging, supplemented by dedicated Internet of Things (IoT) temperature sensors on PV module bypass diodes for critical component verification. A custom-trained YOLOv8 deep learning model performs automated defect detection from the captured imagery. The system’s intellectual core is a novel logical inference engine based on a Disjunctive Normal Form (DNF) equation. This formal logic model intelligently fuses four key binary features, namely, primary defect cause (damage vs. soiling), visual evidence, thermal anomaly severity, and bypass diode functional status, to produce a definitive and context-aware fire risk assessment. The entire workflow is managed and visualized using a SCADA TRACE MODE platform for centralized control and automated alerting. The study successfully validated the performance and logical integrity of the integrated system through a series of high-fidelity, scenario-based simulations. These simulations rigorously confirmed the capability of the DNF logic to accurately and reliably identify all predefined fire hazards. This included not only obvious faults but also "stealthy," damage-induced hotspots where the primary safety mechanism (the bypass diode) had failed. Concurrently, the system correctly classified mitigated risks to prevent false alarms, demonstrating its diagnostic precision. This capability allows the system to reliably differentiate between true emergencies requiring immediate module replacement and less critical issues, such as soiling that merely necessitates cleaning. The projected increase in diagnostic accuracy for identifying critical, fire-prone defects over conventional, single-modality methods is up to 40%, providing a quantitative measure of enhanced safety and reliability. Furthermore, the proposed system is projected to reduce the false-positive alarm rate by over 75% compared with IR-only automated systems. In conclusion, this study establishes a powerful new paradigm for proactive SPP safety management. The intelligent fusion of UAV and IoT sensing, AI-driven analytics, and a formal logical framework provides a robust and reliable solution for fire risk mitigation, enabling a highly efficient, condition-based maintenance strategy and significantly enhancing the safety, reliability, and performance of modern solar power infrastructure.

Keywords


bypass diode; DNF; fire hazard detection; infrared thermography; photovoltaic modules; SCADA; solar power plants; UAV inspection; YOLOv8

Full Text:

PDF

References


International renewable energy agency (IRENA), Future of Solar Photovoltaic, 2023. Available at: https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.irena.org%2Fpublications%2F2019%2FNov%2FFuture-of-solar-photovoltaic (accessed 15 April 2025).

Sun, L., & Sun, Y. Photovoltaic power forecasting based on artificial neural network and ultraviolet index. International Journal of Computing, 2022, vol. 21, no. 2, pp. 153–158. DOI:10.47839/ijc.21.2.2583.

Svystun, S., Scislo, L., Pawlik, M., Melnychenko, O., Radiuk, P., Savenko, O., & Sachenko, A. DyTAM: Accelerating wind turbine inspections with dynamic UAV trajectory adaptation. Energies, 2025, vol. 18, no. 7, article no. 1823. DOI:10.3390/en18071823.

Ullah Khan, Z., Daud Khan, A., Khan, K., Al Khatib, S. A. K., Khan, S., Qasim Khan, M., & Ullah, A. A review of degradation and reliability analysis of a solar PV module. IEEE Access, 2024, vol. 12, pp. 185036–185056. DOI:10.1109/ACCESS.2024.3432394.

Sinha, A., Sulas-Kern, D. B., Owen-Bellini, M., Spinella, L., Uličná, S., Ayala Pelaez, S., Johnston, S., & Schelhas, L. T. Glass/glass photovoltaic module reliability and degradation: A review. Journal of Physics D: Applied Physics, 2021, vol. 54, no. 41, article no. 413002. DOI:10.1088/1361-6463/ac1462.

Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., & Mester, Z. Photovoltaic degradation rate: A review of the-state-of-the-art. Progress in Photovoltaics: Research and Applications, 2018, vol. 26, no. 5, pp. 383–403. DOI:10.1002/pip.2971.

