Research on machine learning methods for detecting objects in difficult shooting conditions
Abstract
Keywords
Full Text:
PDFReferences
Zhang, Y., Carballo, A., Yang, H., & Takeda, K. Perception and sensing for autonomous vehicles under adverse weather conditions: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, pp. 146-177. DOI: 10.1016/j.isprsjprs.2022.12.021.
Xiao, H., Zhang, F., Shen, Z., Wu, K., & Zhang, J. Classification of weather phenomenon from images by using deep convolutional neural network. Earth and Space Science, 2021, vol. 8, iss. 5, article no. e2020EA001604. DOI: 10.1029/2020EA001604.
Liu, W., Ren, G., Yu, R., Guo, S., Zhu, J., & Zhang, L. Image-adaptive YOLO for object detection in adverse weather conditions. In Proceedings of the AAAI conference on artificial intelligence, 2022, vol. 36, no. 2, pp. 1792-1800. DOI: 10.48550/arXiv.2112.08088.
Mimouna, A., Alouani, I., Ben Khalifa, A., El Hillali, Y., Taleb-Ahmed, A., Menhaj, A., Ouahabi, A., & Ben Amara, N. E. OLIMP: A Heterogeneous Multimodal Dataset for Advanced Environment Perception. Electronics 2020, vol. 9, article no. 560. DOI: 10.3390/electronics9040560.
Heredia-Aguado, E., Cabrera, J. J., Jiménez, L. M., Valiente, D., & Gil, A. Static Early Fusion Techniques for Visible and Thermal Images to Enhance Convolutional Neural Network Detection: A Performance Analysis. Remote Sens. 2025, vol. 17, article no. 1060. DOI: 10.3390/rs17061060.
Balestra, M., Marselis, S., Sankey, T. T., Cabo, C., Liang, X., Mokroš, M., & et al. LiDAR data fusion to improve forest attribute estimates: A review. Current Forestry Reports, 2024, vol. 10, pp. 281-297. DOI: 10.1007/s40725-024-00223-7.
Al-Haija, Q. A., Smadi, M. A., & Zein-Sabatto, S. Multi-Class Weather Classification Using ResNet-18 CNN for Autonomous IoT and CPS Applications. 2020 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2020, pp. 1586-1591. DOI: 10.1109/CSCI51800.2020.00293.
Rajib, G. On-road vehicle detection in varying weather conditions using faster R-CNN with several region proposal networks. Multimedia Tools Appl, 2021, vol. 80, pp. 25985–25999. DOI: 10.1007/s11042-021-10954-5.
Osipov, A., Pleshakova, E., Gataullin, S., Korchagin, S., Ivanov, M., Finogeev, A., & Yadav, V. Deep Learning Method for Recognition and Classification of Images from Video Recorders in Difficult Weather Conditions. Sustainability, 2022, vol. 14, article no. 2420. DOI: 10.3390/su14042420.
Tumas, P., Nowosielski A., & Serackis, A. Pedestrian Detection in Severe Weather Conditions, in IEEE Access, 2020, vol. 8, pp. 62775-62784, DOI: 10.1109/ACCESS.2020.2982539.
Tan, L., Huangfu, T., Wu, L., & Chen, W. Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification. BMC Med Inform Decis Mak, 2021, vol. 21, article no. 324, DOI: 10.1186/s12911-021-01691-8.
Ren, S., He, K., Girshick, R., & Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, no. 6, pp. 1137-1149, DOI: 10.1109/TPAMI.2016.2577031.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. SSD: Single Shot MultiBox Detector. In Computer Vision–ECCV 2016: 14th European Conference, 2016, vol. 9905, pp. 21-37, DOI: 10.1007/978-3-319-46448-0_2.
Bharati, P., & Pramanik, A. Deep Learning Techniques—R-CNN to Mask R-CNN: A Survey. Computational Intelligence in Pattern Recognition: Proceedings of CIPR 2019, pp. 657-668. DOI: 10.1007/978-981-13-9042-5_56.
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko. S. End-to-End Object Detection with Transformers. In European conference on computer vision ECCV 2020, 2020, vol. 12346, pp. 213-229, DOI: 10.1007/978-3-030-58452-8_13.
Barkovska, O., & Serdechnyi, V. Intelligent assistance system for people with visual impairments. Innovative technologies and scientific solutions for industries, 2024, no. 2(28), pp. 6–16, DOI: 10.30837/2522-9818.2024.28.006.
Wu, J., Ye, Y., & Du, J. Multi-objective reinforcement learning for autonomous drone navigation in urban areas with wind zones. Automation in construction, 2024, vol. 158, article no. 105253. DOI: 10.1016/j.autcon.2023.105253.
DOI: https://doi.org/10.32620/reks.2025.2.04
Refbacks
- There are currently no refbacks.