Enhanced fire hazard detection in solar power plants: an integrated UAV, AI, and SCADA-based approach
Abstract
Keywords
Full Text:
PDFReferences
International renewable energy agency (IRENA), Future of Solar Photovoltaic, 2023. Available at: https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.irena.org%2Fpublications%2F2019%2FNov%2FFuture-of-solar-photovoltaic (accessed 15 April 2025).
Sun, L., & Sun, Y. Photovoltaic power forecasting based on artificial neural network and ultraviolet index. International Journal of Computing, 2022, vol. 21, no. 2, pp. 153–158. DOI:10.47839/ijc.21.2.2583.
Svystun, S., Scislo, L., Pawlik, M., Melnychenko, O., Radiuk, P., Savenko, O., & Sachenko, A. DyTAM: Accelerating wind turbine inspections with dynamic UAV trajectory adaptation. Energies, 2025, vol. 18, no. 7, article no. 1823. DOI:10.3390/en18071823.
Ullah Khan, Z., Daud Khan, A., Khan, K., Al Khatib, S. A. K., Khan, S., Qasim Khan, M., & Ullah, A. A review of degradation and reliability analysis of a solar PV module. IEEE Access, 2024, vol. 12, pp. 185036–185056. DOI:10.1109/ACCESS.2024.3432394.
Sinha, A., Sulas-Kern, D. B., Owen-Bellini, M., Spinella, L., Uličná, S., Ayala Pelaez, S., Johnston, S., & Schelhas, L. T. Glass/glass photovoltaic module reliability and degradation: A review. Journal of Physics D: Applied Physics, 2021, vol. 54, no. 41, article no. 413002. DOI:10.1088/1361-6463/ac1462.
Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., & Mester, Z. Photovoltaic degradation rate: A review of the-state-of-the-art. Progress in Photovoltaics: Research and Applications, 2018, vol. 26, no. 5, pp. 383–403. DOI:10.1002/pip.2971.
Patil, M., Abukhalil, T., Patel, S., & Sobh, T. UB swarm: Hardware implementation of heterogeneous swarm robot with fault detection and power management. International Journal of Computing, 2016, vol. 15, no. 3, pp. 162–176. DOI:10.47839/ijc.15.3.849.
Bin Abu Sofian, A. D. A., Lim, H. R., Siti Halimatul Munawaroh, H., Ma, Z., Chew, K. W., & Show, P. L. Machine learning and the renewable energy revolution: Exploring solar and wind energy solutions for a sustainable future including innovations in energy storage. Sustainable Development, 2024, vol. 32, no. 4, pp. 3953-3978. DOI:10.1002/sd.2885.
Golovko, V., Kroshchanka, A., Bezobrazov, S., Sachenko, A., Komar, M., & Novosad, O. Development of solar panels detector. Proc. of the 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, IEEE, 2018, pp. 761–764. DOI:10.1109/INFOCOMMST.2018.8632132.
Gallardo-Saavedra, S., Hernández-Callejo, L., & Duque-Pérez, O. Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants. Renewable and Sustainable Energy Reviews, 2018, vol. 93, pp. 566–579. DOI:10.1016/j.rser.2018.05.027.
Svystun, S., Melnychenko, O., Radiuk, P., Savenko, O., Sachenko, A., & Lysyi, A. Thermal and RGB images work better together in wind turbine damage detection. International Journal of Computing, 2025, vol. 23, no. 4, pp. 526–535. DOI:10.47839/ijc.23.4.3752.
Akram, M. W., Li, G., Jin, Y., Chen, X., Zhu, C., Ahmad, A., Zhao, X., Khaliq, A., Faheem, M., & Ahmad, A. CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy, 2019, vol. 189, article no. 116319. DOI:10.1016/j.energy.2019.116319.
Hijjawi, U., Lakshminarayana, S., Xu, T., Malfense Fierro, G. P., & Rahman, M. A review of automated solar photovoltaic defect detection systems: Approaches, challenges, and future orientations. Solar Energy, 2023, vol. 266, article no. 112186. DOI:10.1016/j.solener.2023.112186.
Melnychenko, O., Savenko, O., & Radiuk, P. Apple detection with occlusions using modified YOLOv5-v1. Proc. of the 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Dortmund, Germany, IEEE, 2023, pp. 107–112. DOI:10.1109/IDAACS58523.2023.10348779.
Baranwal, K., Prakash, P., & Yadav, V. K. A modified bypass circuit for improved reliability of pv module validated with real-time data. IEEE Transactions on Device and Materials Reliability, 2023, vol. 23, no. 2, pp. 187–197. DOI:10.1109/TDMR.2023.3247809.
Jocher, G., Chaurasia, A., & Qiu, J, YOLO by Ultralytics, 2023. Available at: https://github.com/ultralytics/ultralytics (accessed 14 April 2025).
