Advanced image super-resolution using deep learning approaches
Abstract
Keywords
Full Text:
PDFReferences
Wang, X., Yi, J., Guo, J., Song, Y., Lyu, J., Xu, J., Yan, W., Zhao, J., Cai, Q., & Min, H. A review of image super-resolution approaches based on deep learning and applications in remote sensing. Remote Sensing, 2022, vol. 14, iss. 21, article no. 5423. DOI: 10.3390/rs14215423.
Anwar, S., Khan, S., & Barnes, N. A deep journey into super-resolution: A survey. ACM Computing Surveys (CSUR), 2020, vol. 53, no 3, article no. 60, pp. 1-34. DOI: 10.1145/3390462.
Meena, S. D., Sriya, B. L., Gayathri, J., Amrutha, K., Vidyadhar, V. M., & Sheela, J. Image super resolution using deep convolutional network. AIP Conference Proceedings, AIP Publishing, 2023, vol. 2869. no. 1, pp. 1-7. DOI: 10.1063/5.0168210.
Xue, X., Zhang, X., Li, H., & Wang, W. Research on GAN-based image super-resolution method. International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 2020, pp. 602-605. DOI: 10.1109/ICAICA50127.2020.9182617.
Sood, R., Topiwala, B., Choutagunta, K., Sood, R., & Rusu, M. An application of generative adversarial networks for super resolution medical imaging. 17th International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 2018, pp. 326-331. DOI: 10.1109/ICMLA.2018.00055.
Chen, B., & Jung, C. Single depth image super-resolution using convolutional neural networks. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 2018, pp. 1473-1477. DOI: 10.1109/ICASSP.2018.8462043.
Lu, J., Hu, W., & Sun, Y. A deep learning method for image super-resolution based on geometric similarity. Signal Processing: Image Communication, 2019, vol. 70, pp. 210-219. DOI: 10.1016/j.image.2018.10.003.
Chauhan, K., Patel, S. N., Kumhar, M., Bhatia, J., Tanwar, S., Davidson, I. E., & et al. Deep learning-based single-image super-resolution: A comprehensive review. IEEE Access, 2023, vol. 11, pp. 21811-21830. DOI: 10.1109/ACCESS.2023.3251396.
Chung, M., Jung, M., & Kim, Y. Enhancing remote sensing image super-resolution guided by bicubic-downsampled low-resolution image. Remote Sens., 2023, vol. 15, article no. 3309. DOI: 10.3390/rs15133309.
Velagaleti, S. B., Mohite, S. S., Apare, R. S., Kansal, V., Rao, A. L. N., Srivastava, A., Bansal, S., & Shrivastava, A. Image Super-Resolution with Deep Learning: Enhancing Visual Quality using SRCNN. International Journal of Intelligent Systems and Applications in Engineering, 2024, vol. 12, no. 21s, pp. 479-486. Available at: https://ijisae.org/index.php/IJISAE/article/view/5444 (Accessed: 5 March 2024).
Pu, Z., Koutti, L., Masmoudi, L., & de Oliveira, J. V. A super resolution method based on generative adversarial networks with quantum feature enhancement: Application to aerial agricultural images. Neurocomputing, 2024, vol. 577, article no. 127346. DOI: 10.1016/j.neucom.2024.127346.
Hassan, M., Illanko, K., & Fernando, X. N. Single image super resolution using deep residual learning. AI, 2024, vol. 5, iss. 1, pp. 426-445. DOI: 10.3390/ai5010021.
Jiang, Y., He, R., Chen, Y., Zhang, J., Lei, Y., Yan, S., & Cao, H. Deep learning-based super-resolution reconstruction and segmentation of photoacoustic images. Appl. Sci., 2024, vol. 14, article no. 5331. DOI: 10.3390/app14125331.
Hwang, J. H., Park, C. K., Kang, S. B., Choi, M. K., & Lee, W. H. Deep learning super-resolution technique based on magnetic resonance imaging for application of image-guided diagnosis and surgery of trigeminal neuralgia. Life, 2024, vol. 14, iss. 3, article no. 355. DOI: 10.3390/life14030355.
Lee, D. Y., Kim, J. Y., & Cho, S. Y. Improving medical image quality using a super-resolution technique with attention mechanism. Applied Sciences, 2025, vol. 15, iss. 2, article no. 867. DOI: 10.3390/app15020867.
