Modeling the series of military actions to plan an attack mission of a swarm drones
Abstract
Keywords
Full Text:
PDFReferences
Li, Y., Wen, D., Zhang, S., & Li, L.. Sequential task allocation of more scalable artificial dragonfly swarms considering Dubins trajectory Drones, 2024, vol. 8, no. 10, article no. 596. DOI: 10.3390/drones8100596.
Yu, B., Yu, S., Zhao, Y., Wang, J., Lai, R., Lv, J., & Zhou, B. Intelligent firefighting technology for drone swarms with multi sensor integrated path planning: YOLOv8 algorithm driven fire source identification. Drones, 2025, vol. 9, no. 5, article no. 348. DOI: 10.3390/drones9050348.
Adoni, W. Y. H. Swarm RRT: Autonomous exploration with UAV swarm based guided RRT search strategy. SciForum,2025.
Ali, A., Nafees, M., Amin, M. A., & Rehman, I. U. Systematic literature review on swarms of UAVs. Spectrum of Emerging Sciences, 2024, vol 2 No. 4 12(1), pp. 386–415. Available at:: https://sesjournal.com/index.php/1/article/view/83
Kramarić, L., Muštra, M., & Jelušić, N. Determining accuracy of distance measurement using UWB transceiver on Arduino ESP32. International Symposium ELMAR Conference IEEE, 2024 DOI: 10.1109/ELMAR62909.2024.10694654
Li, T., Leng, S., Liao, X., & Zhang, Y. Digital twin based task driven resource management in intelligent UAV swarms. IEEE Transactions on Intelligent Transportation Systems, 2025,vol. 26, iss. 4, pp 5467 – 5480. DOI: 10.1109/TITS.2025.3531120.
Arshi, O., Khan, I. U., Kaushik, K., Iqbal, N., Ullah, I., & Slimani, K. Unmanned aerial vehicles swarm for protecting smart cities , In Smart Sustainable Cities: Concepts and Applications Publ 2024 pp. 222–239. Springer. DOI: 10.1007/979-8-8688-1047-3.
Fedorovych, O., Malieiev, L., & Hubka, O. Modeling of project activities for UAV modernization to conduct swarm drone attack missions. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2025, no. 2, pp. 81–92. DOI: 10.32620/aktt.2025.2.08.
Kosak, O., Kastenmüller, P., & Wanninger, C. An approach for extended swarm formation flight with drones: PROTEASE 2.0. Leveraging Applications of Formal Methods, Verification and Validation. Rigorous Engineering of Collective Adaptive Systems: 12th International Symposium, ISoLA 2024, Crete, Greece, Proceedings, Part II 2024, pp. 263-280. DOI:10.1007/978-3-031-75107-3_16
John, J. Development of scalable UAV swarm based cooperative search and mitigation approaches for wildfire management. Master’s thesis, Indian Institute of Science. IISc Repository. 2025 Available at:: https://etd.iisc.ac.in/handle/2005/6915. (accessed 10.2.2025)
Cetinsaya, B., Neumann, C., & Bruder, G. Assessing the effects of drone control interfaces on situational awareness and digital twin environment updates. IEEE Conference on Virtual Reality and 3D User Interfaces, 2025, pp. 405-413 DOI: 10.1109/VRW66409.2025.00093
Wang, C., Zhu, C., Fan, Z., Wang, X., & Gu, M. I. Target selection and motion control technologies for distributed drone swarm in entrapping task SSRN, 2024 DOI: 10.2139/ssrn.5080367.
Siemiatkowska, B., & Stecz, W. A framework for planning and execution of drone swarm missions in a hostile environment. Sensors, 2021, vol. 21, no. 12, article no. 4150. DOI: 10.3390/s21124150.
Khurana, R., Thukral, A., & Gupta, A. Application of drones in pollution mitigation through artificial rainfall. Journal of Advance Research and Innovation, 2025, vol. 11, no 2, pp. 55–62.
Salman, M., Singh, R., Agrawal, V., & Trivedi, G. Enhancement in drone technology with payload, sensors, and frequency spectrum issues and applications. AIP Conference Proceedings, 2025 vol. 3224, iss. 1. DOI: 10.1063/5.0245908
Bjurling, O. Designing human swarm interaction systems. Springer, 2025 , Available at:: https://books.google.com/books?id=kPpUEQAAQBAJ. (accessed 10.2.2025).