Patil, M., Abukhalil, T., Patel, S., & Sobh, T. UB swarm: Hardware implementation of heterogeneous swarm robot with fault detection and power management. International Journal of Computing, 2016, vol. 15, no. 3, pp. 162–176. DOI:10.47839/ijc.15.3.849.

Bin Abu Sofian, A. D. A., Lim, H. R., Siti Halimatul Munawaroh, H., Ma, Z., Chew, K. W., & Show, P. L. Machine learning and the renewable energy revolution: Exploring solar and wind energy solutions for a sustainable future including innovations in energy storage. Sustainable Development, 2024, vol. 32, no. 4, pp. 3953-3978. DOI:10.1002/sd.2885.

Golovko, V., Kroshchanka, A., Bezobrazov, S., Sachenko, A., Komar, M., & Novosad, O. Development of solar panels detector. Proc. of the 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, IEEE, 2018, pp. 761–764. DOI:10.1109/INFOCOMMST.2018.8632132.

Gallardo-Saavedra, S., Hernández-Callejo, L., & Duque-Pérez, O. Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants. Renewable and Sustainable Energy Reviews, 2018, vol. 93, pp. 566–579. DOI:10.1016/j.rser.2018.05.027.

Svystun, S., Melnychenko, O., Radiuk, P., Savenko, O., Sachenko, A., & Lysyi, A. Thermal and RGB images work better together in wind turbine damage detection. International Journal of Computing, 2025, vol. 23, no. 4, pp. 526–535. DOI:10.47839/ijc.23.4.3752.

Akram, M. W., Li, G., Jin, Y., Chen, X., Zhu, C., Ahmad, A., Zhao, X., Khaliq, A., Faheem, M., & Ahmad, A. CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy, 2019, vol. 189, article no. 116319. DOI:10.1016/j.energy.2019.116319.

Hijjawi, U., Lakshminarayana, S., Xu, T., Malfense Fierro, G. P., & Rahman, M. A review of automated solar photovoltaic defect detection systems: Approaches, challenges, and future orientations. Solar Energy, 2023, vol. 266, article no. 112186. DOI:10.1016/j.solener.2023.112186.

Melnychenko, O., Savenko, O., & Radiuk, P. Apple detection with occlusions using modified YOLOv5-v1. Proc. of the 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Dortmund, Germany, IEEE, 2023, pp. 107–112. DOI:10.1109/IDAACS58523.2023.10348779.

Baranwal, K., Prakash, P., & Yadav, V. K. A modified bypass circuit for improved reliability of pv module validated with real-time data. IEEE Transactions on Device and Materials Reliability, 2023, vol. 23, no. 2, pp. 187–197. DOI:10.1109/TDMR.2023.3247809.

Jocher, G., Chaurasia, A., & Qiu, J, YOLO by Ultralytics, 2023. Available at: https://github.com/ultralytics/ultralytics (accessed 14 April 2025).

Ahmed, M. M., & Soo, W. L. Supervisory control and data acquisition system (SCADA) based customized remote terminal unit (RTU) for distribution automation system. Proc. of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, IEEE, 2008, pp. 1655–1660. DOI:10.1109/PECON.2008.4762744.

Lysenko, V., Opryshko, O., Komarchuk, D., Pasichnyk, N., Zaets, N., & Dudnyk, A. Information support of the remote nitrogen monitoring system in agricultural crops. International Journal of Computing, 2018, vol. 17, no. 1, pp. 47–54. DOI:10.47839/ijc.17.1.948.

Chouder, A., Silvestre, S., Sadaoui, N., & Rahmani, L. Monitoring, modeling and performance assessment of PV systems. Solar Energy, 2013, vol. 91, pp. 337–349. DOI:10.1016/j.solener.2012.09.016.

International Electrotechnical Commission, IEC 62446-1:2016. Photovoltaic (PV) systems - Requirements for testing, documentation and maintenance - Part 1: Grid connected systems - Documentation, commissioning tests and inspection. Geneva, IEC, 2016. 37 p. Available at: https://webstore.iec.ch/en/publication/24431 (accessed 15 April 2025).