Charan, K. S., Shashank, T. N., & Gururaj, C. Image super-resolution using convolutional neural network. 2nd Mysore Sub Section International Conference (MysuruCon), IEEE, 2022. pp. 1-7. DOI: 10.1109/MysuruCon55714.2022.9972459.
Aarti, & Kumar, A. Super-Resolution with Deep Learning Techniques: A Review. Computational Intelligence Methods for Super-Resolution in Image Processing Applications, 2021, pp. 43-59. DOI: 10.1007/978-3-030-67921-7_3.
Wang, X., Sun, L., Chehri, A., & Song, Y. A review of GAN-based super-resolution reconstruction for optical remote sensing images. Remote Sensing, 2023, vol. 15, no 20, article no. 5062. DOI: 10.3390/rs15205062.
Abbas, R., & Gu, N. Improving deep learning-based image super-resolution with residual learning and perceptual loss using SRGAN model. Soft Computing, 2023, vol. 27, no. 21, pp. 16041-16057. DOI: 10.1007/s00500-023-09126-4.
Mahapatra, D., Bozorgtabar, B., & Garnavi, R. Image super-resolution using progressive generative adversarial networks for medical image analysis. Computerized Medical Imaging and Graphics, 2019, vol. 71, pp. 30-39. DOI: 10.1016/j.compmedimag.2018.10.005.
Rajarapollu, P. R., & Mankar, V. R. Bicubic interpolation algorithm implementation for image appearance enhancement. International Journal of Computer Science and Technology (IJCST), 2017, vol. 8, no. 2, pp. 23-26.
Agustsson, E., & Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, Honolulu, HI, USA, 2017, pp. 1122-1131. DOI: 10.1109/CVPRW.2017.150.
Bevilacqua, M., Roumy, A., Guillemot, C., & Alberi-Morel, M. L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. 23rd British Machine Vision Conference (BMVC). BMVA Press, 2012, pp. 135.1-135.10. ISBN 1-901725-46-4. Available at: http://eprints.imtlucca.it/2412/. (Accessed: 5 March 2024).
Zeyde, R., Elad, M., & Protter, M. On single image scale-up using sparse-representations. Curves and Surfaces: 7th International Conference, Avignon, France, June 24-30, 2010, Revised Selected Papers 7. Springer Berlin Heidelberg, 2012. pp. 711-730. DOI: 10.1007/978-3-642-27413-8_47.
Beddiar, D. R., Oussalah, M., & Seppänen, T. Automatic captioning for medical imaging (MIC): a rapid review of literature. Artificial intelligence review, 2023, vol. 56, no 5, pp. 4019-4076. DOI: 10.1007/s10462-022-10270-w.
Sara, U., Akter, M., & Uddin, M. S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. Journal of Computer and Communications, 2019, vol. 7, no. 3, pp. 8-18. DOI: 10.4236/jcc.2019.73002.
Dong, C., Loy, C. C., He, K., & Tang, X. Image super-resolution using deep convolutional networks. Transactions on Pattern Analysis and Machine Intelligence, 2015, vol. 38, no. 2, pp. 295-307. DOI: 10.1109/TPAMI.2015.2439281.
Lim, B., Son, S., Kim, H., Nah, S., & Mu Lee, K. Enhanced deep residual networks for single image super-resolution. Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 2017, pp. 1132-1140. DOI: 10.1109/CVPRW.2017.151.
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., ... & Change Loy, C. ESRGAN: Enhanced super-resolution generative adversarial networks. Computer Vision – ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science, Springer, Cham, 2018, vol. 11133, pp. 63-79. DOI: 10.1007/978-3-030-11021-5_5.
Shang, T., Dai, Q., Zhu, S., Yang, T., & Guo, Y. Perceptual extreme super-resolution network with receptive field block. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, pp. 1778-1787. DOI: 10.1109/CVPRW50498.2020.00228.
Zou, L., Xu, S., Zhu, W., Huang, X., Lei, Z., & He, K. Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs. Sensors, 2023, vol. 23, no. 16, article no. 7296. DOI: 10.3390/s23167296.
DOI: https://doi.org/10.32620/reks.2025.1.13
Refbacks
- There are currently no refbacks.