Ahmed, M. M., & Soo, W. L. Supervisory control and data acquisition system (SCADA) based customized remote terminal unit (RTU) for distribution automation system. Proc. of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, IEEE, 2008, pp. 1655–1660. DOI:10.1109/PECON.2008.4762744.
Lysenko, V., Opryshko, O., Komarchuk, D., Pasichnyk, N., Zaets, N., & Dudnyk, A. Information support of the remote nitrogen monitoring system in agricultural crops. International Journal of Computing, 2018, vol. 17, no. 1, pp. 47–54. DOI:10.47839/ijc.17.1.948.
Chouder, A., Silvestre, S., Sadaoui, N., & Rahmani, L. Monitoring, modeling and performance assessment of PV systems. Solar Energy, 2013, vol. 91, pp. 337–349. DOI:10.1016/j.solener.2012.09.016.
International Electrotechnical Commission, IEC 62446-1:2016. Photovoltaic (PV) systems - Requirements for testing, documentation and maintenance - Part 1: Grid connected systems - Documentation, commissioning tests and inspection. Geneva, IEC, 2016. 37 p. Available at: https://webstore.iec.ch/en/publication/24431 (accessed 15 April 2025).
FLIR systems, Infrared Thermography for Photovoltaic Systems Inspection, 2019. Available at: https://www.flir.com/discover/professional-tools/photovoltaic-systems-inspection/ (accessed 15 April 2025).
Kaplan, H. Practical applications of infrared thermal sensing and imaging equipment. SPIE Press, 2007. 208 p. DOI:10.1117/3.725072.
Tsanakas, J. A., Ha, L. D., & Buerhop, C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. Renewable and Sustainable Energy Reviews, 2016, vol. 62, pp. 695–709. DOI:10.1016/j.rser.2016.04.079.
Melnychenko, O., Scislo, L., Savenko, O., Sachenko, A., & Radiuk, P. Intelligent integrated system for fruit detection using multi-UAV imaging and deep learning. Sensors, 2024, vol. 24, no. 6, article no. 1913. DOI:10.3390/s24061913.
Quater, P. B., Grimaccia, F., Leva, S., Mussetta, M., & Aghaei, M. Light unmanned aerial vehicles (UAVs) for cooperative inspection of PV plants. IEEE Journal of Photovoltaics, 2014, vol. 4, no. 4, pp. 1107–1113. DOI:10.1109/JPHOTOV.2014.2323714.
Mustafa Abro, G. E., Ali, A., Ali Memon, S., Din Memon, T., & Khan, F. Strategies and challenges for unmanned aerial vehicle-based continuous inspection and predictive maintenance of solar modules. IEEE Access, 2024, vol. 12, pp. 176615–176629. DOI:10.1109/ACCESS.2024.3505754.
Ozturk, E., Ogliari, E., Sakwa, M., Dolara, A., Blasuttigh, N., & Pavan, A. M. Photovoltaic modules fault detection, power output, and parameter estimation: A deep learning approach based on electroluminescence images. Energy Conversion and Management, 2024, vol. 319, article no. 118866. DOI:10.1016/j.enconman.2024.118866.
Islam, M., Rashel, M. R., Ahmed, M. T., Islam, A. K. M. K., & Tlemçani, M. Artificial intelligence in photovoltaic fault identification and diagnosis: A systematic review. Energies, 2023, vol. 16, no. 21, article no. 7417. DOI:10.3390/en16217417.
El-Banby, G. M., Moawad, N. M., Abouzalm, B. A., Abouzaid, W. F., & Ramadan, E. A. Photovoltaic system fault detection techniques: A review. Neural Computing and Applications, 2023, vol. 35, no. 35, pp. 24829-24842. DOI:10.1007/s00521-023-09041-7.
Dhakshinamoorthy, M., Sundaram, K., Murugesan, P., & David, P. W. Bypass diode and photovoltaic module failure analysis of 1.5kW solar PV array. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, vol. 44, no. 2, pp. 4000-4015. DOI:10.1080/15567036.2022.2072023.
Saad, H. L., Al-ani, W. M., & Abdulrahman, A. Q. Design of a SCADA system for a solar photovoltaic power plant. NTU Journal of Engineering and Technology, 2023, vol. 2, no. 2, pp. 18–28. DOI:10.56286/ntujet.v2i2.598.
Šverko, M., & Galinac Grbac, T. Automated HMI design as a custom feature in industrial SCADA systems. Procedia Computer Science, 2024, vol. 232, pp. 1789-1798. DOI:10.1016/j.procs.2024.02.001.
Parsaeifar, R., Valinejadshoubi, M., Le Guen, A., & Valdivieso, F. AI-based solar panel detection and monitoring using high-resolution drone imagery. Journal of Soft Computing in Civil Engineering, 2024, vol. 9, no. 3, pp. 41–59. DOI:10.22115/scce.2024.445184.1812.
DOI: https://doi.org/10.32620/reks.2025.2.06
Refbacks
- There are currently no refbacks.