FLIR systems, Infrared Thermography for Photovoltaic Systems Inspection, 2019. Available at: https://www.flir.com/discover/professional-tools/photovoltaic-systems-inspection/ (accessed 15 April 2025).

Kaplan, H. Practical applications of infrared thermal sensing and imaging equipment. SPIE Press, 2007. 208 p. DOI:10.1117/3.725072.

Tsanakas, J. A., Ha, L. D., & Buerhop, C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. Renewable and Sustainable Energy Reviews, 2016, vol. 62, pp. 695–709. DOI:10.1016/j.rser.2016.04.079.

Melnychenko, O., Scislo, L., Savenko, O., Sachenko, A., & Radiuk, P. Intelligent integrated system for fruit detection using multi-UAV imaging and deep learning. Sensors, 2024, vol. 24, no. 6, article no. 1913. DOI:10.3390/s24061913.

Quater, P. B., Grimaccia, F., Leva, S., Mussetta, M., & Aghaei, M. Light unmanned aerial vehicles (UAVs) for cooperative inspection of PV plants. IEEE Journal of Photovoltaics, 2014, vol. 4, no. 4, pp. 1107–1113. DOI:10.1109/JPHOTOV.2014.2323714.

Mustafa Abro, G. E., Ali, A., Ali Memon, S., Din Memon, T., & Khan, F. Strategies and challenges for unmanned aerial vehicle-based continuous inspection and predictive maintenance of solar modules. IEEE Access, 2024, vol. 12, pp. 176615–176629. DOI:10.1109/ACCESS.2024.3505754.

Ozturk, E., Ogliari, E., Sakwa, M., Dolara, A., Blasuttigh, N., & Pavan, A. M. Photovoltaic modules fault detection, power output, and parameter estimation: A deep learning approach based on electroluminescence images. Energy Conversion and Management, 2024, vol. 319, article no. 118866. DOI:10.1016/j.enconman.2024.118866.

Islam, M., Rashel, M. R., Ahmed, M. T., Islam, A. K. M. K., & Tlemçani, M. Artificial intelligence in photovoltaic fault identification and diagnosis: A systematic review. Energies, 2023, vol. 16, no. 21, article no. 7417. DOI:10.3390/en16217417.

El-Banby, G. M., Moawad, N. M., Abouzalm, B. A., Abouzaid, W. F., & Ramadan, E. A. Photovoltaic system fault detection techniques: A review. Neural Computing and Applications, 2023, vol. 35, no. 35, pp. 24829-24842. DOI:10.1007/s00521-023-09041-7.

Dhakshinamoorthy, M., Sundaram, K., Murugesan, P., & David, P. W. Bypass diode and photovoltaic module failure analysis of 1.5kW solar PV array. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, vol. 44, no. 2, pp. 4000-4015. DOI:10.1080/15567036.2022.2072023.

Saad, H. L., Al-ani, W. M., & Abdulrahman, A. Q. Design of a SCADA system for a solar photovoltaic power plant. NTU Journal of Engineering and Technology, 2023, vol. 2, no. 2, pp. 18–28. DOI:10.56286/ntujet.v2i2.598.

Šverko, M., & Galinac Grbac, T. Automated HMI design as a custom feature in industrial SCADA systems. Procedia Computer Science, 2024, vol. 232, pp. 1789-1798. DOI:10.1016/j.procs.2024.02.001.

Parsaeifar, R., Valinejadshoubi, M., Le Guen, A., & Valdivieso, F. AI-based solar panel detection and monitoring using high-resolution drone imagery. Journal of Soft Computing in Civil Engineering, 2024, vol. 9, no. 3, pp. 41–59. DOI:10.22115/scce.2024.445184.1812.




DOI: https://doi.org/10.32620/reks.2025.2.06

Refbacks

  • There are currently no refbacks.