Raptis, E. Προοδευτική ενσωμάτωση της αυτονομίας και της νοημοσύνης στις ρομποτικές πλατφόρμες [Progressively integrating autonomy and intelligence in robotic platforms]. Democritus University of Thrace, 2025 Available at:: https://www.didaktorika.gr/eadd/handle/10442/58360. (In Greek). (accessed 10.2.2025).
Sembiring, J., Alhadad, L. M., & Kusumah, A. R. A. Initial development of swarming drone in normal DJI Tello drone with ESP8266 Springer Proceedings in Physics, 2024, vol. 416, pp. 344–353. DOI: 10.1007/978-981-96-1344-1_37.
Sembiring, J., Alhadad, L. M., & Kusumah, A. R. A. Initial development of swarming drone In Information Systems and Advanced Science Technologies, 2024, vol. 17, pp. 323–335 Available at:: https://books.google.com/books?id=jMxGEQAAQBAJ. (accessed 10.2.2025).
Kosak, O., et al. . PROTEASE 2.0: Extended swarm formation for drone shows and urban missions. In ISoLA proceedings, Lecture Notes in Computer Science, 2024, vol. 15220, pp. 263–280, DOI: 10.1007/978-3-031-75107-3_16.
Xie, X., Ge, Y., Walia, H., Yang, J., & Yu, H. Leaf counting in monocot plants using deep regression models. Sensors, 23, vol. 23, no 4, article no. 1890. DOI: 10.3390/s23041890.
Kunertova, D. Drones have boots: Learning from Russia’s war in Ukraine Contemporary Security Policy, 2023, vol. 44, No 4, pp. 576–591. DOI: 10.1080/13523260.2023.2262792.
Petrovski, A., & Radovanović, M. Application of drones with artificial intelligence for military purposes In 10th International Scientific Conference on Defensive Technologies (OTEH), Belgrade, Serbia, 2022, pp. 92–100.
Lee, D., Kim, S., & Suk, J. Formation flight of unmanned aerial vehicles using track guidance. Aerospace Science and Technology, 2018, vol. 76, pp. 412–420. DOI: 10.1016/j.ast.2018.01.026.
Sun, H., Qi, J., Wu, C., & Wang, M. Path planning for dense drone formation based on modified artificial potential fields Chinese Control Conference (CCC), Shenyang, China, IEEE 2020, pp. 4658–4666. DOI: 10.23919/CCC50068.2020.9189345
Chen, Y., & Deng, T. Leader follower UAV formation flight control based on feature modelling Systems Science & Control Engineering, 2023, vol. 11, no 1. DOI: 10.1080/21642583.2023.2268153.
Solaiman, S., Alsuwat, E., & Alharthi, R. Simultaneous tracking and recognizing drone targets with millimeter wave radar and convolutional neural network Applied Systems and Innovation, 2023, vol. 6, no 4, article no. 68. DOI: 10.3390/asi6040068.
Chao, Y., Augenstein, Y, C., Roennau, P., Dillmann, R., & Xiong, Z. Brain inspired path planning algorithms for drones. Frontiers in Neurorobotics, 2023, vol. 17, article no DOI: 10.3389/fnbot.2023.1111861.
Fedorovich, O., Krytskyi, D., Leshchenko, O., Yashina, O., & Malieieva, Yu. Modeling waves of a strike drones swarm for a massive attack on enemy targets Radioelectronic and Computer Systems, 2024, vol. 2024, no 2, pp. 203–212. DOI: 10.32620/reks.2024.2.16.
Yu, R., Liu, Y., Meng, Y., Guo, Y., Xiong, Z., & Jiang, P. Optimal configuration of heterogeneous swarm for cooperative detection with minimum DOP based on nested cones Drones, 2024, vol. 8, no. 1, article no. 11. DOI: 10.3390/drones8010011.
Yang, Y., Xiong, X., & Yan, Y. UAV formation trajectory planning algorithms: A review Drones, 2023, vol. 7, no 62, article no. 62. DOI: 10.3390/drones7010062.
DOI: https://doi.org/10.32620/reks.2025.2.03
Refbacks
- There are currently no refbacks.